Skip to main content

Synthetic Biology for Cell-Free Biosynthesis: Fundamentals of Designing Novel In Vitro Multi-Enzyme Reaction Networks

  • Chapter
  • First Online:
Book cover Synthetic Biology – Metabolic Engineering

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 162))

Abstract

Cell-free biosynthesis in the form of in vitro multi-enzyme reaction networks or enzyme cascade reactions emerges as a promising tool to carry out complex catalysis in one-step, one-vessel settings. It combines the advantages of well-established in vitro biocatalysis with the power of multi-step in vivo pathways. Such cascades have been successfully applied to the synthesis of fine and bulk chemicals, monomers and complex polymers of chemical importance, and energy molecules from renewable resources as well as electricity. The scale of these initial attempts remains small, suggesting that more robust control of such systems and more efficient optimization are currently major bottlenecks. To this end, the very nature of enzyme cascade reactions as multi-membered systems requires novel approaches for implementation and optimization, some of which can be obtained from in vivo disciplines (such as pathway refactoring and DNA assembly), and some of which can be built on the unique, cell-free properties of cascade reactions (such as easy analytical access to all system intermediates to facilitate modeling).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC et al (2012) Engineering the third wave of biocatalysis. Nature 485:185–194

    Article  CAS  Google Scholar 

  2. Pamies O, Bäckvall JE (2003) Combined metal catalysis and biocatalysis for an efficient deracemization process. Curr Opin Biotechnol 14:407–413

    Article  CAS  Google Scholar 

  3. Lee JW, Na D, Park JM, Lee J, Choi S et al (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 8:536–546

    Article  CAS  Google Scholar 

  4. Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330:1355–1358

    Article  CAS  Google Scholar 

  5. Woolston BM, Edgar S, Stephanopoulos G (2013) Metabolic engineering: past and future. Annu Rev Chem Biomol Eng 4:259–288

    Article  CAS  Google Scholar 

  6. Chen Y, Nielsen J (2013) Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks. Curr Opin Biotechnol 24:965–972

    Article  CAS  Google Scholar 

  7. Chenault HK, Simon ES, Whitesides GM (1988) Cofactor regeneration for enzyme-catalysed synthesis. Biotechnol Bioeng 6:221–270

    CAS  Google Scholar 

  8. Fessner W-D, Walter C (1992) “Artificial metabolisms” for the asymmetric one-pot synthesis of branched-chain saccharides. Angew Chem Int Ed 31:614–616

    Article  Google Scholar 

  9. Härle J, Panke S (2014) Synthetic biology for oligosaccharide production. Curr Org Chem 18:987–1004

    Article  CAS  Google Scholar 

  10. Endo T, Koizumi S (2001) Microbial conversion with cofactor regeneration using genetically engineered bacteria. Adv Synth Catal 343:521–526

    Article  CAS  Google Scholar 

  11. Koizumi S, Endo T, Tabata K, Ozaki A (1998) Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria. Nat Biotechnol 16:847–850

    Article  CAS  Google Scholar 

  12. Altenbuchner J, Siemann-Herzberg M, Syldatk C (2001) Hydantoinases and related enzymes as biocatalysts for the synthesis of unnatural chiral amino acids. Curr Opin Biotechnol 12:559–563

    Article  CAS  Google Scholar 

  13. Schrader J, Bohlmann J (2015) Biotechnology of isoprenoids. In: Scheper T (ed) Advances in biochemical engineering/biotechnology, vol 148. Springer, Heidelberg, p 475

    Google Scholar 

  14. Korman TP, Sahachartsiri B, Li D, Vinokur JM, Eisenberg D et al (2014) A synthetic biochemistry system for the in vitro production of isoprene from glycolysis intermediates. Proc Natl Acad Sci U S A 23:576–585

    CAS  Google Scholar 

  15. Chen X, Zhang C, Zou R, Zhou K, Stephanopoulos G et al (2013) Statistical experimental design guided optimization of one-pot biphasic multienzyme total synthesis of amorpha-4,11-diene. PLoS ONE 8, e79650

    Article  CAS  Google Scholar 

  16. Mahmoudian M, Noble D, Drake CS, Middleton RF, Montgomery DS et al (1997) An efficient process for the production of N-acetylneuraminic acid using N-acetylneuraminic aldolase. Enzyme Microb Technol 20:393–400

    Article  CAS  Google Scholar 

  17. Birmingham WR, Starbird CA, Panosian TD, Nannemann DP, Iverson TM et al (2014) Bioretrosynthetic construction of a didanosine biosynthetic pathway. Nat Chem Biol 10:392–399

    Article  CAS  Google Scholar 

  18. Babich L, van Hermet LJ, Bury A, Hartrog AF, Falcicchio P et al (2011) Synthesis of non-natural carbohydrates from glycerol and aldehydes in a one-pot four-enzyme cascade reaction. Green Chem 13:2895–2900

    Article  CAS  Google Scholar 

  19. Schümperli M, Pellaux R, Panke S (2007) Chemcial and enzymatic routes to dihydroxyacetone phosphate. Appl Microbiol Biotechnol 75:33–45

    Article  CAS  Google Scholar 

  20. Wagner N, Bosshart A, Failmezger J, Bechtold M, Panke S (2015) A separation-integrated cascade reaction to overcome thermodynamic limitations in rare sugar formation. Angew Chem Int Ed 54:4182–4186

    Article  CAS  Google Scholar 

  21. Cheng Q, Xiang L, Izumikawa M, Meluzzi D, Moore BS (2007) Enzymatic total synthesis of enterocin polyketides. Nat Chem Biol 3:557–558

    Article  CAS  Google Scholar 

  22. Schrittwieser JH, Groenendaal B, Resch V, Ghislieri D, Wallner S et al (2014) Deracemization by simultaneous bio-oxidative kinetic resolution and stereoinversion. Angew Chem Int Ed 53:3731–3734

    Article  CAS  Google Scholar 

  23. O’Reilly E, Iglesias C, Ghislieri D, Hopwood J, Galman JL et al (2014) A regio- and stereoselective ω-transaminase/monoamine oxidase cascade for the synthesis of chiral 2,5-disubstituted pyrrolidines. Angew Chem Int Ed 53:2447–2450

    Article  CAS  Google Scholar 

  24. Sehl T, Hailes HC, Ward JM, Wardenga R, Lieres E et al (2013) Two steps in one pot: enzyme cascade for the synthesis of nor(pseudo)ephedrine from inexpensive starting materials. Angew Chem Int Ed 52:6772–6775

    Article  CAS  Google Scholar 

  25. Guterl J-K, Garbe D, Carsten J, Steffler F, Sommer B et al (2012) Cell-free metabolic engineering: production of chemicals by minimized reaction cascades. ChemSusChem 5:2165–2172

    Article  CAS  Google Scholar 

  26. Rieckenberg F, Ardao I, Rujananon R, Zeng A-P (2014) Cell-free synthesis of 1,3-propanediol from glycerol with a high yield. Eng Life Sci 14:380–386

    Article  CAS  Google Scholar 

  27. Zhang YHP, Evans BR, Mielenz JR, Hopkins RC, Adams MW (2007) High-yield hydrogen production from starch and water by synthetic enzymatic pathway. PLoS ONE 2, e456

    Article  CAS  Google Scholar 

  28. Martin del Campo JS, Rollin J, Myung S, Chun Y, Chandravan S et al (2013) High-yield production of dihydrogen from xylose by using a synthetic enzyme cascade in a cell-free system. Angew Chem Int Ed 52:4587–4590

    Article  CAS  Google Scholar 

  29. Rollin JA, del Campo JM, Myung S, Sun F, You C et al (2015) High-yield hydrogen production from biomass by in vitro metabolic engineering: mixed sugars coutilization and kinetic modeling. Proc Natl Acad Sci U S A 112:4964–4969

    Article  CAS  Google Scholar 

  30. Wang Y, Huang W, Sathitsuksanoh N, YZhu Z, Zhang YHP (2011) Biohydrogenation from biomass sugar mediated by in vitro synthetic enzymatic pathways. Chem Biol 18:372–380

    Article  CAS  Google Scholar 

  31. Zhu Z, Kin TT, Sun F, You C, Zhang YHP (2014) A high-energy-density sugar biobattery based on a synthetic enzymatic pathway. Nat Commun 5:3026

    Google Scholar 

  32. Ye X, Honda K, Sakai T, Okano K, Omasa T et al (2012) Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway. Microb Cell Fact 11:120

    Article  CAS  Google Scholar 

  33. Krutsakorn B, Honda K, Ye X, Imagawa T, Bei X et al (2013) In vitro production of n-butanol from glucose. Metabol Eng 20:84–91

    Article  CAS  Google Scholar 

  34. Ye X, Honda K, Morimoto Y, Okano K, Ohtake H (2013) Direct conversion of glucose to malate by synthetic metabolic engineering. J Biotechnol 164:34–40

    Article  CAS  Google Scholar 

  35. Dudley QM, Karim AS, Jewett MC (2015) Cell-free metabolic engineering: biomanufacturing beyond the cell. Biotechnol J 10:69–82

    Article  CAS  Google Scholar 

  36. Jewett M, Calhoun K, Voloshin A, Wuu JJ, Swartz JR (2008) An integrated cell-free metabolic platform for protein production and synthetic biology. Mol Syst Biol 4:220

    Article  CAS  Google Scholar 

  37. Spirin AS, Swartz R (2008) Cell-free protein synthesis: methods and protocols. Wiley-VCH, Weinheim

    Google Scholar 

  38. Lu Y, Welsch JP, Swartz JR (2014) Production and stabilization of the trimeric influenza hemagglutinin stem domain for potentially broadly protective influenza vaccines. Proc Natl Acad Sci U S A 111:125–130

    Article  CAS  Google Scholar 

  39. Ng PP, Jia M, Patel KG, Brody JD, Swartz JR et al (2012) A vaccine directed to B cells and produced by cell-free protein synthesis generates potent antilymphoma immunity. Proc Natl Acad Sci U S A 109:14526–14531

    Article  CAS  Google Scholar 

  40. Takeda H, Ogasawara T, Ozawa T, Muraguchi A, Jih P-J et al (2015) Production of monoclonal antibodies against GPCR using cell-free synthesized GPCR antigen and biotinylated liposome-based interaction assay. Sci Rep 5:11333

    Article  Google Scholar 

  41. Yin G, Garces ED, Yang J, Zhang J, Tran C et al (2012) Aglycosylated antibodies and antibody fragments produced in a scalable in vitro transcription-translation system. mAbs 4:217–225

    Article  Google Scholar 

  42. Zawada JF, Yin G, Steiner AR, Yang J, Naresh A et al (2011) Microscale to manufacturing scale-up of cell-free cytokine production - a new approach for shortening protein production development timelines. Biotechnol Bioeng 108:1570–1578

    Article  CAS  Google Scholar 

  43. Molla A, Paul AV, Wimmer E (1991) Cell-free, de novo synthesis of poliovirus. Science 254:1647–1651

    Article  CAS  Google Scholar 

  44. Coleman JR, Papamichail D, Skiena S, Futcher B, Wimmer E et al (2008) Virus attenuation by genome-scale changes in codon pair bias. Science 320:1784–1787

    Article  CAS  Google Scholar 

  45. Cello J, Paul AV, Wimmer E (2002) Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297:1016–1018

    Article  CAS  Google Scholar 

  46. Kwon YC, Jewett M (2015) High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Sci Rep 5:8663

    Article  CAS  Google Scholar 

  47. Siegel JB, Smith AL, Poust S, Wargacki AJ, Bar-Even A et al (2015) Computational protein design enables a novel one-carbon assimilation pathway. Proc Natl Acad Sci U S A 112:3704–3709

    CAS  Google Scholar 

  48. Liu C, Kelly GT, Watanabe CMH (2006) In vitro biosynthesis of the antitumor agent azinomycin B. Org Lett 8:1065–1068

    Article  CAS  Google Scholar 

  49. Felix H (1982) Permeabilized cells. Anal Biochem 120:211–234

    Article  CAS  Google Scholar 

  50. Krauser S, Weyler C, Blaß LK, Heinzle E (2013) Directed multistep biocatalysis using tailored permeabilized cells. Adv Biochem Eng/Biotechnol 137:185–234

    Article  CAS  Google Scholar 

  51. Zhang Y-HP (2010) Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: challenges and opportunities. Biotechnol Bioeng 105:663–677

    CAS  Google Scholar 

  52. Zhang Y-HP, Sun J, Zhong J-J (2010) Biofuel production by in vitro synthetic enzymatic pathway biotransformation. Curr Opin Biotechnol 21:663–669

    Article  CAS  Google Scholar 

  53. Wood DW (2014) New trends and affinity tag designs for recombinant protein purification. Curr Opin Plant Biol 26:54–61

    Article  CAS  Google Scholar 

  54. Liu Z, Zhang J, Chen X, Wang PG (2002) Combined biosynthetic pathway for de novo production of UDP-galactose: catalysis with multiple enzymes immobilized on agarose beads. ChemBioChem 3:348–355

    Article  CAS  Google Scholar 

  55. Schultheisz HL, Szymczyna BR, Scott LG, Williamson JR (2008) Pathway engineered enzymatic de novo purine nucleotide synthesis. ACS Chem Biol 3:499–511

    Article  CAS  Google Scholar 

  56. Schultheisz HL, Szymczyna BR, Scott LG, Williamson JR (2011) Enzymatic de novo pyrimidine nucleotide synthesis. J Am Chem Soc 133:297–304

    Article  CAS  Google Scholar 

  57. Wang HH, Huang P-Y, Xu G, Haas W, Marblestone A et al (2012) Multiplexed in vivo His-tagging of enzyme pathways for in vitro single-pot multienzyme catalysis. ACS Synth Biol 1:43–52

    Article  CAS  Google Scholar 

  58. Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G et al (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nat Biotechnol 460:894–898

    CAS  Google Scholar 

  59. Swartz J (2006) Developing cell-free biology for industrial applications. J Ind Microbiol Biotechnol 33:476–485

    Article  CAS  Google Scholar 

  60. Bujara M, Schümperli M, Billerbeck S, Heinemann M, Panke S (2010) Exploiting cell free systems: Implementation and debugging of a system of biotransformations. Biotechnol Bioeng 106:376–389

    CAS  Google Scholar 

  61. Billerbeck S, Dietz S, Morgado G, Panke S (2012) Technologies for biosystems engineering. In: Wittmann C, Lee SY (eds) Systems metabolic engineering. Springer, Dordrecht, pp 83–115

    Chapter  Google Scholar 

  62. Brockman IM, Prather KLJ (2015) Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites. Metab Eng 28:104–113

    Article  CAS  Google Scholar 

  63. McGinness KE, Baker TA, Sauer RT (2006) Engineering controllable protein degradation. Mol Cell 22:701–708

    Article  CAS  Google Scholar 

  64. Taxis C, Stier G, Spadaccini R, Knop M (2009) Efficient protein depletion by genetically controlled deprotection of a dormant N-degron. Mol Syst Biol 5:267

    Article  Google Scholar 

  65. Billerbeck S, Calles B, Müller CL, de Lorenzo V, Panke S (2013) Towards functional orthogonalisation of protein complexes: individualisation of GroEL monomers leads to distinct quasihomogeneous single rings. ChemBioChem 14:2310–2321

    Article  CAS  Google Scholar 

  66. Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ et al (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–759

    Article  CAS  Google Scholar 

  67. Conrado RJ, Wu GC, Boock JT, Xu H, Chen SY et al (2011) DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Res 40:1879–1889

    Article  CAS  Google Scholar 

  68. Sachdeva G, Garg A, Godding D, Way JC, Silver PA et al (2014) In vivo co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner. Nucleic Acids Res 42:9493–9503

    Article  CAS  Google Scholar 

  69. Bayer EA, Belaich JP, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554

    Article  CAS  Google Scholar 

  70. You C, Myung S, Zhang Y-HP (2012) Facilitated substrate channeling in a self-assembled trifunctional enzyme complex. Angew Chem Int Ed 51:8787–8790

    Article  CAS  Google Scholar 

  71. Yao AI, Fenton TA, Owsley K, Seitzer P, Larsen DJ et al (2013) Promoter element arising from the fusion of standard BioBricks parts. ACS Synth Biol 2:111–120

    Article  CAS  Google Scholar 

  72. Kittleson JT, Wu GC, Anderson JC (2012) Successes and failures in modular genetic engineering. Curr Opin Chem Biol 16:329–336

    Article  CAS  Google Scholar 

  73. Cardinale S, Arkin AP (2012) Contextualizing context for synthetic biology – identifying causes of failure of synthetic biological systems. Biotechnol J 7:856–866

    Article  CAS  Google Scholar 

  74. Kiss G, Celebi-Olcum N, Moretti R, Baker D, Houk KN (2013) Computational enzyme design. Angew Chem Int Ed 52:5700–5725

    Article  CAS  Google Scholar 

  75. Renata H, Wang ZJ, Arnold FH (2015) Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. Angew Chem Int Ed 54:3351–3367

    Article  CAS  Google Scholar 

  76. Schilling CH, Schuster S, Palsson BO, Heinrich R (1999) Metabolic pathway analysis: basic concepts and scientific applications in the post-genomic era. Biotechnol Progr 15:296–303

    Article  CAS  Google Scholar 

  77. Hold C, Panke S (2009) Towards the engineering of in vitro systems. J R Chem Soc Interface 6:S507–S521

    Article  CAS  Google Scholar 

  78. Medema MH, van Raaphorst R, Takano E, Breitling R (2012) Computational tools for the synthetic design of biochemical pathways. Nat Rev Microbiol 10:191–202

    Article  CAS  Google Scholar 

  79. Long MR, Ong WK, Reed JL (2015) Computational methods in metabolic engineering for strain design. Curr Opin Biotechnol 34C:135–141

    Article  CAS  Google Scholar 

  80. Pasotti L, Zucca S (2014) Advances and computational tools towards predictable design in biological engineering. Comput Math Methods Med 2014:369681

    Article  Google Scholar 

  81. Chang A, Schomburg I, Placzek S, Jeske L, Ulbrich M et al (2015) BRENDA in 2015: exciting developments in its 25th year of existence. Nucleic Acids Res 43:D439–D446

    Article  CAS  Google Scholar 

  82. Dehal PS, Joachimiak MP, Price MN, Bates JT, Baumohl JK et al (2010) MicrobesOnline: an integrated portal for comparative and functional genomics. Nucleic Acids Res 38:D396–D400

    Article  CAS  Google Scholar 

  83. Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B et al (2010) High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 28:977–982

    Article  CAS  Google Scholar 

  84. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M et al (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205

    Article  CAS  Google Scholar 

  85. Kumar A, Suthers PF, Maranas CD (2012) MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases. BMC Bioinf 13:6

    Article  Google Scholar 

  86. Bujara M, Panke S (2012) In silico assessment of cell-free systems. Biotechnol Bioeng 109:2620–2629

    Article  CAS  Google Scholar 

  87. Hatzimanikatis V, Li C, Ionita JA, Henry CS, Jankowski MD et al (2005) Exploring the diversity of complex metabolic networks. Bioinformatics 21:1603–1609

    Article  CAS  Google Scholar 

  88. Webb EC (1992) Enzyme nomenclature 1992. Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes, 6th edn. Academic Press, San Diego

    Google Scholar 

  89. Finley SD, Broadbelt LJ, Hatzimanikatis V (2009) Computational framework for predictive biodegradation. Biotechnol Bioeng 104:1086–1097

    Article  CAS  Google Scholar 

  90. Brunk E, Neri M, Tavernelli I, Hatzimanikatis V, Rothlisberger U (2012) Integrating computational methods to retrofit enzymes to synthetic pathways. Biotechnol Bioeng 109:572–582

    Article  CAS  Google Scholar 

  91. Cho A, Yun H, Park JH, Lee SY, Park S (2010) Prediction of novel synthetic pathways for the production of desired chemicals. BMC Syst Biol 4:35

    Article  CAS  Google Scholar 

  92. Carbonell P, Planson A-G, Fichera D, Faulon J-L (2011) A retrosynthetic biology approach to metabolic pathway design for therapeutic production. BMC Syst Biol 5:122

    Article  Google Scholar 

  93. Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A et al (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452

    Article  CAS  Google Scholar 

  94. Campodonico MA, Andrews BA, Asenjo JA, Palsson BO, Feist AM (2014) Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path. Metab Eng 25:140–158

    Article  CAS  Google Scholar 

  95. Green ML, Karp PD (2004) A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinf 5:76

    Article  Google Scholar 

  96. Rodrigo G, Carrera J, Prather KJ, Jaramillo A (2008) DESHARKY: automatic design of metabolic pathways for optimal cell growth. Bioinformatics 24:2554–2556

    Article  CAS  Google Scholar 

  97. Henry CS, Broadbelt LJ, Hatzimanikatis V (2010) Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-hydroxypropanoate. Biotechnol Bioeng 106:462–473

    CAS  Google Scholar 

  98. Jones JA, Toparlak ÖD, Koffas MA (2015) Metabolic pathway balancing and its role in the production of biofuels and chemicals. Curr Opin Biotechnol 33:52–59

    Article  CAS  Google Scholar 

  99. Teusink B, Walsh MC, van Dam K, Westerhoff HV (1998) The danger of metabolic pathways with turbo design. Trends Biochem Sci 23:162–169

    Article  CAS  Google Scholar 

  100. Ninh PH, Honda K, Sakai T, Okano K, Ohtake H (2015) Assembly and multiple gene expression of thermophilic enzymes in Escherichia coli for in vitro metabolic engineering. Biotechnol Bioeng 112:189–196

    Article  CAS  Google Scholar 

  101. Bujara M, Schümperli M, Pellaux R, Heinemann M, Panke S (2011) Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis. Nat Chem Biol 7:271–277

    Article  CAS  Google Scholar 

  102. Canton B, Labno A, Endy D (2008) Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol 26:787–793

    Article  CAS  Google Scholar 

  103. Knight T (2003) Idempotent vector design for standard assembly of Biobricks. Massachussetts Institute of Technology, Cambridge

    Book  Google Scholar 

  104. Galdzicki M, Clancy KP, Oberortner E, Pocock M, Quinn JY et al (2014) The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology. Nat Biotechnol 32:545–550

    Article  CAS  Google Scholar 

  105. Myers C, Clancy K, Misirli G, Oberortner E, Pocock M et al (2015) The synthetic biology open language. Methods Mol Biol 1244:323–336

    Article  CAS  Google Scholar 

  106. Martínez-García E, Aparicio T, Goñi-Moreno A, Fraile S, de Lorenzo V (2014) SEVA 2.0: an update of the Standard European Vector Architecture for de-/re-construction of bacterial functionalities. Nucleic Acids Res 43:D1193–D1198

    Google Scholar 

  107. Silva-Rocha R, Martínez-García E, Calles B, Chavarría M, Arce-Rodríguez A et al (2013) The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res 41:D666–D675

    Article  CAS  Google Scholar 

  108. Mayer MP (1995) A new set of useful cloning and expression vectors derived from pBlueScript. Gene 163:41–46

    Article  CAS  Google Scholar 

  109. French C, Ward JM (1996) Production and modification of E. coli transketolase for large-scale biocatalysis. Ann N Y Acad Sci 799:11–18

    Article  CAS  Google Scholar 

  110. Friehs K (2004) Plasmid copy number and plasmid stability. Adv Biochem Eng/Biotechnol 86:47–82

    Article  CAS  Google Scholar 

  111. Uhlin BE, Nordström K (1977) R plasmid gene dosage effects in Escherichia coli K-12: copy mutants of the R plasmid R1drd-19. Plasmid 1:1–7

    Article  CAS  Google Scholar 

  112. Chappell J, Jensen K, Freemont PS (2013) Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for synthetic biology. Nucleic Acids Res 41:3471–3481

    Article  CAS  Google Scholar 

  113. Chappell J, Freemont P (2013) In vivo and in vitro characterization of σ70 constitutive promoters by real-time PCR and fluorescent measurements. Methods Mol Biol 1073:61–74

    Article  CAS  Google Scholar 

  114. Davidson EA, van Blarcom T, Levy M, Ellington AD (2010) Emulsion based selection of T7 promoters of varying activity. In: Pacific symposium on biocomputing. 2010, World Scientific, pp 433–443

    Google Scholar 

  115. Davis JH, Rubin AJ, Sauer RT (2011) Design, construction and characterization of a set of insulated bacterial promoters. Nucleic Acids Res 39:1131–1141

    Article  CAS  Google Scholar 

  116. Kelly JR, Rubin AJ, Davis JH, Ajo-Franklin CM, Cumbers J et al (2009) Measuring the activity of BioBrick promoters using an in vivo reference standard. J Biol Eng 3:4

    Article  CAS  Google Scholar 

  117. Alper H, Miyaoku K, Stephanopoulos G (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol 23:612–616

    Article  CAS  Google Scholar 

  118. Lee ME, Aswani A, Han AS, Tomlin CJ, Dueber JE (2013) Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay. Nucleic Acids Res 41:10668–10678

    Article  CAS  Google Scholar 

  119. Du J, Yuan Y, Si T, Lian J, Zhao H (2012) Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res 40, e142

    Article  CAS  Google Scholar 

  120. Jensen PR, Hammer K (1998) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol 64:82–87

    CAS  Google Scholar 

  121. Qin X, Qian J, Yao G, Zhuang Y, Zhang S et al (2011) GAP promoter library for fine-tuning of gene expression in Pichia pastoris. Appl Environ Microbiol 77:3600–3608

    Article  CAS  Google Scholar 

  122. Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A 102:12678–12683

    Article  CAS  Google Scholar 

  123. Latimer LN, Lee ME, Medina-Cleghorn D, Kohnz RA, Nomura DK et al (2014) Employing a combinatorial expression approach to characterize xylose utilization in Saccharomyces cerevisiae. Metab Eng 25:20–29

    Article  CAS  Google Scholar 

  124. Seo SW, Yang J-S, Kim I, Yang J, Min BE et al (2013) Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab Eng 15:67–74

    Article  CAS  Google Scholar 

  125. Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27:946–950

    Article  CAS  Google Scholar 

  126. Na D, Lee D (2010) RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression. Bioinformatics 26:2633–2634

    Article  CAS  Google Scholar 

  127. Borujeni AE, Channarasappa AS, Salis HM (2013) Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Res 42:2646–2659

    Article  CAS  Google Scholar 

  128. de Smit MH, Van Duin J (1990) Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc Natl Acad Sci U S A 87:7668–7672

    Article  Google Scholar 

  129. Farasat I, Kushwaha M, Collens J, Easterbrook M, Guido M et al (2014) Efficient search, mapping, and optimization of multi‐protein genetic systems in diverse bacteria. Mol Syst Biol 10:731

    Article  CAS  Google Scholar 

  130. Zelcbuch L, Antonovsky N, Bar-Even A, Levin-Karp A, Barenholz U et al (2013) Spanning high-dimensional expression space using ribosome-binding site combinatorics. Nucleic Acids Res 41, e98

    Article  CAS  Google Scholar 

  131. Nowroozi FF, Baidoo EEK, Ermakov S, Redding-Johanson AM, Batth TS et al (2014) Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly. Appl Environ Microbiol 98:1567–1581

    CAS  Google Scholar 

  132. Ng CY, Farasat I, Maranas CD, Salis HM (2015) Rational design of a synthetic Entner-Doudoroff pathway for improved and controllable NADPH regeneration. Metab Eng 29:86–96

    Article  CAS  Google Scholar 

  133. Xu P, Gu Q, Wang W, Wong L, Bower AGW et al (2013) Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun 4:1409

    Google Scholar 

  134. Oliver JWK, Machado IMP, Yoneda H, Atsumi S (2014) Combinatorial optimization of cyanobacterial 2,3-butanediol production. Metab Eng 22:76–82

    Article  CAS  Google Scholar 

  135. Ceroni F, Algar R, Stan G-B, Ellis T (2015) Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat Methods 12:415–418

    Article  CAS  Google Scholar 

  136. Cambray G, Guimaraes JC, Mutalik VK, Lam C, Mai Q-A et al (2013) Measurement and modeling of intrinsic transcription terminators. Nucleic Acids Res 41:5139–5148

    Article  CAS  Google Scholar 

  137. Chen Y-J, Liu P, Nielsen AAK, Brophy JAN, Clancy K et al (2013) Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat Methods 10:659–664

    Article  CAS  Google Scholar 

  138. Temme K, Zhao D, Voigt CA (2012) Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc Natl Acad Sci U S A 109:7085–7090

    Article  Google Scholar 

  139. Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A 70:3240–3244

    Article  CAS  Google Scholar 

  140. Chao R, Yuan Y, Zhao H (2015) Recent advances in DNA assembly technologies. FEMS Yeast Res 15:1–9

    Article  Google Scholar 

  141. Anderson JC, Dueber JE, Leguia M, Wu GC, Goler JA et al (2010) BglBricks: a flexible standard for biological part assembly. J Biol Eng 4:1

    Article  CAS  Google Scholar 

  142. Engler C, Kandzia R, Marillonnet S (2008) A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3, e3647

    Article  CAS  Google Scholar 

  143. Shetty RP, Endy D, Jr TFK (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:5

    Article  CAS  Google Scholar 

  144. Densmore D, Hsiau TH-C, Kittleson JT, DeLoache W, Batten C et al (2010) Algorithms for automated DNA assembly. Nucleic Acids Res 38:2607–2616

    Article  CAS  Google Scholar 

  145. Leguia M, Brophy J, Densmore D, Anderson JC (2011) Automated assembly of standard biological parts. Methods Enzymol 498:363–397

    Article  CAS  Google Scholar 

  146. Werner S, Engler C, Weber E, Gruetzner R, Marillonnet S (2012) Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system. Bioeng Bugs 3:38–43

    Google Scholar 

  147. Quan J, Tian J (2009) Circular polymerase extension cloning of complex gene libraries and pathways. PLoS ONE 4, e6441

    Article  CAS  Google Scholar 

  148. Li MZ, Elledge SJ (2012) SLIC: a method for sequence- and ligation-independent cloning. Methods Mol Biol 852:51–59

    Article  CAS  Google Scholar 

  149. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  Google Scholar 

  150. Quan J, Tian J (2011) Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nat Protoc 6:242–251

    Article  CAS  Google Scholar 

  151. Bitinaite J, Rubino M, Varma KH, Schildkraut I, Vaisvila R et al (2007) USER friendly DNA engineering and cloning method by uracil excision. Nucleic Acids Res 35:1992–2002

    Article  CAS  Google Scholar 

  152. Schmid-Burgk JL, Xie Z, Benenson Y (2014) Hierarchical ligation-independent assembly of PCR fragments. Methods Mol Biol 1116:49–58

    Article  CAS  Google Scholar 

  153. Chen H, Lisby M, Symington LS (2013) RPA coordinates DNA end resection and prevents formation of DNA hairpins. Mol Cell 50:589–600

    Article  CAS  Google Scholar 

  154. Ma H, Kunes S, Schatz PJ, Botstein D (1987) Plasmid construction by homologous recombination in yeast. Gene 58:201–216

    Article  CAS  Google Scholar 

  155. Gibson DG (2009) Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides. Nucleic Acids Res 37:6984–6990

    Article  CAS  Google Scholar 

  156. Robzyk K, Kassir Y (1992) A simple and highly efficient procedure for rescuing autonomous plasmids from yeast. Nucleic Acids Res 20:3790

    Article  CAS  Google Scholar 

  157. Gibson DG, Benders G, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H et al (2008) Complete chemical synthesis, assembly, and cloning of a Mcyoplasma genitalium genome. Science 319:1215–1220

    Article  CAS  Google Scholar 

  158. Kim B, Du J, Eriksen DT, Zhao H (2013) Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels. Appl Environ Microbiol 79:931–941

    Article  CAS  Google Scholar 

  159. Bradley LH, Bricken ML, Randle C (2011) Expression, purification, and characterization of proteins from high-quality combinatorial libraries of the mammalian calmodulin central linker. Protein Expr Purif 75:186–191

    Article  CAS  Google Scholar 

  160. Tikhonova EB, Ethayathulla AS, Su Y, Hariharan P, Xie S et al (2015) A transcription blocker isolated from a designed repeat protein combinatorial library by in vivo functional screen. Sci Rep 5:8070

    Article  CAS  Google Scholar 

  161. Menzella HG, Reid R, Carney JR, Chandran SS, Reisinger SJ et al (2005) Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol 23:1171–1176

    Article  CAS  Google Scholar 

  162. Wang J, Sarov M, Rientjes J, Fu J, Hollak H et al (2006) An improved recombineering approach by adding RecA to lambda Red recombination. Mol Biotechnol 32:43–53

    Article  Google Scholar 

  163. He AS, Rohatgi PR, Hersh MN, Rosenberg SM (2006) Roles of E. coli double-strand-break-repair proteins in stress-induced mutation. DNA Repair 5:258–273

    Article  CAS  Google Scholar 

  164. Wang HH, Kim H, Cong L, Jeong J, Bang D et al (2012) Genome-scale promoter engineering by coselection MAGE. Nat Methods 9:591–593

    Article  CAS  Google Scholar 

  165. Ronda C, Pedersen LE, Sommer MOA, Nielsen AT (2016) CRMAGE: CRISPR optimized MAGE recombineering. Sci Rep 6:19452

    Article  CAS  Google Scholar 

  166. Crabb WD, Shetty JK (1999) Commodity scale production of sugars from starches. Curr Opin Microbiol 2:252–256

    Article  CAS  Google Scholar 

  167. DiCosimo R, McAuliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42:6437–6474

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge financial support from the EU project ST-FLOW (#289326), and the Swiss National Science Foundation (NCCR Molecular Systems Engineering). G. M. was a fellow of Becas Chile-CONICYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Panke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morgado, G., Gerngross, D., Roberts, T.M., Panke, S. (2016). Synthetic Biology for Cell-Free Biosynthesis: Fundamentals of Designing Novel In Vitro Multi-Enzyme Reaction Networks. In: Zhao, H., Zeng, AP. (eds) Synthetic Biology – Metabolic Engineering. Advances in Biochemical Engineering/Biotechnology, vol 162. Springer, Cham. https://doi.org/10.1007/10_2016_13

Download citation

Publish with us

Policies and ethics