In Vitro Genotoxicity Testing: Significance and Use in Environmental Monitoring

Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 157)


There is ongoing concern about the consequences of mutations in humans and biota arising from environmental exposures to industrial and other chemicals. Genetic toxicity tests have been used to analyze chemicals, foods, drugs, and environmental matrices such as air, water, soil, and wastewaters. This is because the mutagenicity of a substance is highly correlated with its carcinogenicity. However, no less important are the germ cell mutations, because the adverse outcome is related not only to an individual but also to population levels. For environmental analysis the most common choices are in vitro assays, and among them the most widely used is the Ames test (Salmonella/microsome assay). There are several protocols and methodological approaches to be applied when environmental samples are tested and these are discussed in this chapter, along with the meaning and relevance of the obtained responses. Two case studies illustrate the utility of in vitro mutagenicity tests such as the Ames test. It is clear that, although it is not possible to use the outcome of the test directly in risk assessment, the application of the assays provides a great opportunity to monitor the exposure of humans and biota to mutagenic substances for the purpose of reducing or quantifying that exposure.


Ames test Cancer Environmental testing Germ cell mutations Mutagenicity 


  1. 1.
    DeMarini DM (2012) Declaring the existence of human germ-cell mutagens. Environ Mol Mutagen 53:166–172CrossRefGoogle Scholar
  2. 2.
    Devaux A, Fiat L, Gillet C, Bony S (2011) Reproduction impairment following paternal genotoxin exposure in brown trout (Salmo trutta) and Arctic charr (Salvelinus alpinus). Aquat Toxicol 101:405–411CrossRefGoogle Scholar
  3. 3.
    Chen G, White PA (2004) The mutagenic hazards of aquatic sediments: a review. Mutat Res 567:151–225CrossRefGoogle Scholar
  4. 4.
    Claxton LD, Matthews PP, Warren SH (2004) The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicity. Mutat Res Rev Mutat Res 567:347–399CrossRefGoogle Scholar
  5. 5.
    Houk VS (1992) The genotoxicity of industrial wastes and effluents. Mutat Res 277:91–138CrossRefGoogle Scholar
  6. 6.
    Ohe T, Watanabe T, Wakabayashi K (2004) Mutagens in surface waters: a review. Mutat Res 567:109–149CrossRefGoogle Scholar
  7. 7.
    White PA, Claxton LD (2004) Mutagens in contaminated soil: a review. Mutat Res 567:227–345CrossRefGoogle Scholar
  8. 8.
    Umbuzeiro GA, Roubicek DA, Sanchez PS, Sato MI (2001) The Salmonella mutagenicity assay in a surface water quality-monitoring program based on a 20-year survey. Mutat Res 491:119–126CrossRefGoogle Scholar
  9. 9.
    Umbuzeiro GA, Freeman HS, Warren SH, Oliveira DP, Terao Y, Watanabe T, Claxton LD (2005) The contribution of azo dyes in the mutagenic activity of the Cristais River. Chemosphere 60:55–64CrossRefGoogle Scholar
  10. 10.
    Brack W (2003) Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Anal Bioanal Chem 377:397–407CrossRefGoogle Scholar
  11. 11.
    Umbuzeiro GA, Machala M, Weiss J (2011) Diagnostic tools for effect-directed analysis of mutagens, ahr agonists, and endocrine disruptors. In: Brack W (ed) Effect-directed analysis of complex environmental contamination, vol 15. Springer, Heidelberg, pp 69–82CrossRefGoogle Scholar
  12. 12.
    DHEW (US Department of Health, Education, and Welfare) (1969) Report of the secretary’s commission on pesticides and their relationship to environmental health, parts 1 and 2. Washington, DC, US GPO, 677ppGoogle Scholar
  13. 13.
    Drake JW, Abrahamson S, Crow JF, Hollaender A, Lederberg S, Legator MS, Neel JV, Shaw MW, Sutton HE, Von Borstel RC, Zimmering S (1975) Environmental mutagenic hazards. Science 187:503–514CrossRefGoogle Scholar
  14. 14.
    Flamm WG, Valcovic LR, D’Aguanno W, Fishbein L, Green S, Malling HV, Mayer V, Prival M, Wolff G, Zeiger E (1977) Approaches to determining the mutagenic properties of chemicals: risk to future generations. J Environ Pathol Toxicol 1:301–352Google Scholar
  15. 15.
    Ames BN, Durston WE, Yamasaki E, Lee FD (1973) Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci U S A 70:2281–2285CrossRefGoogle Scholar
  16. 16.
    Ames BN, Lee FD, Durston WE (1973) An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Natl Acad Sci U S A 70:782–786CrossRefGoogle Scholar
  17. 17.
    McCann J, Yamasaki E, Ames BN (1975) Detection of carcinogens in the Salmonella/microsome test: assay of 300 chemicals. Proc Natl Acad Sci U S A 72:5135–5139CrossRefGoogle Scholar
  18. 18.
    Purchase IF, Longstaff E, Ashby J, Styles JA, Anderson D, Lefevre PA, Westwood FR (1978) An evaluation of 6 short-term tests for detecting organic chemical carcinogens. Br J Cancer 37:873–903CrossRefGoogle Scholar
  19. 19.
    Sugimura T, Sato S, Nagao M, Yahagi T, Matsushima T, Seino Y, Takeuchi M, Kawachi T (1976) Overlapping of carcinogens and mutagens. In: Magee PN, Takayama S, Sugimura T, Matsushima T (eds) Fundamentals of cancer prevention. University Park Press, Baltimore, pp 191–215Google Scholar
  20. 20.
    Kirkland D, Aardema M, Henderson L, Muller L (2005) Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity. Mutat Res 584:1–256CrossRefGoogle Scholar
  21. 21.
    Tennant RW, Margolin BH, Shelby MD, Zeiger E, Haseman JK, Spalding J, Caspary W, Resnick M, Stasiewicz S, Anderson B, Minor R (1987) Prediction of chemical carcinogenicity in rodents from in vitro genetic toxicity assays. Science 236:933–941CrossRefGoogle Scholar
  22. 22.
    Zeiger E (1998) Identification of rodent carcinogens and noncarcinogens using genetic toxicity tests: premises, promises and performance. Regul Toxicol Pharmacol 28:85–95CrossRefGoogle Scholar
  23. 23.
    Zeiger E, Haseman JK, Shelby MD, Margolin BH, Tennant RW (1990) Evaluation of four in vitro genetic toxicity tests for predicting rodent carcinogenicity: confirmation of earlier results with 41 additional chemicals. Environ Mol Mutagen 16(Suppl 18):1–14CrossRefGoogle Scholar
  24. 24.
    Ashby J, de Serres FJ, Draper M, Ishidate M Jr, Margolin BH, Matter BE, Shelby MD (eds) (1985) Evaluation of short-term tests for carcinogens: report of the international programme of chemical Safety’s collaborative study on in vitro assays. Elsevier, New York, 752ppGoogle Scholar
  25. 25.
    De Serres FJ, Ashby J (eds) (1981) Evaluation of short-term tests for carcinogens: report of the international collaborative program. Elsevier, New York, 827ppGoogle Scholar
  26. 26.
    Fish F, Lampert I, Halachmi A, Riesenfeld G, Herzberg M (1987) The SOS chromotest kit: a rapid method for the detection of genotoxicity. Toxic Assess 2:135–147Google Scholar
  27. 27.
    Oda Y, Nakamura S, Oki I, Kato T, Shinagawa H (1985) Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens. Mutat Res 147:219–229CrossRefGoogle Scholar
  28. 28.
    Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221CrossRefGoogle Scholar
  29. 29.
    Hastwell PW, Chai LL, Roberts KJ, Webster TW, Harvey JS, Rees RW, Walmsley RM (2006) High-specificity and high-sensitivity genotoxicity assessment in a human cell line: validation of the GreenScreen HC GADD45a-GFP genotoxicity assay. Mutat Res 607:160–175CrossRefGoogle Scholar
  30. 30.
    Simpson K, Bevan N, Hastwell P, Eidam P, Shah P, Gogo E, Rees S, Brown A (2013) The BlueScreen-384 assay as an indicator of genotoxic hazard potential in early-stage drug discovery. J Biomol Screen 18:441–452CrossRefGoogle Scholar
  31. 31.
    Hendriks G, Atallah M, Morolli B, Calléja F, Ras-Verloop N, Huijskens I, Raamsman M, Van De Water B, Vrieling H (2012) The ToxTracker assay: novel GFP reporter systems that provide mechanistic insight into the genotoxic properties of chemicals. Toxicol Sci 125:285–298CrossRefGoogle Scholar
  32. 32.
    Claxton LD, de Umbuzeiro GA, DeMarini DM (2010) The Salmonella mutagenicity assay: the stethoscope of genetic toxicology for the 21st century. Environ Health Perspect 118:1515–1522CrossRefGoogle Scholar
  33. 33.
    DeMarini DM, Brooks LR, Warren SH, Kobayashi T, Gilmour MI, Singh P (2004) Bioassay-directed fractionation and Salmonella mutagenicity of automobile and forklift diesel exhaust particles. Environ Health Perspect 112:814–819CrossRefGoogle Scholar
  34. 34.
    Umbuzeiro GA, Roubicek DA, Rech CM, Sato MIZ, Claxton LD (2004) Investigating the sources of the mutagenic activity found in a river using the Salmonella assay and different water extraction procedures. Chemosphere 54:1589–1597CrossRefGoogle Scholar
  35. 35.
    Kummrow F, Rech CM, Coimbrão CA, Roubicek DA, Umbuzeiro GA (2003) Comparison of the mutagenic activity of XAD4 and blue rayon extracts of surface water and related drinking water samples. Mutat Res 541:103–113CrossRefGoogle Scholar
  36. 36.
    Mutlu E, Warren SH, Matthews PP, King C, Linak WP, Kooter IM, Schmid JE, Ross JA, Gilmour MI, Demarini DM (2013) Bioassay-directed fractionation and sub-fractionation for mutagenicity and chemical analysis of diesel exhaust particles. Environ Mol Mutagen 54:719–736CrossRefGoogle Scholar
  37. 37.
    Meier JR (1988) Genotoxic activity of organic chemicals in drinking water. Mutat Res 196:211–245CrossRefGoogle Scholar
  38. 38.
    Nukaya H, Yamashita J, Tsuji K, Terao Y, Ohe T, Sawanishi H, Katsuhara T, Kiyokawa K, Tezuca M, Oguri A, Sugimura T, Wakabayashi K (1997) Isolation and chemical-structural determination of a novel aromatic amine mutagen in water from the Nishitakase river in Kyoto. Chem Res Toxicol 10:1061–1066CrossRefGoogle Scholar
  39. 39.
    Enya T, Suzuki H, Watanabe T, Hirayama T, Hisamatsu Y (1997) 3-nitrobenzanthrone, a powerful bacterial mutagen and suspected human carcinogen found in diesel exhaust and airborne particulates. Environ Sci Technol 31:2772–2776CrossRefGoogle Scholar
  40. 40.
    Nissinen TK, Miettinen IT, Martikainen PJ, Vartiainen T (2002) Disinfection by-products in Finnish drinking waters. Chemosphere 48:9–20CrossRefGoogle Scholar
  41. 41.
    DeMarini DM, Gudi R, Szkudlinska A, Rao M, Recio L, Kehl M, Kirby PE, Polzin G, Richter PA (2008) Genotoxicity of 10 cigarette smoke condensates in four test systems: comparisons between assays and condensates. Mutat Res 650:15–29CrossRefGoogle Scholar
  42. 42.
    Fetterman BA, Kim BS, Margolin BH, Schildcrout JS, Smith MG, Wagner SM, Zeiger E (1997) Predicting rodent carcinogenicity from mutagenic potency measured in the Ames Salmonella assay. Environ Mol Mutagen 29:312–322CrossRefGoogle Scholar
  43. 43.
    Schildcrout JS, Margolin BH, Zeiger E (1999) Predicting rodent carcinogenicity using potency measures of the in vitro sister chromatid exchange and chromosome aberration assays. Environ Mol Mutagen 33:59–64CrossRefGoogle Scholar
  44. 44.
    Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res 455:29–60CrossRefGoogle Scholar
  45. 45.
    Mortelmans K, Riccio ES (2000) The bacterial tryptophan reverse mutation assay with Escherichia coli WP2. Mutat Res 455:61–69CrossRefGoogle Scholar
  46. 46.
    Hagiwara Y, Watanabe M, Oda Y, Sofuni T, Nohmi T (1993) Specificity and sensitivity of Salmonella typhimurium YG1041 and YG1042 strains possessing elevated levels of both nitroreductase and acetyltransferase activity. Mutat Res 291:171–180CrossRefGoogle Scholar
  47. 47.
    DeMarini DM, Dallas MM, Lewtas J (1989) Cytotoxicity and effect on mutagenicity of buffers in a microsuspension assay. Teratog Carcinog Mutagen 9:287–295CrossRefGoogle Scholar
  48. 48.
    Kado NY, Langley D, Eisenstatd E (1983) A simple modification of the Salmonella liquid incubation assay. Mutat Res 121:25–32CrossRefGoogle Scholar
  49. 49.
    Coriel Institute for Medical Research (1986) Ames Salmonella mutagenicity assay protocol. Department of Microbiology, CIMR, Camden, NJ, p13Google Scholar
  50. 50.
    ISO (2005) Water quality – determination of the genotoxicity of water and waste water – Salmonella/microsome test (Ames test). ISO Standard 16240:2005. Available at Accessed 4 Oct 2015
  51. 51.
    Gee P, Maron DM, Ames BN (1994) Detection and classification of mutagens: a set of base-specific Salmonella tester strains. Proc Natl Acad Sci U S A 91:11606–11610CrossRefGoogle Scholar
  52. 52.
    Gee P, Sommers CH, Melick AS, Gidrol XM, Todd MD, Burris RB, Nelson ME, Klemm RC, Zeiger E (1998) Comparison of responses of base-specific Salmonella tester strains with the traditional strains for identifying mutagens: the results of a validation study. Mutat Res 412:115–130CrossRefGoogle Scholar
  53. 53.
    Kamber M, Flückiger-Isler S, Engelhardt G, Jaeckh R, Zeiger E (2009) Comparison of the Ames II and traditional Ames test responses with respect to mutagenicity, strain specificities, need for metabolism and correlation with rodent carcinogenicity. Mutagenesis 24:359–366CrossRefGoogle Scholar
  54. 54.
    Reifferscheid G, Maes HM, Allner B, Badurova J, Belkin S, Bluhm K, Brauer F, Bressling J, Domeneghetti S, Elad T, Flückiger-Isler S, Grummt HJ, Gürtler R, Hecht A, Heringa MB, Hollert H, Huber S, Kramer M, Magdeburg A, Ratte HT, Sauerborn-Klobucar R, Sokolowski A, Soldan P, Smital T, Stalter D, Venier P, Ziemann C, Zipperle J, Buchinger S (2012) International round-robin study on the Ames fluctuation test. Environ Mol Mutagen 53:185–197CrossRefGoogle Scholar
  55. 55.
    ISO (2012) Water quality – determination of the genotoxicity of water and waste water – Salmonella/microsome fluctuation test (Ames fluctuation test) ISO 11350:2012. Available at Accessed 4 Oct 2015
  56. 56.
    OECD (Organisation for Economic Co-operation and Development) (1997) Guideline for testing of chemicals, test guideline 471: bacterial reverse mutation test, OECD, Paris, FranceGoogle Scholar
  57. 57.
    Demeestere K, Dewulf J, De Witte B, Van Langenhove H (2007) Sample preparation for the analysis of volatile organic compounds in air and water matrices. J Chromatogr A 1153:130–144CrossRefGoogle Scholar
  58. 58.
    Kolkman A, Schriks M, Brand W, Bauerlein PS, Van Der Kooi MM, Van Doorn RH, Emke E, Reus AA, Van Der Linden SC, De Voogt P, Heringa MB (2013) Sample preparation for combined chemical analysis and in vitro bioassay application in water quality assessment. Environ Toxicol Pharmacol 36:1291–1303CrossRefGoogle Scholar
  59. 59.
    Kosikowska M, Biziuk M (2010) Review of the determination of pesticide residues in ambient air. Trends Analyt Chem 29:1064–1072CrossRefGoogle Scholar
  60. 60.
    Potts PJ, Robinson P (2003) Sample preparation of geological samples, soils and sediments. In: Comprehensive analytical chemistry, vol 41. Elsevier, pp 723–763Google Scholar
  61. 61.
    Tadeo JL, Pérez RA, Albero B, García-Valcárcel AI, Sánchez-Brunete C (2012) Review of sample preparation atechniques for the analysis of pesticide residues in soil. J AOAC Int 95:1258–1271CrossRefGoogle Scholar
  62. 62.
    Alvarez DA, Petty JD, Huckins JN, Jones-Lepp TL, Getting DT, Goddard JP, Manahan SE (2004) Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environ Toxicol Chem 23:1640–1648CrossRefGoogle Scholar
  63. 63.
    Kummrow F, Rech CM, Coimbrão CA, Umbuzeiro GA (2006) Blue rayon-anchored technique/Salmonella microsome microsuspension assay as a tool to monitor for genotoxic polycyclic compounds in Santos estuary. Mutat Res 609:60–67CrossRefGoogle Scholar
  64. 64.
    Anderson D, McGregor DB (1980) The effect of solvents upon the yield of revertants in the Salmonella/activation mutagenicity assay. Carcinogenesis 1:363–366CrossRefGoogle Scholar
  65. 65.
    EFSA-WHO (2015) Conclusions and recommendations of the EFSA/WHO expert working group on TTC -draft for public consultationGoogle Scholar
  66. 66.
    Kroes R, Renwick AG, Cheeseman M, Kleiner J, Mangelsdorf I, Piersma A, Schilter B, Schlatter J, Van Schothorst F, Vos JG, Wurtzen G (2004) Structure-based thresholds of toxicological concern (TTC): guidance for application to substances present at low levels in the diet. Food Chem Toxicol 42:65–83CrossRefGoogle Scholar
  67. 67.
    Mons MN, Heringa MB, Van Genderen J, Puijker LM, Brand W, Van Leeuwen CJ, Stoks P, Van Der Hoek JP, Van Der Kooij D (2013) Use of the threshold of toxicological concern (TTC) approach for deriving target values for drinking water contaminants. Water Res 47:1666–1678CrossRefGoogle Scholar
  68. 68.
    De Wolf W, Siebel-Sauer A, Lecloux A, Koch V, Holt M, Feijtel T, Comber M, Boeije G (2005) Mode of action and aquatic exposure thresholds of no concern. Environ Toxicol Chem 24:479–485CrossRefGoogle Scholar
  69. 69.
    Kim BS, Margolin BH (1999) Statistical methods for the Ames Salmonella assay: a review. Mutat Res 436:113–122CrossRefGoogle Scholar
  70. 70.
    Cariello NF, Piegorsch WW (1996) The Ames test: the two-fold rule revisited. Mutat Res 369:23–31CrossRefGoogle Scholar
  71. 71.
    Margolin BH (1985) Statistical studies in genetic toxicology: a perspective from the U.S. National toxicology program. Environ Health Perspect 63:187–194CrossRefGoogle Scholar
  72. 72.
    Heringa MB, Harmsen DJH, Beerendonk EF, Reus AA, Krul CM, Metz DH, IJpelaar GF (2011) Formation and removal of genotoxic activity during UV/H2O2-GAC treatment of drinking water. Water Res 45:366–374CrossRefGoogle Scholar
  73. 73.
    Piegorsch WW, Simmons SJ, Margolin BH, Zeiger E, Gidrol XM, Gee P (2000) Statistical modeling and analyses of a base-specific Salmonella mutagenicity assay. Mutat Res 467:11–19CrossRefGoogle Scholar
  74. 74.
    Escher BI, Allinson M, Altenburger R, Bain PA, Balaguer P, Busch W et al (2014) Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays. Environ Sci Technol 48:1940–1956CrossRefGoogle Scholar
  75. 75.
    Gollapudi BB, Johnson GE, Hernandez LG, Pottenger LH, Dearfield KL, Jeffrey AM, Julien E, Kim JH, Lovell DP, MacGregor JT, Moore MM, van Benthem J, White PA, Zeiger E, Thybaud V (2013) Quantitative approaches for assessing dose–response relationships in genetic toxicology studies. Environ Mol Mutagen 54:8–18CrossRefGoogle Scholar
  76. 76.
    Johnson GE, Soeteman-Hernández LG, Gollapudi BB, Bodger OG, Dearfield KL, Heflich RH, Hixon JG, Lovell DP, MacGregor JT, Pottenger LH, Thompson CM, Abraham L, Thybaud V, Tanir JY, Zeiger E, Van Benthem J, White PA (2014) Derivation of point of departure (PoD) estimates in genetic toxicology studies and their potential applications in risk assessment. Environ Mol Mutagen 55:609–623CrossRefGoogle Scholar
  77. 77.
    Narotsky MG, Pressman JG, Miltner RJ, Speth TF, Teuschler LK, Rice GE, Richardson SD, Best DS, McDonald A, Hunter ES, Simmons JE (2012) Developmental toxicity evaluations of whole mixtures of disinfection by-products using concentrated drinking water in rats: gestational and lactational effects of sulfate and sodium. Birth Defects Res B Dev Reprod Toxicol 95:202–212CrossRefGoogle Scholar
  78. 78.
    Kolkman A, Martijn BJ, Vughs D, Baken KA, Van Wezel AP (2015) Tracing nitrogenous disinfection byproducts after medium pressure UV water treatment by stable isotope labeling and high resolution mass spectrometry. Environ Sci Technol 49:4458–4465CrossRefGoogle Scholar
  79. 79.
    Brack W, Schirmer K, Erdinger L, Hollert H (2005) Effect-directed analysis of mutagens and ethoxyresorufin-O-deethylase inducers in aquatic sediments. Environ Toxicol Chem 24:2445–2458CrossRefGoogle Scholar
  80. 80.
    Lübcke-Von Varel U, Bataineh M, Lohrmann S, Löffler I, Schulze T, Flückiger-Isler S, Neca J, Machala M, Brack W (2012) Identification and quantitative confirmation of dinitropyrenes and 3-nitrobenzanthrone as major mutagens in contaminated sediments. Environ Int 44:31–39CrossRefGoogle Scholar
  81. 81.
    Reifferscheid G, Buchinger S, Cao Z, Claus E (2011) Identification of mutagens in freshwater sediments by the Ames-fluctuation assay using nitroreductase and acetyltransferase overproducing test strains. Environ Mol Mutagen 52:397–408CrossRefGoogle Scholar
  82. 82.
    Altenburger R, Ait-Aissa S, Antczak P, Backhaus T, Barceló D, Seiler TB, Brion F, Busch W, Chipman K, De Alda ML, De Umbuzeiro AG, Escher BI, Falciani F, Faust M, Focks A, Hilscherova K, Hollender J, Hollert H, Jäger F, Jahnke A, Kortenkamp A, Krauss M, Lemkine GF, Munthe J, Neumann S, Schymanski EL, Scrimshaw M, Segner H, Slobodnik J, Smedes F, Kughathas S, Teodorovic I, Tindall AJ, Tollefsen KE, Walz KH, Williams TD, Van Den Brink PJ, Van Gils J, Vrana B, Zhang X, Brack W (2015) Future water quality monitoring — adapting tools to deal with mixtures of pollutants in water resource management. Sci Total Environ 512–513:540–551CrossRefGoogle Scholar
  83. 83.
    Rook JJ (1974) Formation of haloforms during chlorination of natural waters. Water Treat Examin 23(2):234–243Google Scholar
  84. 84.
    Richardson SD, Plewa MJ, Wagner ED, Schoeny R, DeMarini DM (2007) Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat Res 636:178–242CrossRefGoogle Scholar
  85. 85.
    Kool HJ, Van Kreijl CF, De Greef E, Van Kranen HJ (1982) Presence, introduction and removal of mutagenic activity during the preparation of drinking water in the Netherlands. Environ Health Perspect 46:207–214CrossRefGoogle Scholar
  86. 86.
    Kruithof JC, Kamp PC, Belosevic M (2000) UV/H2O2-treatment: the ultimate solution for pesticide control and disinfection. Water Sci Technol Water Supply 2:113–122Google Scholar
  87. 87.
    Martijn AJ, Kruithof JC (2012) UV and UV/H2O2 treatment: the silver bullet for by-product and genotoxicity formation in water production. Ozone Sci Eng 34:92–100CrossRefGoogle Scholar
  88. 88.
    World Health Organisation (WHO) ((2011)) Guidelines for drinking-water quality, 4th edn.
  89. 89.
    Richardson SD, Ternes TA (2011) Water analysis: emerging contaminants and current issues. Anal Chem 83:4616–4648CrossRefGoogle Scholar
  90. 90.
    Oliveira DP, Carneiro PA, Rech CM, Zanoni MVV, Claxton LD, Umbuzeiro GA (2006) Mutagenic compounds generated from the chlorination of disperse azo-dyes and their presence in drinking water. Environ Sci Technol 40:6682–6689CrossRefGoogle Scholar
  91. 91.
    Caritá R, Marin-Morales MA (2008) Induction of chromosome aberrations in the Allium cepa test system caused by the exposure of seeds to industrial effluents contaminated with azo dyes. Chemosphere 72:722–725CrossRefGoogle Scholar
  92. 92.
    De Lima ROA, Bazo AP, Salvadori DMF, Rech CM, Oliveira DP, Umbuzeiro GA (2007) Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutat Res 626:53–60CrossRefGoogle Scholar
  93. 93.
    Umbuzeiro GA, Coimbrão CA, Kummrow F, Lobo DJA, Saldiva PHN (2007) Mutagenic activity assessment of Cristais river, São Paulo, Brazil, using the Blue Rayon/Salmonella microsome and the Tradescantia pallida micronuclei assays. J Braz Soc Ecotoxicol 2:163–171CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Technology, UNICAMPLimeiraBrazil
  2. 2.National Institute of Public Health and the Environment (RIVM)BilthovenThe Netherlands
  3. 3.Errol Zeiger ConsultingChapel HillUSA

Personalised recommendations