Advertisement

Combining Passive Sampling with Toxicological Characterization of Complex Mixtures of Pollutants from the Aquatic Environment

  • Annika Jahnke
  • Gesine Witt
  • Sabine Schäfer
  • Nora Haase
  • Beate I. Escher
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 157)

Abstract

The combination of polymer-based passive sampling to collect complex environmental mixtures of pollutants, the transfer of these mixtures into bioassays, and their related toxicological characterization is still in its infancy. However, this approach has considerable potential to improve environmental hazard and risk assessment for two reasons. First, the passive sampler collects a broad range of chemicals representing the fraction of compounds available for diffusion and (bio)uptake, excluding a large part of the matrix; thus, extensive sample cleanup which could discriminate certain compounds can be avoided. Second, the toxicological characterization of samples using bioassays is complementary to chemical (target) analysis within environmental monitoring because it captures all chemicals exerting the same mode of toxic action and acting jointly in mixtures, thus providing a comprehensive picture of their overall combined effects. The scientific literature describes a range of examples from the water phase where passive sampling is usually carried out in the kinetic uptake regime for most chemicals although some may already have reached equilibrium. The composition of the chemical mixture changes from the water phase to the passive sampling material because of kinetic effects and polymer/water partition coefficients which depend on the chemicals’ hydrophobicity. In contrast, only a few applications in sediment and biota have been described, but amongst these some pioneering studies have demonstrated the feasibility and potential of this combined approach. This chapter gives an overview of what has been carried out in this research area, focusing on opportunities and challenges, and points out desirable future developments with a focus on the importance of choosing a suitable combination of sampling and dosing to transfer (or re-establish) the environmental mixture into the bioassay.

Keywords

Aquatic environment Environmental monitoring Hazard and risk assessment Hydrophobic organic chemicals Mixture toxicity Passive sampling 

References

  1. 1.
    Escher B, Leusch F (2012) Bioanalytical tools in water quality assessment. IWA, LondonGoogle Scholar
  2. 2.
    Jahnke A, Mayer P, Schäfer S, Witt G, Haase N, Escher BI (2016) Strategies for transferring mixtures of organic contaminants from aquatic environments into bioassays. Environ Sci Technol. doi: 10.1021/acs.est.5b04687 Google Scholar
  3. 3.
    Mayer P, Tolls J, Hermens JLM, Mackay D (2003) Equilibrium sampling devices: an emerging strategy for monitoring exposure to hydrophobic organic chemicals. Environ Sci Technol 37:184A–191ACrossRefGoogle Scholar
  4. 4.
    Claessens M, Monteyne E, Wille K, Vanhaecke L, Roose P, Janssen CR (2015) Passive sampling reversed: coupling passive field sampling with passive lab dosing to assess the ecotoxicity of mixtures present in the marine environment. Mar Pollut Bull 93:9–19CrossRefGoogle Scholar
  5. 5.
    Jahnke A, Witt G, Schäfer S, Haase N, Escher BI (2015) Combining passive sampling with toxicological characterization of complex mixtures of pollutants from the aquatic environment. Adv Biochem Eng Biotechnol. doi: 10.1007/10_2015_5014 Google Scholar
  6. 6.
    Mills GA, Fones GR, Booij K, Greenwood R (2011) Passive sampling technologies. In: Quevauviller P, Roose P, Varreet G (eds) Chemical marine monitoring: policy framework and analytical trends. Wiley, HobokenGoogle Scholar
  7. 7.
    ter Laak TL, ter Bekke MA, Hermens JLM (2009) Dissolved organic matter enhances transport of PAHs to aquatic organisms. Environ Sci Technol 43:7212–7217CrossRefGoogle Scholar
  8. 8.
    Jahnke A, Mayer P, McLachlan MS, Wickstrom H, Gilbert D, MacLeod M (2014) Silicone passive equilibrium samplers as “chemometers” in eels and sediments of a Swedish lake. Environ Sci Process Impacts 16:464–472CrossRefGoogle Scholar
  9. 9.
    Leslie HA, Oosthoek AJP, Busser FJM, Kraak MHS, Hermens JLM (2002) Biomimetic solid-phase microextraction to predict body residues and toxicity of chemicals that act by narcosis. Environ Toxicol Chem 21:229–234CrossRefGoogle Scholar
  10. 10.
    Escher BI, Lawrence M, Macova M, Mueller JF, Poussade Y, Robillot C, Roux A, Gernjak W (2011) Evaluation of contaminant removal of reverse osmosis and advanced oxidation in full-scale operation by combining passive sampling with chemical analysis and bioanalytical tools. Environ Sci Technol 45:5387–5394CrossRefGoogle Scholar
  11. 11.
    Armitage JM, Wania F, Arnot JA (2014) Application of mass balance models and the chemical activity concept to facilitate the use of in vitro toxicity data for risk assessment. Environ Sci Technol 48:9770–9779CrossRefGoogle Scholar
  12. 12.
    Heringa MB, Schreurs R, Busser F, Van Der Saag PT, Van Der Burg B, Hermens JLM (2004) Toward more useful in vitro toxicity data with measured free concentrations. Environ Sci Technol 38:6263–6270CrossRefGoogle Scholar
  13. 13.
    Wagner M, Vermeirssen ELM, Buchinger S, Behr M, Magdeburg A, Oehlmann J (2013) Deriving bio-equivalents from in vitro bioassays: assessment of existing uncertainties and strategies to improve accuracy and reporting. Environ Toxicol Chem 32:1906–1917CrossRefGoogle Scholar
  14. 14.
    Villeneuve DL, Blankenship AL, Giesy JP (2000) Derivation and application of relative potency estimates based on in vitro bioassay results. Environ Toxicol Chem 19:2835–2843CrossRefGoogle Scholar
  15. 15.
    Sabaliunas D, Lazutka J, Sabaliuniene I, Sodergren A (1998) Use of semipermeable membrane devices for studying effects of organic pollutants: comparison of pesticide uptake by semipermeable membrane devices and mussels. Environ Toxicol Chem 17:1815–1824CrossRefGoogle Scholar
  16. 16.
    Sabaliunas D, Ellington J, Sabaliuniene I (1999) Screening bioavailable hydrophobic toxicants in surface waters with semipermeable membrane devices: role of inherent oleic acid in toxicity evaluations. Ecotoxicol Environ Saf 44:160–167CrossRefGoogle Scholar
  17. 17.
    Rastall AC, Getting D, Goddard J, Roberts DR, Erdinger L (2006) A biomimetic approach to the detection and identification of estrogen receptor agonists in surface waters using semipermeable membrane devices (SPMDs) and bioassay-directed chemical analysis. Environ Sci Pollut Res Int 13:256–267CrossRefGoogle Scholar
  18. 18.
    Petty JD, Huckins JN, Alvarez DA, Brumbaugh WG, Cranor WL, Gale RW, Rastall AC, Jones-Lepp TL, Leiker TJ, Rostad CE, Furlong ET (2004) A holistic passive integrative sampling approach for assessing the presence and potential impacts of waterborne environmental contaminants. Chemosphere 54:695–705CrossRefGoogle Scholar
  19. 19.
    Vermeirssen ELM, Hollender J, Bramaz N, van der Voet J, Escher BI (2010) Linking toxicity in algal and bacterial assays with chemical analysis in passive samplers deployed in 21 treated sewage effluents. Environ Toxicol Chem 29:2575–2582CrossRefGoogle Scholar
  20. 20.
    Creusot N, Kinani S, Balaguer P, Tapie N, LeMenach K, Maillot-Marechal E, Porcher JM, Budzinski H, Ait-Aissa S (2010) Evaluation of an hPXR reporter gene assay for the detection of aquatic emerging pollutants: screening of chemicals and application to water samples. Anal Bioanal Chem 396:569–583CrossRefGoogle Scholar
  21. 21.
    Tapie N, Devier MH, Soulier C, Creusot N, Le Menach K, Ait-Aissa S, Vrana B, Budzinski H (2011) Passive samplers for chemical substance monitoring and associated toxicity assessment in water. Water Sci Technol 63:2418–2426CrossRefGoogle Scholar
  22. 22.
    Creusot N, Ait-Aissa S, Tapie N, Pardon P, Brion F, Sanchez W, Thybaud E, Porcher J-M, Budzinski H (2014) Identification of synthetic steroids in river water downstream from pharmaceutical manufacture discharges based on a bioanalytical approach and passive sampling. Environ Sci Technol 48:3649–3657CrossRefGoogle Scholar
  23. 23.
    Pesce S, Morin S, Lissalde S, Montuelle B, Mazzella N (2011) Combining polar organic chemical integrative samplers (POCIS) with toxicity testing to evaluate pesticide mixture effects on natural phototrophic biofilms. Environ Pollut 159:735–741CrossRefGoogle Scholar
  24. 24.
    Alvarez DA, Shappell NW, Billey LO, Bermudez DS, Wilson VS, Kolpin DW, Perkins SD, Evans N, Foreman WT, Gray JL, Shipitalo MJ, Meyer MT (2013) Bioassay of estrogenicity and chemical analyses of estrogens in streams across the United States associated with livestock operations. Water Res 47:3347–3363CrossRefGoogle Scholar
  25. 25.
    Vermeirssen ELM, Suter MJF, Burkhardt-Holm P (2006) Estrogenicity patterns in the Swiss midland river Lutzelmurg in relation to treated domestic sewage effluent discharges and hydrology. Environ Toxicol Chem 25:2413–2422CrossRefGoogle Scholar
  26. 26.
    Burki R, Vermeirssen ELM, Korner O, Joris C, Burkhardt-Holm P, Segner H (2006) Assessment of estrogenic exposure in brown trout (Salmo trutta) in a Swiss midland river: integrated analysis of passive samplers, wild and caged fish, and vitellogenin mRNA and protein. Environ Toxicol Chem 25:2077–2086CrossRefGoogle Scholar
  27. 27.
    Vermeirssen ELM, Bramaz N, Hollender J, Singer H, Escher BI (2009) Passive sampling combined with ecotoxicological and chemical analysis of pharmaceuticals and biocides - evaluation of three Chemcatcher (TM) configurations. Water Res 43:903–914CrossRefGoogle Scholar
  28. 28.
    Balaam JL, Grover D, Johnson AC, Jurgens M, Readman J, Smith AJ, White S, Williams R, Zhou JL (2010) The use of modelling to predict levels of estrogens in a river catchment: How does modelled data compare with chemical analysis and in vitro yeast assay results? Sci Total Environ 408:4826–4832CrossRefGoogle Scholar
  29. 29.
    Vermeirssen ELM, Körner O, Schönenberger R, Suter MJF, Burkhardt-Holm P (2005) Characterization of environmental estrogens in river water using a three pronged approach: active and passive water sampling and the analysis of accumulated estrogens in the bile of caged fish. Environ Sci Technol 39:8191–8198CrossRefGoogle Scholar
  30. 30.
    Liscio C, Magi E, Di Carro M, Suter MJF, Vermeirssen ELM (2009) Combining passive samplers and biomonitors to evaluate endocrine disrupting compounds in a wastewater treatment plant by LC/MS/MS and bioassay analyses. Environ Pollut 157:2716–2721CrossRefGoogle Scholar
  31. 31.
    Jarosova B, Blaha L, Vrana B, Randak T, Grabic R, Giesy JP, Hilscherova K (2012) Changes in concentrations of hydrophilic organic contaminants and of endocrine-disrupting potential downstream of small communities located adjacent to headwaters. Environ Int 45:22–31CrossRefGoogle Scholar
  32. 32.
    Alvarez DA, Cranor WL, Perkins SD, Clark RC, Smith SB (2008) Chemical and toxicologic assessment of organic contaminants in surface water using passive samplers. J Environ Qual 37:1024–1033CrossRefGoogle Scholar
  33. 33.
    Harman C, Farmen E, Tollefsen KE (2010) Monitoring North Sea oil production discharges using passive sampling devices coupled with in vitro bioassay techniques. J Environ Monit 12:1699–1708CrossRefGoogle Scholar
  34. 34.
    Zounkova R, Jalova V, Janisova M, Ocelka T, Jurcikova J, Halirova J, Giesy JP, Hilscherova K (2014) In situ effects of urban river pollution on the mudsnail Potamopyrgus antipodarum as part of an integrated assessment. Aquat Toxicol 150:83–92CrossRefGoogle Scholar
  35. 35.
    Creusot N, Tapie N, Piccini B, Balaguer P, Porcher JM, Budzinski H, Ait-Aissa S (2013) Distribution of steroid- and dioxin-like activities between sediments, POCIS and SPMD in a French river subject to mixed pressures. Environ Sci Pollut Res Int 20:2784–2794CrossRefGoogle Scholar
  36. 36.
    Jálová V, Jarosova B, Blaha L, Giesy JP, Ocelka T, Grabic R, Jurcikova J, Vrana B, Hilscherova K (2013) Estrogen-, androgen- and aryl hydrocarbon receptor mediated activities in passive and composite samples from municipal waste and surface waters. Environ Int 59:372–383CrossRefGoogle Scholar
  37. 37.
    Booij P, Sjollema SB, Leonards PEG, de Voogt P, Stroomberg GJ, Vethaak AD, Lamoree MH (2013) Extraction tools for identification of chemical contaminants in estuarine and coastal waters to determine toxic pressure on primary producers. Chemosphere 93:107–114CrossRefGoogle Scholar
  38. 38.
    Liscio C, Abdul-Sada A, Al-Salhi R, Ramsey MH, Hill EM (2014) Methodology for profiling anti-androgen mixtures in river water using multiple passive samplers and bioassay-directed analyses. Water Res 57:258–269CrossRefGoogle Scholar
  39. 39.
    Tan BLL, Hawker DW, Muller JF, Leusch FDL, Tremblay LA, Chapman HF (2007) Comprehensive study of endocrine disrupting compounds using grab and passive sampling at selected wastewater treatment plants in South East Queensland, Australia. Environ Int 33:654–669CrossRefGoogle Scholar
  40. 40.
    Vermeirssen ELM, Asmin J, Escher BI, Kwon JH, Steimen I, Hollender J (2008) The role of hydrodynamics, matrix and sampling duration in passive sampling of polar compounds with Empore (TM) SDB-RPS disks. J Environ Monit 10:119–128CrossRefGoogle Scholar
  41. 41.
    Muller R, Schreiber U, Escher BI, Quayle P, Nash SMB, Mueller JF (2008) Rapid exposure assessment of PSII herbicides in surface water using a novel chlorophyll a fluorescence imaging assay. Sci Total Environ 401:51–59CrossRefGoogle Scholar
  42. 42.
    Escher BI, Quayle P, Muller R, Schreiber U, Mueller JF (2006) Passive sampling of herbicides combined with effect analysis in algae using a novel high-throughput phytotoxicity assay (maxi-imaging-PAM). J Environ Monit 8:456–464CrossRefGoogle Scholar
  43. 43.
    Shaw M, Negri A, Fabricius K, Mueller JF (2009) Predicting water toxicity: pairing passive sampling with bioassays on the Great Barrier Reef. Aquat Toxicol 95:108–116CrossRefGoogle Scholar
  44. 44.
    Muller R, Tang JYM, Thierb R, Mueller JF (2007) Combining passive sampling and toxicity testing for evaluation of mixtures of polar organic chemicals in sewage treatment plant effluent. J Environ Monit 9:104–109Google Scholar
  45. 45.
    Emelogu ES, Pollard P, Dymond P, Robinson CD, Webster L, McKenzie C, Dobson J, Bresnan E, Moffat CF (2013) Occurrence and potential combined toxicity of dissolved organic contaminants in the Forth estuary and Firth of Forth Scotland assessed using passive samplers and an algal toxicity test. Sci Total Environ 461:230–239CrossRefGoogle Scholar
  46. 46.
    Emelogu ES, Pollard P, Robinson CD, Smedes F, Webster L, Oliver IW, McKenzie C, Seiler TB, Hollert H, Moffat CF (2013) Investigating the significance of dissolved organic contaminants in aquatic environments: coupling passive sampling with in vitro bioassays. Chemosphere 90:210–219CrossRefGoogle Scholar
  47. 47.
    Emelogu ES, Seiler T-B, Pollard P, Robinson CD, Webster L, McKenzie C, Heger S, Hollert H, Bresnan E, Best J, Moffat CF (2014) Evaluations of combined zebrafish (Danio rerio) embryo and marine phytoplankton (Diacronema lutheri) toxicity of dissolved organic contaminants in the Ythan catchment, Scotland, UK. Environ Sci Pollut Res Int 21:5537–5546CrossRefGoogle Scholar
  48. 48.
    Bi HP, Rissik D, Macova M, Hearn L, Mueller JF, Escher B (2011) Recovery of a freshwater wetland from chemical contamination after an oil spill. J Environ Monit 13:713–720CrossRefGoogle Scholar
  49. 49.
    Allan SE, Smith BW, Tanguay RL, Anderson KA (2012) Bridging environmental mixtures and toxic effects. Environ Toxicol Chem 31:2877–2887CrossRefGoogle Scholar
  50. 50.
    Bopp SK, McLachlan MS, Schirmer K (2007) Passive sampler for combined chemical and toxicological long-term monitoring of groundwater: the ceramic toximeter. Environ Sci Technol 41:6868–6876CrossRefGoogle Scholar
  51. 51.
    Addeck A, Croes K, Van Langenhove K, Denison MS, Elhamalawy A, Elskens M, Baeyens W (2014) Time-integrated monitoring of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in urban and industrial wastewaters using a ceramic toximeter and the CALUX bioassay. Chemosphere 94:27–35CrossRefGoogle Scholar
  52. 52.
    Vrana B, Mills GA, Allan IJ, Dominiak E, Svensson K, Knutsson J, Morrison G, Greenwood R (2005) Passive sampling techniques for monitoring pollutants in water. Trends Analyt Chem 24:845–868CrossRefGoogle Scholar
  53. 53.
    Harman C, Allan IJ, Vermeirssen ELM (2012) Calibration and use of the polar organic chemical integrative sampler – a critical review. Environ Toxicol Chem 31:2724–2738CrossRefGoogle Scholar
  54. 54.
    Alvarez DA, Petty JD, Huckins JN, Jones-Lepp TL, Getting DT, Goddard JP, Manahan SE (2004) Development of a passive, in situ, integrative sampler for hydrophilic organic contaminants in aquatic environments. Environ Toxicol Chem 23:1640–1648CrossRefGoogle Scholar
  55. 55.
    Emelogu ES, Pollard P, Robinson CD, Webster L, McKenzie C, Napier F, Steven L, Moffat CF (2013) Identification of selected organic contaminants in streams associated with agricultural activities and comparison between autosampling and silicone rubber passive sampling. Sci Total Environ 445:261–272CrossRefGoogle Scholar
  56. 56.
    Booij K, Smedes F (2010) An improved method for estimating in situ sampling rates of nonpolar passive samplers. Environ Sci Technol 44:6789–6794CrossRefGoogle Scholar
  57. 57.
    Smedes F, van Vliet LA, Booij K (2013) Multi-ratio equilibrium passive sampling method to estimate accessible and pore water concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in sediment. Environ Sci Technol 47:510–517CrossRefGoogle Scholar
  58. 58.
    Booij K, Smedes F, van Weerlee EM, Honkoop PJC (2006) Environmental monitoring of hydrophobic organic contaminants: the case of mussels versus semipermeable membrane devices. Environ Sci Technol 40:3893–3900CrossRefGoogle Scholar
  59. 59.
    Bopp SK, Bols NC, Schirmer K (2006) Development of a solvent-free, solid-phase in vitro bioassay using vertebrate cells. Environ Toxicol Chem 25:1390–1398CrossRefGoogle Scholar
  60. 60.
    Schirmer K, Bopp S, Gehrhardt J (2007) Use of passive sampling devices in toxicity assessment of groundwater. In: Greenwood R, Mills G, Vrana B (eds) Passive sampling techniques in environmental monitoring. Wilson & Wilson’s, Amsterdam, pp 393–405CrossRefGoogle Scholar
  61. 61.
    Mayer P, Parkerton TF, Adams RG, Cargill JG, Gan J, Gouin T, Gschwend PM, Hawthorne SB, Helm P, Witt G, You J, Escher BI (2014) Passive sampling methods for contaminated sediments: scientific rationale supporting use of freely dissolved concentrations. Integr Environ Assess Manag 10:197–209CrossRefGoogle Scholar
  62. 62.
    Reichenberg F, Mayer P (2006) Two complementary sides of bioavailability: accessibility and chemical activity of organic contaminants in sediments and soils. Environ Toxicol Chem 25:1239–1245CrossRefGoogle Scholar
  63. 63.
    Lydy MJ, Landrum PF, Oen AMP, Allinson M, Smedes F, Harwood AD, Li H, Maruya KA, Liu J (2014) Passive sampling methods for contaminated sediments: state of the science for organic contaminants. Integr Environ Assess Manag 10:167–178CrossRefGoogle Scholar
  64. 64.
    Perron MM, Burgess RM, Ho KT, Pelletier MC, Friedman CL, Cantwell MG, Shine JP (2009) Development and evaluation of reverse polyethylene samplers for marine phase II whole-sediment toxicity identification evaluations. Environ Toxicol Chem 28:749–758CrossRefGoogle Scholar
  65. 65.
    Bandow N, Altenburger R, Streck G, Brack W (2009) Effect-directed analysis of contaminated sediments with partition-based dosing using green algae cell multiplication inhibition. Environ Sci Technol 43:7343–7349CrossRefGoogle Scholar
  66. 66.
    Perron MM, Burgess RM, Ho KT, Pelletier MC, Friedman CL, Cantwell MG, Shine JP (2011) Limitations of reverse polyethylene samplers (RePES) for evaluating toxicity of field contaminated sediments. Chemosphere 83:247–254CrossRefGoogle Scholar
  67. 67.
    Zielke H, Seiler TB, Niebergall S, Leist E, Brinkmann M, Spira D, Streck G, Brack W, Feiler U, Braunbeck T, Hollert H (2011) The impact of extraction methodologies on the toxicity of sediments in the zebrafish (Danio rerio) embryo test. J Soil Sediment 11:352–363CrossRefGoogle Scholar
  68. 68.
    Burton GA Jr, Rosen G, Chadwick DB, Greenberg MS, Taulbee WK, Lotufo GR, Reible DD (2012) A sediment ecotoxicity assessment platform for in situ measures of chemistry, bioaccumulation and toxicity. Part 1: system description and proof of concept. Environ Pollut 162:449–456CrossRefGoogle Scholar
  69. 69.
    Li J-Y, Tang JYM, Jin L, Escher BI (2013) Understanding bioavailability and toxicity of sediment-associated contaminants by combining passive sampling with in vitro bioassays in an urban river catchment. Environ Toxicol Chem 32:2888–2896CrossRefGoogle Scholar
  70. 70.
    Witt G, Niehus NC, Konopka KF, Mayer P, Floeter C (2015) Comparison of passive and standard dosing of polycyclic aromatic hydrocarbons to the marine algae Phaeodactylum tricornutum. SETAC Europe 25th annual meeting, Barcelona, SpainGoogle Scholar
  71. 71.
    Lorks J (2010) Passive dosing of extracts using PDMS layers in the fish embryo test as an alternative to direct contact exposure with marine Baltic Sea sediments. Diploma thesis, RWTH AachenGoogle Scholar
  72. 72.
    Kupryianchyk D, Reichman EP, Rakowska MI, Peeters ETHM, Grotenhuis JTC, Koelmans AA (2011) Ecotoxicological effects of activated carbon amendments on macroinvertebrates in nonpolluted and polluted sediments. Environ Sci Technol 45:8567–8574CrossRefGoogle Scholar
  73. 73.
    Xu Y, Spurlock F, Wang Z, Gan J (2007) Comparison of five methods for measuring sediment toxicity of hydrophobic cantaminants. Environ Sci Technol 41:8394–8399CrossRefGoogle Scholar
  74. 74.
    Harwood AD, Landrum PF, Lydy MJ (2013) Bioavailability-based toxicity endpoints of bifenthrin for Hyalella azteca and Chironomus dilutus. Chemosphere 90:1117–1122CrossRefGoogle Scholar
  75. 75.
    Harwood AD, Landrum PF, Weston DP, Lydy MJ (2013) Using SPME fibers and Tenax to predict the bioavailability of pyrethroids and chlorpyrifos in field sediments. Environ Pollut 173:47–51CrossRefGoogle Scholar
  76. 76.
    Neale PA, Antony A, Bartkow ME, Farre MJ, Heitz A, Kristiana I, Tang JYM, Escher BI (2012) Bioanalytical assessment of the formation of disinfection byproducts in a drinking water treatment plant. Environ Sci Technol 46:10317–10325Google Scholar
  77. 77.
    Ding Y, Landrum PF, You J, Lydy MJ (2013) Assessing bioavailability and toxicity of permethrin and DDT in sediment using matrix solid phase microextraction. Ecotoxicology 22:109–117CrossRefGoogle Scholar
  78. 78.
    Hawthorne SB, Azzolina NA, Neuhauser EF, Kreitinger JP (2007) Predicting bioavailability of sediment polycyclic aromatic hydrocarbons to Hyalella azteca using equilibrium partitioning, supercritical fluid extraction, and pore water concentrations. Environ Sci Technol 41:6297–6304CrossRefGoogle Scholar
  79. 79.
    Bowen AT, Conder JM, La Point TW (2006) Solid phase microextraction of aminodinitrotoluenes in tissue. Chemosphere 63:58–63CrossRefGoogle Scholar
  80. 80.
    Conder JM, La Point TW, Steevens JA, Lotufo GR (2004) Recommendations for the assessment of TNT toxicity in sediment. Environ Toxicol Chem 23:141–149CrossRefGoogle Scholar
  81. 81.
    Kreitinger JP, Neuhauser EF, Doherty FG, Hawthorne SB (2007) Greatly reduced bioavailability and toxicity of polycyclic aromatic hydrocarbons to Hyalella azteca in sediments from manufactured-gas plant sites. Environ Toxicol Chem 26:1146–1157CrossRefGoogle Scholar
  82. 82.
    Paumen ML, Stol P, Ter Laak TL, Kraak MHS, van Gestel CAM, Admiraal W (2008) Chronic exposure of the oligochaete Lumbriculus variegatus to polycyclic aromatic compounds (PACs): bioavailability and effects on reproduction. Environ Sci Technol 42:3434–3440CrossRefGoogle Scholar
  83. 83.
    Pang J, Sun B, Li H, Mehler WT, You J (2012) Influence of bioturbation on bioavailability and toxicity of PAHs in sediment from an electronic waste recycling site in South China. Ecotoxicol Environ Saf 84:227–233CrossRefGoogle Scholar
  84. 84.
    Arp HPH, Azzolina NA, Cornelissen G, Hawthorne SB (2011) Predicting pore water APA-34 PAH concentrations and toxicity in pyrogenic-impacted sediments using pyrene content. Environ Sci Technol 45:5139–5146CrossRefGoogle Scholar
  85. 85.
    Oen AMP, Janssen EML, Cornelissen G, Breedveld GD, Eek E, Luthy RG (2011) In situ measurement of PCB pore water concentration profiles in activated carbon-amended sediment using passive samplers. Environ Sci Technol 45:4053–4059CrossRefGoogle Scholar
  86. 86.
    Cornelissen G, Wiberg K, Broman D, Arp HPH, Persson Y, Sundqvist K, Jonsson P (2008) Freely dissolved concentrations and sediment-water activity ratios of PCDD/Fs and PCBs in the open Baltic Sea. Environ Sci Technol 42:8733–8739CrossRefGoogle Scholar
  87. 87.
    Jahnke A, Mayer P, McLachlan MS (2012) Sensitive equilibrium sampling to study polychlorinated biphenyl disposition in Baltic Sea sediment. Environ Sci Technol 46:10114–10122CrossRefGoogle Scholar
  88. 88.
    Mäenpää K, Leppänen MT, Reichenberg F, Figueiredo K, Mayer P (2011) Equilibrium sampling of persistent and bioaccumulative compounds in soil and sediment: comparison of two approaches to determine equilibrium partitioning concentrations in lipids. Environ Sci Technol 45:1041–1047CrossRefGoogle Scholar
  89. 89.
    Mayer P, Vaes WHJ, Wijnker F, Legierse KCHM, Kraaij RH, Tolls J, Hermens JLM (2000) Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative pollutants using disposable solid-phase microextraction fibers. Environ Sci Technol 34:5177–5183CrossRefGoogle Scholar
  90. 90.
    Schäfer S, Antoni C, Möhlenkamp C, Claus E, Reifferscheid G, Heininger P, Mayer P (2015) Equilibrium sampling of polychlorinated biphenyls in River Elbe sediments – linking bioaccumulation in fish to sediment contamination. Chemosphere 138:856–862CrossRefGoogle Scholar
  91. 91.
    Witt G, Liehr GA, Borck D, Mayer P (2009) Matrix solid-phase microextraction for measuring freely dissolved concentrations and chemical activities of PAHs in sediment cores from the western Baltic Sea. Chemosphere 74:522–529CrossRefGoogle Scholar
  92. 92.
    Maruya KA, Zeng EY, Tsukada D, Bay SM (2009) A passive sampler based on solid-phase microextraction for quantifying hydrophobic organic contaminants in sediment pore water. Environ Toxicol Chem 28:733–740CrossRefGoogle Scholar
  93. 93.
    Witt G, Lang SC, Ullmann D, Schaffrath G, Schulz-Bull D, Mayer P (2013) Passive equilibrium sampler for in situ measurements of freely dissolved concentrations of hydrophobic organic chemicals in sediments. Environ Sci Technol 47:7830–7839CrossRefGoogle Scholar
  94. 94.
    Bao LJ, Zeng EY (2011) Passive sampling techniques for sensing freely dissolved hydrophobic organic chemicals in sediment porewater. Trends Analyt Chem 30:1422–1428CrossRefGoogle Scholar
  95. 95.
    Difilippo EL, Eganhouse RP (2010) Assessment of PDMS-water partition coefficients: implications for passive environmental sampling of hydrophobic organic compounds. Environ Sci Technol 44:6917–6925CrossRefGoogle Scholar
  96. 96.
    Schenker U, MacLeod M, Scheringer M, Hungerbuhler K (2005) Improving data quality for environmental fate models: a least-squares adjustment procedure for harmonizing physicochemical properties of organic compounds. Environ Sci Technol 39:8434–8441CrossRefGoogle Scholar
  97. 97.
    Schwarzenbach RPG, Philip M, Imboden DM (2003) Environmental organic chemistry, 2nd edn. Wiley, HobokenGoogle Scholar
  98. 98.
    Maruya KA, Landrum PF, Burgess RM, Shine JP (2012) Incorporating contaminant bioavailability into sediment quality assessment frameworks. Integr Environ Assess Manag 8:659–673CrossRefGoogle Scholar
  99. 99.
    Rosen G, Chadwick DB, Burton GA, Taulbee WK, Greenberg MS, Lotufo GR, Reible DD (2012) A sediment ecotoxicity assessment platform for in situ measures of chemistry, bioaccumulation and toxicity. Part 2: integrated application to a shallow estuary. Environ Pollut 162:457–465CrossRefGoogle Scholar
  100. 100.
    Ding Y, Landrum PF, You J, Harwood AD, Lydy MJ (2012) Use of solid phase microextraction to estimate toxicity: relating fiber concentrations to toxicity-part I. Environ Toxicol Chem 31:2159–2167CrossRefGoogle Scholar
  101. 101.
    Ding Y, Landrum PF, You J, Harwood AD, Lydy MJ (2012) Use of solid phase microextraction to estimate toxicity: relating fiber concentrations to body residues-part II. Environ Toxicol Chem 31:2168–2174CrossRefGoogle Scholar
  102. 102.
    Jin L, Gaus C, van Mourik L, Escher BI (2013) Applicability of passive sampling to bioanalytical screening of bioaccumulative chemicals in marine wildlife. Environ Sci Technol 47:7982–7988CrossRefGoogle Scholar
  103. 103.
    Jin L, Gaus C, Escher BI (2015) Adaptive stress response pathways induced by environmental mixtures of bioaccumulative chemicals in dugongs. Environ Sci Technol 49:6963–6973CrossRefGoogle Scholar
  104. 104.
    Jin L, Escher BI, Limpus CJ, Gaus C (2015) Coupling passive sampling with in vitro bioassays and chemical analysis to understand combined effects of bioaccumulative chemicals in blood of marine turtles. Chemosphere 138:292–299CrossRefGoogle Scholar
  105. 105.
    Ossiander L, Reichenberg F, McLachlan MS, Mayer P (2008) Immersed solid phase microextraction to measure chemical activity of lipophilic organic contaminants in fatty tissue samples. Chemosphere 71:1502–1510CrossRefGoogle Scholar
  106. 106.
    Jahnke A, Mayer P, Broman D, McLachlan MS (2009) Possibilities and limitations of equilibrium sampling using polydimethylsiloxane in fish tissue. Chemosphere 77:764–770CrossRefGoogle Scholar
  107. 107.
    Mäenpää K, Leppänen MT, Figueiredo K, Tigistu-Sahle F, Käkelä R (2015) Sorptive capacity of membrane lipids, storage lipids, and proteins: a preliminary study of partitioning of organochlorines in lean fish from a PCB-contaminated freshwater lake. Arch Environ Contam Toxicol 68:193–203CrossRefGoogle Scholar
  108. 108.
    Zhou SN, Oakes KD, Servos MR, Pawliszyn J (2008) Application of solid-phase microextraction for in vivo laboratory and field sampling of pharmaceuticals in fish. Environ Sci Technol 42:6073–6079CrossRefGoogle Scholar
  109. 109.
    Adolfsson-Erici M, Akerman G, McLachlan MS (2012) In-vivo passive sampling to measure elimination kinetics in bioaccumulation tests. Chemosphere 88:62–68CrossRefGoogle Scholar
  110. 110.
    Allan IJ, Baek K, Haugen TO, Hawley KL, Hogfeldt AS, Lillicrap AD (2013) In vivo passive sampling of nonpolar contaminants in brown trout (Salmo trutta). Environ Sci Technol 47:11660–11667CrossRefGoogle Scholar
  111. 111.
    Mayer P, Toraeng L, Glaesner N, Joensson JA (2009) Silicone membrane equilibrator: measuring chemical activity of nonpolar chemicals with poly(dimethylsiloxane) microtubes immersed directly in tissue and lipids. Anal Chem 81:1536–1542CrossRefGoogle Scholar
  112. 112.
    Vrana B, Smedes F, Rusina TP, Okonski K, Allan IJ, Grung M, Hilscherova K, Novák J, Tarábek P, Slobodník J (2015) Passive sampling: chemical analysis and toxicological profiling. ICPDR report: Joint Danube Survey 3. A comprehensive analysis of Danube Water QualityGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Annika Jahnke
    • 1
  • Gesine Witt
    • 2
  • Sabine Schäfer
    • 3
  • Nora Haase
    • 1
  • Beate I. Escher
    • 1
    • 4
  1. 1.Department of Cell ToxicologyHelmholtz Centre for Environmental Research – UFZLeipzigGermany
  2. 2.Department of Environmental EngineeringHamburg University of Applied SciencesHamburgGermany
  3. 3.Department BiochemistryEcotoxicology, German Federal Institute of HydrologyKoblenzGermany
  4. 4.Environmental Toxicology, Center for Applied GeoscienceEberhard Karls University TübingenTübingenGermany

Personalised recommendations