Microalgae Biotechnology pp 37-58

Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 153) | Cite as

Microalgae as a Source of Lutein: Chemistry, Biosynthesis, and Carotenogenesis

Abstract

Microalgae represent a sustainable source of natural products, and over 15,000 novel compounds originated from algal biomass have been identified. This chapter focuses on algae-derived lutein, a group of high-value products. Lutein belongs to carotenoids which have extensive applications in feed, food, nutraceutical, and pharmaceutical industries. The production of carotenoids has been one of the most successful activities in microalgal biotechnology. This chapter gives a mini review of microalgae-based lutein, where emphasis is placed on the biosynthetic pathway and the regulation of carotenogenesis.

Graphical Abstract

Keywords

Biosynthesis Carotenogenesis Health effects Mass cultivation 

References

  1. 1.
    Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167CrossRefGoogle Scholar
  2. 2.
    Zhang J, Sun Z, Sun P, Chen T, Chen F (2014) Microalgal carotenoids: beneficial effects and potential in human health. Food Funct 5:413–425CrossRefGoogle Scholar
  3. 3.
    Wang C, Kim JH, Kim SW (2014) Synthetic biology and metabolic engineering for marine carotenoids: new opportunities and future prospects. Mar Drugs 12:4810–4832CrossRefGoogle Scholar
  4. 4.
    Khachik F, de Moura FF, Zhao DY, Aebischer CP, Bernstein PS (2002) Transformations of selected carotenoids in plasma, liver, and ocular tissues of humans and in nonprimate animal models. Invest Ophthalmol Vis Sci 43:3383–3392Google Scholar
  5. 5.
    Shi XM, Jiang Y, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 18:723–727CrossRefGoogle Scholar
  6. 6.
    Shi X, Zhang X, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Technol 27:312–318CrossRefGoogle Scholar
  7. 7.
    González S, Astner S, An W, Goukassian D, Pathak MA (2003) Dietary lutein/zeaxanthin decreases ultraviolet B-induced epidermal hyperproliferation and acute inflammation in hairless mice. J Invest Dermatol 121:399–405CrossRefGoogle Scholar
  8. 8.
    Sánchez JF, Fernández JM, Acién FG, Rueda A, Pérez-Parra J (2008) Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem 43:398–405CrossRefGoogle Scholar
  9. 9.
    Graziani G, Schiavo S, Nicolai MA, Buono S, Fogliano V et al (2013) Microalgae as human food: chemical and nutritional characteristics of the thermo-acidophilic microalga Galdieria sulphuraria. Food Funct 4:144–152CrossRefGoogle Scholar
  10. 10.
    Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists. Rockville, MD, pp 1250–1317Google Scholar
  11. 11.
    Liaaen-Jensen S (2004) Basic carotenoid chemistry. In: Mayne ST, Krinsky NI, Sies H (eds) Carotenoids in health and disease. Marcel Dekker Press, New York, pp 1–30CrossRefGoogle Scholar
  12. 12.
    Britton G (1995) Structure and properties of carotenoids in relation to function. FASEB 9:1551–1558Google Scholar
  13. 13.
    Woodall AA, Lee SW, Weesie RJ, Jackson MJ, Britton G (1997) Oxidation of carotenoids by free radicals: relationship between structure and reactivity. Acta Bioch Bioph 1336:33–42CrossRefGoogle Scholar
  14. 14.
    Rodrigues E, Mariutti LR, Mercadante AZ (2012) Scavenging capacity of marine carotenoids against reactive oxygen and nitrogen species in a membrane-mimicking system. Mar Drugs 10:1784–1798CrossRefGoogle Scholar
  15. 15.
    Chopra M, Willson RL, Thurnham DI (1993) Free radical scavenging of lutein in vitro. Ann NY Acad Ssc 691:246–249CrossRefGoogle Scholar
  16. 16.
    Chopra M, Thurnham DI (1994) Effect of lutein on oxidation of low-density lipoprotein (LDL) in vitro. P Nutr Soc 53:1993 #18AGoogle Scholar
  17. 17.
    Dwyer JH, Navab M, Dwyer KM, Hassan K, Sun P, Shircore A et al (2001) Oxygenated carotenoid lutein and progression of early atherosclerosis: the Los Angeles atherosclerosis study. Circulation 103:2922–2927CrossRefGoogle Scholar
  18. 18.
    Seddon JM, Ajani UA, Sperduto RD, Hiller R, Blair N, Burton TC et al (1994) Dietary carotenoids, vitamins A, C, and E, and advanced age-related macular degeneration. Eye Disease Case-Control Study Group. JAMA 272:1413–1420CrossRefGoogle Scholar
  19. 19.
    Shao HB, Chu LY, Lu ZH, Kang CM (2011) Primary antioxidant free radical scavenging and redox signaling pathway in higher plant cells. Int J Biol Sci 4:8–14Google Scholar
  20. 20.
    Bron AJ, Vrensen GF, Koretz J, Maraini G, Harding JJ (2000) The ageing lens. Ophthalmologica 214:86–104CrossRefGoogle Scholar
  21. 21.
    Ahmed N (2005) Advanced glycation endproducts: role in pathology of diabetic complications. Diabetes Res Clin Pract 67:3–21CrossRefGoogle Scholar
  22. 22.
    Sun Z, Peng XF, Liu J, Fan KW, Wang M, Chen F (2010) Inhibitory effects of microalgal extracts on the formation of advanced glycation endproducts (AGEs). Food Chem 120:261–267CrossRefGoogle Scholar
  23. 23.
    Sun Z, Liu J, Zeng X, Huangfu J, Jiang Y, Wang M, Chen F (2011) Protective actions of microalgae against endogenous and exogenous advanced glycation endproducts (AGEs) in human retinal pigment epithelial cells. Food Funct 2:251–258CrossRefGoogle Scholar
  24. 24.
    Bian Q, Gao S, Zhou J, Qin J, Taylor A (2012) Lutein and zeaxanthin supplementation reduces photooxidative damage and modulates the expression of inflammation-related genes in retinal pigment epithelial cells. Free Radic Biol Med 53:1298–1307CrossRefGoogle Scholar
  25. 25.
    Xu XR, Zou ZY, Xiao X, Huang YM, Wang X (2013) Effects of lutein supplement on serum inflammatory cytokines, ApoE and lipid profiles in early atherosclerosis population. J Atheroscler Thromb 20:170–177CrossRefGoogle Scholar
  26. 26.
    Kim JE, Leite JO, DeOgburn R, Smyth JA, Clark RM, Fernandez ML (2011) A lutein-enriched diet prevents cholesterol accumulation and decreases oxidized LDL and inflammatory cytokines in the aorta of guinea pigs. J Nutr 141:1458–1463CrossRefGoogle Scholar
  27. 27.
    Sasaki M, Ozawa Y, Kurihara T, Noda K, Imamura Y (2009) Neuroprotective effect of an antioxidant, lutein, during retinal inflammation. Invest Ophthalmol Vis Sci 50:1433–1439CrossRefGoogle Scholar
  28. 28.
    Li SY, Fung FK, Fu ZJ, Wong D, Chan HH, Lo AC (2012) Anti-inflammatory effects of lutein in retinal ischemic/hypoxic injury: in vivo and in vitro studies. Invest Ophthalmol Vis Sci 53:5976–5984CrossRefGoogle Scholar
  29. 29.
    González S, Astner S, An W, Goukassian D, Pathak MA (2003) Dietary lutein/zeaxanthin decreases ultraviolet B-induced epidermal hyperproliferation and acute inflammation in hairless mice. J Invest Dermatol 121:399–405CrossRefGoogle Scholar
  30. 30.
    Lee EH, Faulhaber D, Hanson KM, Ding W, Peters S, Kodali S et al (2004) Dietary lutein reduces ultraviolet radiation-induced inflammation and immunosuppression. J Invest Dermatol 122:510–517CrossRefGoogle Scholar
  31. 31.
    Jin XH, Ohgami K, Shiratori K, Suzuki Y, Hirano T, Koyama Y et al (2006) Inhibitory effects of lutein on endotoxin-induced uveitis in Lewis rats. Invest Ophthalmol Vis Sci 47:2562–2568CrossRefGoogle Scholar
  32. 32.
    Del Campo JA, García-González M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174CrossRefGoogle Scholar
  33. 33.
    Tsao R, Yang R, Young JC, Zhu H, Manolis T (2004) Separation of geometric isomers of native lutein diesters in marigold (Tagetes erecta L.) by high-performance liquid chromatography mass spectrometry. J Chromatogr A 1045:65–70CrossRefGoogle Scholar
  34. 34.
    Theriault RJ (1965) Heterotrophic growth and production of xanthophylls by Chlorella pyrenoidosa. Appl Microbiol 13:402–416Google Scholar
  35. 35.
    Liu J, Sun Z, Gerken H, Liu Z, Jiang Y, Chen F (2014) Chlorella zofingiensis as alternative microalgal producer of astaxanthin: biology and industrial potential. Mar Drugs 12:3487–3515CrossRefGoogle Scholar
  36. 36.
    García-González M, Moreno J, Manzano JC, Florencio FJ, Guerrero MG (2004) Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor. J Biotechnol 115:81–90CrossRefGoogle Scholar
  37. 37.
    León R, Vila M, Hernánz D, Vílchez C (2005) Production of phytoene by herbicide-Treated microalgae Dunaliella bardawil in two-phase systems. Biotechnol Bioeng 92:695–701CrossRefGoogle Scholar
  38. 38.
    Borowitzka M, Borowitzka L (1988) Dunaliella. In: Borowitzka M, Borowitzka L (eds) Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp 27–58Google Scholar
  39. 39.
    Ben-Amotz A (1995) New mode of Dunaliella biotechnology: two-phase growth for β-carotene production. J Appl Phycol 7:65–68CrossRefGoogle Scholar
  40. 40.
    Ogbonna JC, Tanaka H (2000) Light requirement and photosynthetic cell cultivation-developments of processes for efficient light utilization in photobioreactors. J Appl Phycol 12:207–218CrossRefGoogle Scholar
  41. 41.
    Akimoto M, Yamada H, Ohtaguchi K, Koide K (1997) Photoautotrophic cultivation of the green alga Chlamydomonas reinhardtii as a method for carbon dioxide fixation and α-linolenic acid production. J Am Oil Chem Soc 74:181–183CrossRefGoogle Scholar
  42. 42.
    Orosa M, Torres E, Fidalgo P, Abald J (2000) Production and analysis of secondary carotenoids in green algae. J Appl Phycol 12:553–556CrossRefGoogle Scholar
  43. 43.
    Kaplan D, Richmond AE, Dubinsky Z, Aaronson S (1986) Algal nutrition. In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press, Boca Raton, pp 147–199Google Scholar
  44. 44.
    Chen F (1996) High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol 14:421–426CrossRefGoogle Scholar
  45. 45.
    Doucha J, Lívanský K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol 18:811–826CrossRefGoogle Scholar
  46. 46.
    de Swaaf ME, Pronk JT, Sijtsma L (2003) High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81:666–672CrossRefGoogle Scholar
  47. 47.
    Ip PF, Chen F (2005) Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem 40:733–738CrossRefGoogle Scholar
  48. 48.
    Ip PF, Chen F (2005) Peroxynitrite and nitryl chloride enhance astaxanthin production by the green microalga Chlorella zofingiensis in heterotrophic culture. Proc Biochem 40:3595–3599CrossRefGoogle Scholar
  49. 49.
    Ip PF, Chen F (2005) Employment of reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process Biochem 40:3491–3496CrossRefGoogle Scholar
  50. 50.
    Kobayashi M, Kurimura Y, Tsuji Y (1997) Light-independent, astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotechnol Lett 19:507–509CrossRefGoogle Scholar
  51. 51.
    Wu ZY, Shi XM (2006) Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model. Lett Appl Microbiol 44:13–18CrossRefGoogle Scholar
  52. 52.
    Park JC, Choi SP, Hong ME, Sim SJ (2014) Enhanced astaxanthin production from microalga, Haematococcus pluvialis by two stage perfusion culture with stepwise light irradiation. Bioprocess Biosyst Eng 37:2039–2047CrossRefGoogle Scholar
  53. 53.
    Zhang W, Wang J, Wang J, Liu T (2014) Attached cultivation of Haematococcus pluvialis for astaxanthin production. Bioresour Technol 158:329–335CrossRefGoogle Scholar
  54. 54.
    Bumbak F, Cook S, Zachleder V, Hauser S, Kovar K (2011) Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Appl Microbiol Biotechnol 91:31–46CrossRefGoogle Scholar
  55. 55.
    Yang C, Hua Q, Shimizu K (2000) Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng J 6:87–102CrossRefGoogle Scholar
  56. 56.
    Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36CrossRefGoogle Scholar
  57. 57.
    Barclay WR, Meager KM, Abril JR (1994) Heterotrophic production of long-chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol 6:123–129CrossRefGoogle Scholar
  58. 58.
    Sandmann G (2002) Molecular evolution of carotenoid biosynthesis from bacteria to plants. Physiol Plant 116:431–440CrossRefGoogle Scholar
  59. 59.
    Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574CrossRefGoogle Scholar
  60. 60.
    Fraser PD, Schuch W, Bramley PM (2000) Phytoene synthase from tomato (Lycopersicon esculentum) chloroplasts-partial purification and biochemical properties. Planta 211:361–369CrossRefGoogle Scholar
  61. 61.
    Dogbo O, Camara B (1987) Purification of isopentenyl pyrophosphate isomerase and geranylgeranyl pyrophosphate synthase from Capsicum chromoplasts by affinity chromatography. Biochemica Biophysica Acta 920:140–148CrossRefGoogle Scholar
  62. 62.
    Ladygin VG (2000) Biosynthesis of carotenoids in the chloroplasts of algae and higher plants. Russ J Plant Physl 47:796–814CrossRefGoogle Scholar
  63. 63.
    Fraser PD, Truesdale MR, Bird CR, Schuch W, Bramley PM (1994) Carotenoid biosynthesis during tomato fruit development. Plant Physiol 105:405–413Google Scholar
  64. 64.
    Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401–412CrossRefGoogle Scholar
  65. 65.
    Moehs CP, Tian L, Osteryoung KW, DellaPenna D (2001) Analysis of carotenoids biosynthetic gene expression during marigold petal development. Plant Mol Biol 45:281–293CrossRefGoogle Scholar
  66. 66.
    Sandmann G (2001) Carotenoid biosynthesis and biotechnological application. Arch Biochem Biophys 385:4–12CrossRefGoogle Scholar
  67. 67.
    Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265CrossRefGoogle Scholar
  68. 68.
    Cunningham FX Jr, Pogson B, Sun Z, McDonald KA, DellaPenna D, Gantt E (1996) Functional analysis of the B and E lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell 8:1613–1626Google Scholar
  69. 69.
    Jin E, Polle JEW, Lee HK, Hyun SM, Chang M (2003) Xanthophylls in microalgae: from biosynthesis to biotechnological mass production and application. J Microbiol Biotechnol 13:165–174Google Scholar
  70. 70.
    Adersson SG, Karlberg O, Canback B, Kurland CG (2003) On the origin of mitochondria: genomis perspective. Philos Trans R Soc Lond B Biol Sci 358:165–177CrossRefGoogle Scholar
  71. 71.
    Woodson JD, Chory J (2008) Coordination of gene expression between organellar and nuclear genomes. Nat Rev Genet 9:383–395CrossRefGoogle Scholar
  72. 72.
    Pesaresi P, Schneider A, Kleine T, Leiseter D (2007) Interorganellar communication. Curr Opin Plant Biol 10:600–606CrossRefGoogle Scholar
  73. 73.
    Johanningmeier U, Howell SH (1984) Regulation of lightharvesting chlorophyll-binding protein mRNA accumulation in Chlamydomonas reinhardtii: possible involvement of chlorophyll synthesis precursors. J Biol Chem 259:13541–13549Google Scholar
  74. 74.
    Oster U, Brunner H, Rudiger W (1996) The greening process in cress seedlings. V. Possible interference of chlorophyll precursors, accumulated after thujaplicin treatment, with light-regulated expression of Lhc genes. J Photochem Photobiol 36:255–261CrossRefGoogle Scholar
  75. 75.
    Zavgorodnyaya A, Papenbrock J, Grimm B (1997) Yeast-aminolevulinate synthase provides additional chlorophyll precursor n transgenic tobacco. Plant J 12:169–178CrossRefGoogle Scholar
  76. 76.
    Walker CJ, Willows RD (1997) Mechanism and regulation of Mg-chelatase. Biochem J 327:321–333CrossRefGoogle Scholar
  77. 77.
    Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci 98:2053–2058CrossRefGoogle Scholar
  78. 78.
    Karger GA, Reid JD, Hunter CN (2001) Characterization of the binding of deuteroporphyrin IX to the magnesium chelatase H subunit and spectroscopic properties of the complex. Biochemistry 40:9291–9299CrossRefGoogle Scholar
  79. 79.
    Moller SG, Kunkel T, Chua NH (2001) A plastidic ABC protein involved in intercompartmental communication of light signaling. Genes Dev 15:90–103CrossRefGoogle Scholar
  80. 80.
    Surpin M, Larkin RM, Chory J (2002) Signal transduction between the chloroplast and the nucleus. Plant Cell S327–S338Google Scholar
  81. 81.
    Escoubas JM, Lomas M, LaRoche J, Falkowski PG (1995) Light intensity regulation of cab gene transcription is signaled by the redox state of the plastoquinone pool. PNAS 92:10237–10241CrossRefGoogle Scholar
  82. 82.
    Pfannschmidt T, Schütze K, Brost M, Oelmüller R (2001) A novel mechanism of nuclear photosynthesis gene regulation by redox signals from the chloroplast during photosystem stoichiometry adjustment. J Biol Chem 276:36125–36130CrossRefGoogle Scholar
  83. 83.
    Pursiheimo S, Mulo P, Rintamäki E, Aro EM (2001) Coregulation of light-harvesting complex II phosphorylation and Lhcb accumulation in winter rye. Plant J 26:317–327CrossRefGoogle Scholar
  84. 84.
    Bonardi V, Pessaresi P, Becker T, Schieiff E, Wagner R, Pfannschmidt T et al (2005) Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature 437:1179–1182CrossRefGoogle Scholar
  85. 85.
    Rhoads DM, Subbaiah CC (2007) Mitochondrial retrograde regulation in plants. Mitochondrion 7:177–194CrossRefGoogle Scholar
  86. 86.
    Gray GR, Maxwell DP, Villarimo AR, McIntosh L (2004) Mitochondria/nuclear signaling of alternative oxidase expression occurs through distinct pathways involving organic acids and reactive oxygen species. Plant Cell Rep 23:497–503CrossRefGoogle Scholar
  87. 87.
    Matsuo M, Obokata J (2006) Remote control of photosynthetic genes by the mitochondrial respiratory chain. Plant J 47:873–882CrossRefGoogle Scholar
  88. 88.
    Jahnke LS (1999) Massive carotenoid accumulation in Dunaliella bardawil induced by ultraviolet-A radiation. J Photochem Photobiol B 48:68–74CrossRefGoogle Scholar
  89. 89.
    Salguero A, León R, Mariotti A, Morena B, Vega JM, Vílchez C (2005) UV-A mediated induction of carotenoid accumulation in Dunaliella bardawil with retention of cell viability. Appl Mricrobiol Biotechnol 66:506–511CrossRefGoogle Scholar
  90. 90.
    Kobayashi M, Kakizono T, Nagai S (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl Environ Microb 59:867–873Google Scholar
  91. 91.
    Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36CrossRefGoogle Scholar
  92. 92.
    Shaish A, Avron M, Pick U, Ben-Amotz A (1993) Are active oxygen species involved in induction of β-carotene in Dunaliella bardawil? Planta 190:363–368CrossRefGoogle Scholar
  93. 93.
    Steinbrenner J, Linden H (2003) Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Mol Biol 52:343–356CrossRefGoogle Scholar
  94. 94.
    Ramos A, Coesel S, Marques A, Rodrigues M, Baumqartner A, Noronha J et al (2008) Isolation and characterization of a stress-inducible Dunaliella salina Lcy-β gene encoding a functional lycopene β-cyclase. Appl Microbiol Biotechnol 79:819–828CrossRefGoogle Scholar
  95. 95.
    Kiffin R, Bandyopadhyay U, Cuervo AM (2006) Oxidative stress and autophagy. Antioxid Redox Sign 8:152–162CrossRefGoogle Scholar
  96. 96.
    Lei GP, Qiao DR, Bai LH, Xu H, Cao Y (2008) Isolation and characterization of a mitogen activated protein kinase gene in the halotolerant alga Dunaliella salina. J Appl Phycol 20:13–18CrossRefGoogle Scholar
  97. 97.
    Eom H, Lee CG, Jin E (2006) Gene expression profiling analysis in astaxanthin-induced Haematococcus pluvialis using a cDNA microarray. Planta 223:1231–1242CrossRefGoogle Scholar
  98. 98.
    Nedelcu AM (2006) Evidence for p53-like-mediated stress responses in green algae. FEBS Lett 580:3013–3017CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina
  2. 2.College of Basic ScienceTianjin Agricultural UniversityTianjinChina
  3. 3.Runke Bioengineering Co. Ltd.ZhangzhouChina

Personalised recommendations