Skip to main content

Low-Carbon Fuel and Chemical Production by Anaerobic Gas Fermentation

  • Chapter
  • First Online:
Anaerobes in Biotechnology

Abstract

World energy demand is expected to increase by up to 40% by 2035. Over this period, the global population is also expected to increase by a billion people. A challenge facing the global community is not only to increase the supply of fuel, but also to minimize fossil carbon emissions to safeguard the environment, at the same time as ensuring that food production and supply is not detrimentally impacted. Gas fermentation is a rapidly maturing technology which allows low carbon fuel and commodity chemical synthesis. Unlike traditional biofuel technologies, gas fermentation avoids the use of sugars, relying instead on gas streams rich in carbon monoxide and/or hydrogen and carbon dioxide as sources of carbon and energy for product synthesis by specialized bacteria collectively known as acetogens. Thus, gas fermentation enables access to a diverse array of novel, large volume, and globally available feedstocks including industrial waste gases and syngas produced, for example, via the gasification of municipal waste and biomass. Through the efforts of academic labs and early stage ventures, process scale-up challenges have been surmounted through the development of specialized bioreactors. Furthermore, tools for the genetic improvement of the acetogenic bacteria have been reported, paving the way for the production of a spectrum of ever-more valuable products via this process. As a result of these developments, interest in gas fermentation among both researchers and legislators has grown significantly in the past 5 years to the point that this approach is now considered amongst the mainstream of emerging technology solutions for near-term low-carbon fuel and chemical synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABE:

Acetone-butanol-ethanol fermentation

ACS:

Acetyl-CoA synthase

AOR:

Acetaldehyde: ferredoxin oxidoreductase

BDO:

Butanediol

BOF:

Basic oxygen furnace

CO:

Carbon monoxide

CO2 :

Carbon dioxide

CODH:

Carbon monoxide dehydrogenase

CSTR:

Continuous Stirred Tank Reactor

GHG:

Greenhouse gas

H2 :

Hydrogen

LCA:

Life-cycle analysis

MSW:

Municipal solid waste

RED:

Renewable Energy Directive

SLP:

Substrate-level phosphorylation

THF:

Tetrahydrofolate

WL:

Wood–Ljungdahl

References

  1. Stern N (2007) The economics of climate change: the Stern review. Cambridge University Press, New York

    Book  Google Scholar 

  2. Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14:578–597. doi:10.1016/j.rser.2009.10.003

    Article  CAS  Google Scholar 

  3. Sheldon RA (2014) Green and sustainable manufacture of chemicals from biomass: state of the art. Green Chem 16:950–963. doi:10.1039/C3GC41935E

    Article  CAS  Google Scholar 

  4. Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86:2273–2282. doi:10.1016/j.apenergy.2009.03.015

    Article  CAS  Google Scholar 

  5. Yim H, Haselbeck R, Niu W et al (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452. doi:10.1038/nchembio.580

    Article  CAS  Google Scholar 

  6. Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459. doi:10.1016/j.copbio.2003.08.005

    Article  CAS  Google Scholar 

  7. Daniell J, Köpke M, Simpson S (2012) Commercial biomass syngas fermentation. Energies 5:5372–5417. doi:10.3390/en5125372

    Article  CAS  Google Scholar 

  8. Friedlingstein P, Andrew RM, Rogelj J et al (2014) Persistent growth of CO2 emissions and implications for reaching climate targets. Nat Geosci 7:709–715. doi:10.1038/ngeo2248

    Article  CAS  Google Scholar 

  9. Kircher M (2014) The emerging bioeconomy: industrial drivers, global impact, and international strategies. Ind Biotechnol 10:11–18. doi:10.1089/ind.2014.1500

    Article  Google Scholar 

  10. Zilberman D, Hochman G, Rajagopal D et al (2013) The impact of biofuels on commodity food prices: assessment of findings. Am J Agric Econ 95:275–281. doi:10.1093/ajae/aas037

    Article  Google Scholar 

  11. Hussain S, Miller D (2014) The Economics of Ecosystems and Biodiversity (TEEB) for agriculture & food – concept note. http://www.teebweb.org/publication/the-economics-of-ecosystems-and-biodiversity-teeb-for-agriculture-food-concept-note/. Accessed 25 Aug 2015

  12. Fargione J, Hill J, Tilman D et al (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238. doi:10.1126/science.1152747

    Article  CAS  Google Scholar 

  13. 110th United States Congress (2007) Energy Independence and Security Act of 2007. US Public Law 110-140. https://www.gpo.gov/fdsys/pkg/PLAW-110publ140/pdf/PLAW-110publ140.pdf

  14. Denvir B, Taylor R, Bauen A et al (2015) Novel low carbon transport fuels and the RTFO: sustainability implications. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/417650/Novel_Low_Carbon_Transport_Fuels_Scoping_paper_vFINAL5.pdf. Accessed 25 Aug 2015

  15. Dürre P, Eikmanns BJ (2015) C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr Opin Biotechnol 35:63–72. doi:10.1016/j.copbio.2015.03.008

    Article  CAS  Google Scholar 

  16. Kirkels AF, Verbong GPJ (2011) Biomass gasification: still promising? A 30-year global overview. Renew Sustain Energy Rev 15:471–481. doi:10.1016/j.rser.2010.09.046

    Article  CAS  Google Scholar 

  17. McKendry P (2002) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83:55–63

    Article  CAS  Google Scholar 

  18. Temme K, Zhao D, Voigt CA (2012) Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc Natl Acad Sci 109:7085–7090. doi:10.1073/pnas.1120788109

    Article  Google Scholar 

  19. Gardner TS (2013) Synthetic biology: from hype to impact. Trends Biotechnol 31:123–125. doi:10.1016/j.tibtech.2013.01.018

    Article  CAS  Google Scholar 

  20. Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8. doi:10.1007/s00253-005-0155-y

    Article  CAS  Google Scholar 

  21. Köpke M, Dürre P (2010) Biochemical production of biobutanol. In: Luque R, Campelo J, Clark JH (eds) Handbook of biofuels production: processes and technologies. Woodhead Publishing, Cambridge, pp 221–257

    Google Scholar 

  22. Los M (2012) Minimization and prevention of phage infections in bioprocesses. Methods Mol Biol 834:305–315. doi:10.1007/978-1-61779-483-4_19

    Article  CAS  Google Scholar 

  23. Skinner KA, Leathers TD (2004) Bacterial contaminants of fuel ethanol production. J Ind Microbiol Biotechnol 31:401–408. doi:10.1007/s10295-004-0159-0

    Article  CAS  Google Scholar 

  24. Westfall PJ, Gardner TS (2011) Industrial fermentation of renewable diesel fuels. Curr Opin Biotechnol 22:344–350. doi:10.1016/j.copbio.2011.04.023

    Article  CAS  Google Scholar 

  25. Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2:898–907. doi:10.1038/nrmicro1021

    Article  CAS  Google Scholar 

  26. Bogorad IW, Chen C-T, Theisen MK et al (2014) Building carbon–carbon bonds using a biocatalytic methanol condensation cycle. Proc Natl Acad Sci 111:15928–15933. doi:10.1073/pnas.1413470111

    Article  CAS  Google Scholar 

  27. Bogorad IW, Lin T-S, Liao JC (2013) Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502:693–697. doi:10.1038/nature12575

    Article  CAS  Google Scholar 

  28. Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R (2008) Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 74:1124–1135. doi:10.1128/AEM.02192-07

    Article  CAS  Google Scholar 

  29. Murrell JC, Gilbert B, McDonald IR (2000) Molecular biology and regulation of methane monooxygenase. Arch Microbiol 173:325–332

    Article  CAS  Google Scholar 

  30. Müller JEN, Meyer F, Litsanov B et al (2015) Engineering Escherichia coli for methanol conversion. Metab Eng 28:190–201. doi:10.1016/j.ymben.2014.12.008

    Article  CAS  Google Scholar 

  31. Burk M, Schilling CH, Burgard A, Trawick JD (2009) Methods and organisms for utilizing synthesis gas and other gaseous carbon sources and methanol. International Patent WO/2009/094485

    Google Scholar 

  32. Fast AG, Papoutsakis ET (2012) Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals. Curr Opin Chem Eng 1–16. doi:10.1016/j.coche.2012.07.005

    Google Scholar 

  33. Russell MJ, Martin W (2004) The rocky roots of the acetyl-CoA pathway. Trends Biochem Sci 29:358–363. doi:10.1016/j.tibs.2004.05.007

    Article  CAS  Google Scholar 

  34. Mohammadi M, Najafpour GD, Younesi H et al (2011) Bioconversion of synthesis gas to second generation biofuels: a review. Renew Sustain Energy Rev 15:4255–4273. doi:10.1016/j.rser.2011.07.124

    Article  CAS  Google Scholar 

  35. Munasinghe PC, Khanal SK (2010) Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresour Technol 101:5013–5022. doi:10.1016/j.biortech.2009.12.098

    Article  CAS  Google Scholar 

  36. Schiel-Bengelsdorf B, Dürre P (2012) Pathway engineering and synthetic biology using acetogens. FEBS Lett 586:2191–2198. doi:10.1016/j.febslet.2012.04.043

    Article  CAS  Google Scholar 

  37. Tirado-Acevedo O, Chinn MS, Grunden AM (2010) Production of biofuels from synthesis gas using microbial catalysts. Adv Appl Microbiol 70:57–92. doi:10.1016/S0065-2164(10)70002-2

    Article  CAS  Google Scholar 

  38. Köpke M, Mihalcea C, Liew F et al (2011) 2,3-Butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas. Appl Environ Microbiol 77:5467–5475. doi:10.1128/AEM.00355-11

    Article  CAS  Google Scholar 

  39. Schiel B, Dürre P (2010) Clostridium. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation and cell technology. Wiley, Hoboken, pp 1–15

    Google Scholar 

  40. Tracy BP, Jones SW, Fast AG et al (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 23:364–381. doi:10.1016/j.copbio.2011.10.008

    Article  CAS  Google Scholar 

  41. Olson DG, McBride JE, Shaw AJ, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23:396–405. doi:10.1016/j.copbio.2011.11.026

    Article  CAS  Google Scholar 

  42. Drake HL, Küsel K (2005) Acetogenic clostridia. In: Dürre P (ed) Handbook of clostridia. CRC, Boca Raton, pp 721–748

    Google Scholar 

  43. Lovley DR (2011) Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ Microbiol Rep 3:27–35. doi:10.1111/j.1758-2229.2010.00211.x

    Article  CAS  Google Scholar 

  44. Lovley DR, Nevin KP (2013) Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity. Curr Opin Biotechnol 1–6. doi:10.1016/j.copbio.2013.02.012

    Google Scholar 

  45. Nevin KP, Hensley SA, Franks AE et al (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77:2882–2886. doi:10.1128/AEM.02642-10

    Article  CAS  Google Scholar 

  46. Nevin KP, Woodard TL, Franks AE et al (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1:e00103–e00110. doi:10.1128/mBio.00103-10

    Article  CAS  Google Scholar 

  47. Abrini J, Naveau H, Nyns EJ (1994) Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 161:345–351. doi:10.1007/BF00303591

    Article  CAS  Google Scholar 

  48. Brown SD, Nagaraju S, Utturkar S et al (2014) Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia. Biotechnol Biofuels 7:40. doi:10.1186/1754-6834-7-40

    Article  CAS  Google Scholar 

  49. Utturkar SM, Klingeman DM, Bruno-Barcena JM et al (2015) Sequence data for Clostridium autoethanogenum using three generations of sequencing technologies. Sci Data 2:150014. doi:10.1038/sdata.2015.14

    Article  CAS  Google Scholar 

  50. Phillips JR, Klasson KT, Claussen EC et al (1993) Biological production of ethanol from coal synthesis gas. Appl Biochem Biotechnol 39:559–571. doi:10.1007/BF02919018

    Article  Google Scholar 

  51. Tanner RS, Miller LM, Yang D (1993) Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int J Syst Bacteriol 43:232

    Article  CAS  Google Scholar 

  52. Zahn JA, Saxena J (2011) Novel ethanologenic species Clostridium coskatii. US Patent 20110229947

    Google Scholar 

  53. Huhnke R, Lewis R, Tanner R (2008) Isolation and characterization of novel clostridial species. US Patent 7704723

    Google Scholar 

  54. Li N, Yang J, Chai C et al (2015) Complete genome sequence of Clostridium carboxidivorans P7(T), a syngas-fermenting bacterium capable of producing long-chain alcohols. J Biotechnol 211:44–45. doi:10.1016/j.jbiotec.2015.06.430

    Article  CAS  Google Scholar 

  55. Liou JS-C, Balkwill DL, Drake GR, Tanner RS (2005) Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55:2085–2091. doi:10.1099/ijs.0.63482-0

    Article  CAS  Google Scholar 

  56. Phillips JR, Atiyeh HK, Tanner RS et al (2015) Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: medium development and culture techniques. Bioresour Technol 190:114–121. doi:10.1016/j.biortech.2015.04.043

    Article  CAS  Google Scholar 

  57. Poehlein A, Bengelsdorf FR, Schiel-Bengelsdorf B et al (2015) Complete genome sequence of Rnf- and cytochrome-containing autotrophic acetogen Clostridium aceticum DSM 1496. Genome Announc 3:e00786–15. doi:10.1128/genomeA.00786-15

  58. Sim JH, Kamaruddin AH (2008) Optimization of acetic acid production from synthesis gas by chemolithotrophic bacterium – Clostridium aceticum using statistical approach. Bioresour Technol 99:2724–2735. doi:10.1016/j.biortech.2007.07.004

    Article  CAS  Google Scholar 

  59. Sim JH, Kamaruddin AH, Long WS (2008) Biocatalytic conversion of CO to acetic acid by Clostridium aceticum—medium optimization using response surface methodology (RSM). Biochem Eng J 40:337–347. doi:10.1016/j.bej.2008.01.006

    Article  CAS  Google Scholar 

  60. Sim JH, Kamaruddin AH, Long WS, Najafpour G (2007) Clostridium aceticum—a potential organism in catalyzing carbon monoxide to acetic acid: application of response surface methodology. Enzyme Microb Technol 40:1234–1243. doi:10.1016/j.enzmictec.2006.09.017

    Article  CAS  Google Scholar 

  61. Song Y, Hwang S, Cho B-K (2015) Draft genome sequence of Clostridium aceticum DSM 1496, a potential butanol producer through syngas fermentation. Genome Announc 3:e00258–15. doi:10.1128/genomeA.00258-15

  62. Wieringa KT (1939) The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria. Antonie Van Leeuwenhoek 6:251–262. doi:10.1007/BF02146190

    Article  Google Scholar 

  63. Drake HL, Daniel SL (2004) Physiology of the thermophilic acetogen Moorella thermoacetica. Res Microbiol 155:869–883. doi:10.1016/j.resmic.2004.10.002

    Article  Google Scholar 

  64. Fontaine FE, Peterson WH, Johnson MJ, George J (1942) A new type of glucose fermentation by Clostridium thermoaceticum. J Bacteriol 43:701–715

    CAS  Google Scholar 

  65. Pierce E, Xie G, Barabote RD et al (2008) The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). Environ Microbiol 10:2550–2573. doi:10.1111/j.1462-2920.2008.01679.x

    Article  CAS  Google Scholar 

  66. Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int J Syst Bacteriol 27:355–361. doi:10.1099/00207713-27-4-355

    Article  CAS  Google Scholar 

  67. Poehlein A, Schmidt S, Kaster A-K et al (2012) An ancient pathway combining carbon dioxide fixation with the generation and utilization of a sodium ion gradient for ATP synthesis. PLoS One 7, e33439. doi:10.1371/journal.pone.0033439

    Article  CAS  Google Scholar 

  68. Worden RM, Grethlein AJ, Jain MK, Datta R (1991) Production of butanol and ethanol from synthesis gas via fermentation. Fuel 70:615–619. doi:10.1016/0016-2361(91)90175-A

    Article  CAS  Google Scholar 

  69. Zeikus JG, Lynd LH, Thompson TE et al (1980) Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the Marburg strain. Curr Microbiol 3:381–386. doi:10.1007/BF02601907

    Article  CAS  Google Scholar 

  70. Wood HG (1991) Life with CO or CO2 and H2 as a source of carbon and energy. FASEB J 5:156–163

    CAS  Google Scholar 

  71. Müller V (2003) Energy conservation in acetogenic bacteria. Appl Environ Microbiol 69:6345–6353. doi:10.1128/AEM.69.11.6345

    Article  CAS  Google Scholar 

  72. Ragsdale SW (2008) Enzymology of the Wood-Ljungdahl pathway of acetogenesis. Ann N Y Acad Sci 1125:129–136. doi:10.1196/annals.1419.015

    Article  CAS  Google Scholar 

  73. Drake HL, Küsel K, Matthies C et al (2006) Acetogenic prokaryotes. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes, 3rd edn. Springer, New York, pp 354–420

    Chapter  Google Scholar 

  74. Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta 1784:1873–1898. doi:10.1016/j.bbapap.2008.08.012

    Article  CAS  Google Scholar 

  75. Buckel W, Thauer RK (2013) Energy conservation via electron bifurcating ferredoxin reduction and proton/Na+ translocating ferredoxin oxidation. Biochim Biophys Acta 1827:94–113

    Article  CAS  Google Scholar 

  76. Schuchmann K, Müller V (2014) Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12:809–821. doi:10.1038/nrmicro3365

    Article  CAS  Google Scholar 

  77. Ljungdahl LG (1994) The acetyl-CoA pathway and the chemiosmotic generation of ATP during acetogenesis. In: Acetogenesis. Springer US, Boston, pp 63–87

    Chapter  Google Scholar 

  78. Müller V, Imkamp F, Biegel E et al (2008) Discovery of a ferredoxin:NAD+−oxidoreductase (Rnf) in Acetobacterium woodii: a novel potential coupling site in acetogens. Ann N Y Acad Sci 1125:137–146. doi:10.1196/annals.1419.011

    Article  CAS  Google Scholar 

  79. Schmidt S, Biegel E, Müller V (2009) The ins and outs of Na(+) bioenergetics in Acetobacterium woodii. Biochim Biophys Acta 1787:691–696. doi:10.1016/j.bbabio.2008.12.015

    Article  CAS  Google Scholar 

  80. Heise R, Müller V, Gottschalk G (1989) Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii. J Bacteriol 171:5473–5478

    Article  CAS  Google Scholar 

  81. Mock J, Zheng Y, Mueller AP et al (2015) Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation. J Bacteriol. doi:10.1128/JB.00399-15

    Google Scholar 

  82. Wang S, Huang H, Kahnt J et al (2013) NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO. J Bacteriol 195:4373–4386. doi:10.1128/JB.00678-13

    Article  CAS  Google Scholar 

  83. Tremblay P-L, Zhang T, Dar SA et al (2012) The Rnf Complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth. MBio 4:e00406–12–e00406–12. doi:10.1128/mBio.00406-12

  84. Bertsch J, Öppinger C, Hess V et al (2015) Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii. J Bacteriol 197:1681–1689. doi:10.1128/JB.00048-15

    Article  CAS  Google Scholar 

  85. Bertsch J, Müller V (2015) CO metabolism in the acetogen Acetobacterium woodii. Appl Environ Microbiol AEM.01772–15. doi:10.1128/AEM.01772-15

    Google Scholar 

  86. Lee SY, Park JH, Jang SH et al (2008) Fermentative butanol production by Clostridia. Biotechnol Bioeng 101:209–228. doi:10.1002/bit.22003

    Article  CAS  Google Scholar 

  87. Liew FM, Köpke M, Simpson SD (2013) Gas fermentation for commercial biofuels production. In: Fang Z (ed) Biofuel production-recent developments and prospects. InTech, Rijeka, pp 125–174

    Google Scholar 

  88. Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22:634–647. doi:10.1016/j.copbio.2011.01.011

    Article  CAS  Google Scholar 

  89. Papoutsakis ET (2008) Engineering solventogenic clostridia. Curr Opin Biotechnol 19:420–429. doi:10.1016/j.copbio.2008.08.003

    Article  CAS  Google Scholar 

  90. Köpke M, Held C, Hujer S et al (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci U S A 107:13087–13092. doi:10.1073/pnas.1004716107

    Article  Google Scholar 

  91. Koepke M, Liew FM (2011) Recombinant microorganism and methods of production thereof. US Patent 20110256600

    Google Scholar 

  92. Koepke M, Simpson S, Liew FM, Chen W (2012) Fermentation process for producing isopropanol using a recombinant microorganism. US Patent 20120252083

    Google Scholar 

  93. Mueller A, Koepke M, Nagaraju S (2013) Recombinant microorganisms and uses therefor. US Patent 20130330809

    Google Scholar 

  94. Tirado-Acevedo O (2010) Production of bioethanol from synthesis gas using Clostridium ljungdahlii. Ph.D. thesis, North Carolina State University.

    Google Scholar 

  95. Hermann M, Fayolle F, Marchal R et al (1985) Isolation and characterization of butanol-resistant mutants of Clostridium acetobutylicum. Appl Environ Microbiol 50:1238–1243

    CAS  Google Scholar 

  96. Zhang Y, Grosse-Honebrink A, Minton NP (2015) A universal mariner transposon system for forward genetic studies in the genus Clostridium. PLoS One 10, e0122411. doi:10.1371/journal.pone.0122411

    Article  CAS  Google Scholar 

  97. Blouzard J-C, Valette O, Tardif C, de Philip P (2010) Random mutagenesis of Clostridium cellulolyticum by using a Tn1545 derivative. Appl Environ Microbiol 76:4546–4549. doi:10.1128/AEM.02417-09

    Article  CAS  Google Scholar 

  98. Tracy BP, Jones SW, Papoutsakis ET (2011) Inactivation of σE and σG in Clostridium acetobutylicum illuminates their roles in clostridial-cell-form biogenesis, granulose synthesis, solventogenesis, and spore morphogenesis. J Bacteriol 193:1414–1426. doi:10.1128/JB.01380-10

    Article  CAS  Google Scholar 

  99. Hillmann F, Fischer R-J, Saint-Prix F et al (2008) PerR acts as a switch for oxygen tolerance in the strict anaerobe Clostridium acetobutylicum. Mol Microbiol 68:848–860. doi:10.1111/j.1365-2958.2008.06192.x

    Article  CAS  Google Scholar 

  100. Cooksley CM, Zhang Y, Wang H et al (2012) Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Metab Eng 14:630–641. doi:10.1016/j.ymben.2012.09.001

    Article  CAS  Google Scholar 

  101. Desai RP, Papoutsakis ET (1999) Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Appl Environ Microbiol 65:936–945

    CAS  Google Scholar 

  102. Green EM, Boynton ZL, Harris LM et al (1996) Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology 142:2079–2086. doi:10.1099/13500872-142-8-2079

    Article  CAS  Google Scholar 

  103. Papoutsakis ET, Al-Hinai MA, Jones SW et al (2012) Recombinant clostridia that fix CO2 and CO and uses thereof. US Patent 20120064587

    Google Scholar 

  104. Argyros DA, Tripathi SA, Barrett TF et al (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77:8288–8294. doi:10.1128/AEM.00646-11

    Article  CAS  Google Scholar 

  105. Tripathi SA, Olson DG, Argyros DA et al (2010) Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 76:6591–6599. doi:10.1128/AEM.01484-10

    Article  CAS  Google Scholar 

  106. Li Y, Tschaplinski TJ, Engle NL et al (2012) Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations. Biotechnol Biofuels 5:2. doi:10.1186/1754-6834-5-2

    Article  CAS  Google Scholar 

  107. Girbal L, Mortier-barrière I, Rouanet C et al (2003) Development of a sensitive gene expression reporter system and an inducible promoter-repressor system for Clostridium acetobutylicum. Appl Environ Microbiol 69:4985–4988. doi:10.1128/AEM.69.8.4985

    Article  CAS  Google Scholar 

  108. Heap JT, Pennington OJ, Cartman ST et al (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 70:452–464. doi:10.1016/j.mimet.2007.05.021

    Article  CAS  Google Scholar 

  109. Jennert KC, Tardif C, Young DI, Young M (2000) Gene transfer to Clostridium cellulolyticum ATCC 35319. Microbiology 146(Pt 12):3071–3080

    Article  CAS  Google Scholar 

  110. Mermelstein L, Welker N (1992) Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Bio/Technology 10:190–195

    Article  CAS  Google Scholar 

  111. Mermelstein LD, Papoutsakis ET (1993) In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 59:1077–1081

    CAS  Google Scholar 

  112. Williams DR, Young DI, Young M (1990) Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum. J Gen Microbiol 136:819–826. doi:10.1099/00221287-136-5-819

    Article  CAS  Google Scholar 

  113. Heap JT, Pennington OJ, Cartman ST, Minton NP (2009) A modular system for Clostridium shuttle plasmids. J Microbiol Methods 78:79–85. doi:10.1016/j.mimet.2009.05.004

    Article  CAS  Google Scholar 

  114. Al-Hinai MA, Fast AG, Papoutsakis ET (2012) Novel system for efficient isolation of Clostridium double-crossover allelic exchange mutants enabling markerless chromosomal gene deletions and DNA integration. Appl Environ Microbiol 78:8112–8121. doi:10.1128/AEM.02214-12

    Article  CAS  Google Scholar 

  115. Cartman ST, Kelly ML, Heeg D et al (2012) Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production. Appl Environ Microbiol 78:4683–4690. doi:10.1128/AEM.00249-12

    Article  CAS  Google Scholar 

  116. Heap JT, Ehsaan M, Cooksley CM et al (2012) Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. Nucleic Acids Res 1–10. doi:10.1093/nar/gkr1321

    Google Scholar 

  117. Soucaille P, Figge R, Croux C (2008) Process for chromosomal integration and DNA sequence replacement in clostridia. WO/2008/040387

    Google Scholar 

  118. Nariya H, Miyata S, Suzuki M et al (2011) Development and application of a method for counterselectable in-frame deletion in Clostridium perfringens. Appl Environ Microbiol 77:1375–1382. doi:10.1128/AEM.01572-10

    Article  CAS  Google Scholar 

  119. Zhang N, Shao L, Jiang Y et al (2015) I-SceI-mediated scarless gene modification via allelic exchange in Clostridium. J Microbiol Methods 108:49–60. doi:10.1016/j.mimet.2014.11.004

    Article  CAS  Google Scholar 

  120. Wang Y, Zhang Z-T, Seo S-O et al (2015) Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. J Biotechnol 1–5. doi:10.1016/j.jbiotec.2015.02.005

    Google Scholar 

  121. Xu T, Li Y, Shi Z et al (2015) Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase. Appl Environ Microbiol AEM.00873–15. doi:10.1128/AEM.00873-15

    Google Scholar 

  122. Heap JT, Kuehne SA, Ehsaan M et al (2010) The ClosTron: mutagenesis in Clostridium refined and streamlined. J Microbiol Methods 80:49–55. doi:10.1016/j.mimet.2009.10.018

    Article  CAS  Google Scholar 

  123. Shao L, Hu S, Yang Y et al (2007) Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum. Cell Res 17:963–965. doi:10.1038/cr.2007.91

    Article  CAS  Google Scholar 

  124. Zhang J, Liu Y-J, Cui G-Z, Cui Q (2015) A novel arabinose-inducible genetic operation system developed for Clostridium cellulolyticum. Biotechnol Biofuels 8:36. doi:10.1186/s13068-015-0214-2

    Article  CAS  Google Scholar 

  125. Feustel L, Nakotte S, Durre P (2004) Characterization and development of two reporter gene systems for Clostridium acetobutylicum. Appl Environ Microbiol 70:798–803. doi:10.1128/AEM.70.2.798-803.2004

    Article  CAS  Google Scholar 

  126. Tummala SB, Welker NE, Papoutsakis ET (1999) Development and characterization of a gene expression reporter system for Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 65:3793–3799

    CAS  Google Scholar 

  127. Matsushita C, Matsushita O, Koyama M, Okabe A (1994) A Clostridium perfringens vector for the selection of promoters. Plasmid 31:317–319

    Article  CAS  Google Scholar 

  128. Steffen C, Matzura H (1989) Nucleotide sequence analysis and expression studies of a chloramphenicol-acetyltransferase-coding gene from Clostridium perfringens. Gene 75:349–354

    Article  CAS  Google Scholar 

  129. Dong H, Tao W, Zhang Y, Li Y (2012) Development of an anhydrotetracycline-inducible gene expression system for solvent-producing Clostridium acetobutylicum: a useful tool for strain engineering. Metab Eng 14:59–67. doi:10.1016/j.ymben.2011.10.004

    Article  CAS  Google Scholar 

  130. Hartman AH, Liu H, Melville SB (2011) Construction and characterization of a lactose-inducible promoter system for controlled gene expression in Clostridium perfringens. Appl Environ Microbiol 77:471–478. doi:10.1128/AEM.01536-10

    Article  CAS  Google Scholar 

  131. Leang C, Ueki T, Nevin KP, Lovley DR (2013) A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen. Appl Environ Microbiol 79:1102–1109. doi:10.1128/AEM.02891-12

    Article  CAS  Google Scholar 

  132. Ueki T, Nevin KP, Woodard TL, Lovley DR (2014) Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii. MBio 5:e01636–14–e01636–14. doi:10.1128/mBio.01636-14

  133. Simpson SD, Koepke M, Liew F, Chen WY (2013) Recombinant microorganisms and uses therefor. US Patent 20130224838

    Google Scholar 

  134. Simpson SD, Koepke M, Liew F (2011) Recombinant microorganisms and methods of use thereof. Recombinant microorganisms and methods of use thereof. US Patent 20110256600

    Google Scholar 

  135. Köpke M, Gerth ML, Maddock DJ et al (2014) Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase. Appl Environ Microbiol AEM.00301–14. doi:10.1128/AEM.00301-14

    Google Scholar 

  136. Koepke M, Al-Sinawi B, Jensen RO, Mueller PM, Hill RE (2014) Microorganisms and methods for the production of ketones. US Patent 20150152445

    Google Scholar 

  137. Koepke M, Nagaraju S, Chen W (2013) Recombinant microorganisms and methods of use thereof. US Patent 20150072395

    Google Scholar 

  138. Banerjee A, Leang C, Ueki T et al (2014) Lactose-inducible system for metabolic engineering of Clostridium ljungdahlii. Appl Environ Microbiol 80:2410–2416. doi:10.1128/AEM.03666-13

    Article  CAS  Google Scholar 

  139. O’Brien EJ, Monk JM, Palsson BO (2015) Using genome-scale models to predict biological capabilities. Cell 161:971–987. doi:10.1016/j.cell.2015.05.019

    Article  CAS  Google Scholar 

  140. Nagarajan H, Sahin M, Nogales J et al (2013) Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii. Microb Cell Fact 12:118. doi:10.1186/1475-2859-12-118

    Article  CAS  Google Scholar 

  141. Islam MA, Zengler K, Edwards EA et al (2015) Investigating Moorella thermoacetica metabolism with a genome-scale constraint-nased metabolic model. Integr Biol. doi:10.1039/C5IB00095E

    Google Scholar 

  142. Marcellin E, Behrendorff JB, Nagaraju S, DeTissera S, Segovia S, Palfreyman R, Daniell J, Licona-Cassani C, Quek L, Speight R, Hodson MP, Simpson SD, Mitchell WP, Köpke M, Nielsen LK (2016) Low carbon fuels and commodity chemicals from waste gases – systematic approach to understand energy metabolism in a model acetogen. Green Chem. doi:10.1039/C5GC02708J

    Google Scholar 

  143. Lee J, Yun H, Feist AM et al (2008) Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl Microbiol Biotechnol 80:849–862. doi:10.1007/s00253-008-1654-4

    Article  CAS  Google Scholar 

  144. Milne CB, Eddy JA, Raju R et al (2011) Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052. BMC Syst Biol 5:130. doi:10.1186/1752-0509-5-130

    Article  CAS  Google Scholar 

  145. Roberts SB, Gowen CM, Brooks JP, Fong SS (2010) Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production. BMC Syst Biol 4:31. doi:10.1186/1752-0509-4-31

    Article  CAS  Google Scholar 

  146. Salimi F, Zhuang K, Mahadevan R (2010) Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. Biotechnol J 5:726–738. doi:10.1002/biot.201000159

    Article  CAS  Google Scholar 

  147. Senger RS, Papoutsakis ET (2008) Genome-scale model for Clostridium acetobutylicum: part I. Metabolic network resolution and analysis. Biotechnol Bioeng 101:1036–1052. doi:10.1002/bit.22010

    Article  CAS  Google Scholar 

  148. Chen J, Gomez J, Höffner K et al (2015) Metabolic modeling of synthesis gas fermentation in bubble column reactors. Biotechnol Biofuels 8:89. doi:10.1186/s13068-015-0272-5

    Article  CAS  Google Scholar 

  149. Micallef L, Rodgers P (2014) euler APE: drawing area-proportional 3-Venn diagrams using ellipses. PLoS One. doi:10.1371/journal.pone.0101717

    Google Scholar 

  150. Munasinghe PC, Khanal SK (2010) Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations. Biotechnol Prog 26:1616–1621. doi:10.1002/btpr.473

    Article  CAS  Google Scholar 

  151. Yasin M, Jeong Y, Park S et al (2015) Microbial synthesis gas utilization and ways to resolve kinetic and mass-transfer limitations. Bioresour Technol 177:361–374. doi:10.1016/j.biortech.2014.11.022

    Article  CAS  Google Scholar 

  152. Bredwell MD, Srivastava P, Worden RM (1999) Reactor design issues for synthesis-gas fermentations. Biotechnol Prog 15:834–844. doi:10.1021/bp990108m

    Article  CAS  Google Scholar 

  153. Datar RP, Shenkman RM, Cateni BG et al (2004) Fermentation of biomass-generated producer gas to ethanol. Biotechnol Bioeng 86:587–594. doi:10.1002/bit.20071

    Article  CAS  Google Scholar 

  154. Orgill JJ, Atiyeh HK, Devarapalli M et al (2013) A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors. Bioresour Technol 133:340–346

    Article  CAS  Google Scholar 

  155. Vane LM (2008) Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuels Bioprod Biorefin 2:553–588. doi:10.1002/bbb.108

    Article  CAS  Google Scholar 

  156. Abubackar HN, Veiga MC, Kennes C (2012) Biological conversion of carbon monoxide to ethanol: effect of pH, gas pressure, reducing agent and yeast extract. Bioresour Technol 114:518–522. doi:10.1016/j.biortech.2012.03.027

    Article  CAS  Google Scholar 

  157. Kundiyana DK, Wilkins MR, Maddipati P, Huhnke RL (2011) Effect of temperature, pH and buffer presence on ethanol production from synthesis gas by “Clostridium ragsdalei”. Bioresour Technol 102:5794–5799. doi:10.1016/j.biortech.2011.02.032

    Article  CAS  Google Scholar 

  158. Abubackar HN, Veiga MC, Kennes C (2015) Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid. Bioresour Technol. doi:10.1016/j.biortech.2015.02.113

    Google Scholar 

  159. Gaddy JL, Arora DK, Basu R et al (2012) Methods for increasing the production of ethanol from microbial fermentation. US Patent 20120122173

    Google Scholar 

  160. Kantzow C, Mayer A, Weuster-Botz D (2015) Continuous gas fermentation by Acetobacterium woodii in a submerged membrane reactor with full cell retention. J Biotechnol. doi:10.1016/j.jbiotec.2015.07.020

    Google Scholar 

  161. Simpson SD, Köpke M, Smart KF et al (2014) System and method for controlling metabolite production in a microbial fermentation. US Patent 20140273115

    Google Scholar 

  162. Gaddy JL (1997) Clostridium strain which produces acetic acid from waste gases. US Patent 5593886

    Google Scholar 

  163. Gaddy JL (1998) Biological production of acetic acid from waste gases with Clostridium ljungdahlii. US Patent 5807722

    Google Scholar 

  164. Gaddy JL, Clausen WC (1992) Clostridium ljungdahlii, an anaerobic ethanol and acetate producing microorganism. US Patent 5173429

    Google Scholar 

  165. INEOS Bio (2013) INEOS Bio produces cellulosic ethanol at commercial scale. http://www.ethanolproducer.com/articles/10096/ineos-declares-commercial-cellulosic-ethanol-online-in-florida. Accessed 25 Aug 2015

  166. Florida Department of Environmental Protection (2014) Technical evaluation and preliminary determination. http://www.ascension-publishing.com/INEOS-FIX-090514.pdf. Accessed 25 Aug 2015

  167. Coskata Inc. (2011) Coskata, Inc.’s semi-commercial facility demonstrates two years of successful operation. http://www.coskata.com/company/media.asp?story=8377ADFF-9DFE-4901-876B-B39FD96B213F. Accessed 24 July 2015

  168. Coskata Inc. (2011) Form S-1 Coskata, Inc. http://www.sec.gov/Archives/edgar/data/1536893/000119312511343587/d267854ds1.htm. Accessed 25 Aug 2015

  169. Heijstra B, Kern E, Koepke M et al (2012) Novel bacteria and methods of use thereof. WO/2012/015317

    Google Scholar 

  170. LanzaTech (2013a) Beijing Shougang LanzaTech New Energy Science & Technology Company Earns Roundtable on Sustainable Biomaterials (RSB) certification. http://www.lanzatech.com/beijing-shougang-lanzatech-new-energy-science-technology-company-earns-roundtable-on-sustainable-biomaterials-rsb-certification/. Accessed 26 July 2015

  171. LanzaTech (2015a) China Steel Corporation approves investment in LanzaTech commercial project. http://www.lanzatech.com/china-steel-corporation-approves-investment-lanzatech-commercial-project/. Accessed 26 July 2015

  172. LanzaTech (2015b) ArcelorMittal, LanzaTech and Primetals Technologies announce partnership to construct breakthrough €87 biofuel production facility. http://www.lanzatech.com/arcelormittal-lanzatech-primetals-technologies-announce-partnership-construct-breakthrough-e87m-biofuel-production-facility/. Accessed 26 July 2015

  173. LanzaTech (2013b) Evonik and LanzaTech working on bio-processed precursors for specialty plastics. http://www.lanzatech.com/evonik-and-lanzatech-working-on-bio-processed-precursors-for-specialty-plastics/. Accessed 26 July 2015

  174. LanzaTech (2013c) LanzaTech Partners with Korea’s SK Innovation on development of process technology for Green Chemicals. LanzaTech Partners with Korea’s SK Innovation on development of process technology for Green Chemicals. Accessed 26 July 2015

    Google Scholar 

  175. LanzaTech (2014) Virgin Atlantic announces HSBC to join unique partnership in development of low carbon fuel. http://www.lanzatech.com/virgin-atlantic-announces-hsbc-join-unique-partnership-development-low-carbon-fuel/. Accessed 26 July 2015

  176. Kircher M (2015) Sustainability of biofuels and renewable chemicals production from biomass. Curr Opin Chem Biol 29:26–31. doi:10.1016/j.cbpa.2015.07.010

    Article  CAS  Google Scholar 

  177. California Energy Commission (2015) Low carbon fuel standard. http://www.energy.ca.gov/low_carbon_fuel_standard/. Accessed 13 Aug 2015

  178. The European Parliament and the Council of the European Union (2009) Directive 2009/30/EC of the European Parliament and of the Council of 23 April 2009 amending Directive 98/70/EC as regards the specification of petrol, diesel and gas-oil and introducing a mechanism to monitor and reduce greenhouse gas emissions and amend. Off J Eur Union L 140: 88–113

    Google Scholar 

  179. Ou X, Zhang X, Zhang Q, Zhang X (2013) Life-cycle analysis of energy use and greenhouse gas emissions of gas-to-liquid fuel pathway from steel mill off-gas in China by the LanzaTech process. Front Energy 7:263–270. doi:10.1007/s11708-013-0263-9

    Article  Google Scholar 

  180. Fleischanderl A, Plattner T, Puschitz P et al (2015) The circular economy: carbon recycling and the steel industry. http://www.metec-estad2015.com/papers2015final/P292.pdf. Accessed 25 Aug 2015

  181. GREET (2013) The greenhouse gases, regulated emissions, and energy use in transportation model. https://greet.es.anl.gov/. Accessed 25 Aug 2015

  182. Liu B, Wang F, Zhang B, Bi J (2013) Energy balance and GHG emissions of cassava-based fuel ethanol using different planting modes in China. Energy Policy 56:210–220. doi:10.1016/j.enpol.2012.12.052

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the following investors in LanzaTech’s technology: Sir Stephen Tindall, Khosla Ventures, Qiming Venture Partners, Softbank China, the Malaysian Life Sciences Capital Fund, Mitsui, Primetals, CICC Growth Capital Fund I, L.P., and the New Zealand Superannuation Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Séan Dennis Simpson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Daniell, J., Nagaraju, S., Burton, F., Köpke, M., Simpson, S.D. (2016). Low-Carbon Fuel and Chemical Production by Anaerobic Gas Fermentation. In: Hatti-Kaul, R., Mamo, G., Mattiasson, B. (eds) Anaerobes in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 156. Springer, Cham. https://doi.org/10.1007/10_2015_5005

Download citation

Publish with us

Policies and ethics