Photobioreactors in Life Support Systems

  • Ines Wagner
  • Markus Braun
  • Klaus Slenzka
  • Clemens Posten
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 153)

Abstract

Life support systems for long-term space missions or extraterrestrial installations have to fulfill major functions such as purification of water and regeneration of atmosphere as well as the generation of food and energy. For almost 60 years ideas for biological life support systems have been collected and various concepts have been developed and tested. Microalgae as photosynthetic organisms have played a major role in most of these concepts. This review deals with the potentials of using eukaryotic microalgae for life support systems and highlights special requirements and frame conditions for designing space photobioreactors especially regarding illumination and aeration. Mono- and dichromatic illumination based on LEDs is a promising alternative for conventional systems and preliminary results yielded higher photoconversion efficiencies (PCE) for dichromatic red/blue illumination than white illumination. Aeration for microgravity conditions should be realized in a bubble-free manner, for example, via membranes. Finally, a novel photobioreactor concept for space application is introduced being parameterized and tested with the microalga Chlamydomonas reinhardtii. This system has already been tested during two parabolic flight campaigns.

Graphical Abstract

Keywords

Bubble-free membrane aeration Chlamydomonas reinhardtii Energy efficiency Microgravity Mono-/dichromatic illumination Photobioreactor 

Abbreviations

LED

Light-emitting diode

PCE

Photo conversion efficiency

PBR

Photobioreactor

CELSSs

Controlled ecological life support systems

PAR

Photosynthetically active radiation

BDM

Bio dry mass

ModuLES

Modular life support and energy systems

PFD

Photon flux density

PAM

Pulse amplitude modulation

D

Dilution rate

OD

Optical density

PSII

Photosystem II

CTR

Carbon dioxide transfer rate

OTR

Oxygen transfer rate

CUR

Carbon dioxide uptake rate

OPR

Oxygen production rate

µ

Specific growth rate

References

  1. 1.
    Gitelson II, Terskov IA, Kovrov BG, Sidko FY, Lisovsky GM, Okladnikov YN, Belyanin VN, Trubachov IN, Rerberg MS (1976) Life support system with autonomous control employing plant photosynthesis. Acta Astronautica 3: 633–650Google Scholar
  2. 2.
    Mezhevikin VV, Okhonin VA, Bartsev SI, Gitelson JI (1994) Indications and counterindications for applying different versions of closed ecosystems for space and terrestrial problems of life support. Adv Space Res 14(11):11135–11142CrossRefGoogle Scholar
  3. 3.
    Wang GH, Li GB, Li DH, Liu YD, Song LR, Tong GH, Liu XM, Cheng ET (2004) Real-time studies on microalgae under microgravity. Acta Astronaut 55:131–137CrossRefGoogle Scholar
  4. 4.
    Wang G, Liu Y, Li G, Hu C, Zhang D, Li X (2008) A simple closed aquatic ecosystem (CAES) for space. Adv Space Res 41:684–690CrossRefGoogle Scholar
  5. 5.
    Schwartzkopf SH (1992) Design of a controlled ecological life support system. Bioscience 42(7):526–535CrossRefGoogle Scholar
  6. 6.
    Soeder CJ (1986) An historical outline of applied algology. In Richmand A (ed) CRC handbook of microalgal mass culture, pp 25–41Google Scholar
  7. 7.
    Wang G-H, Li G-B, Hu C-X, Liu Y-D, Song L-R, Tong G-H, Liu X-M, Cheng E-T (2004) Performance of a simple closed aquatic ecosystem (CAES) in space. Adv Space Res 34:1455–1460CrossRefGoogle Scholar
  8. 8.
    Turner MH (1989) Building an ecosystem from scratch. Bioscience 39:147–150CrossRefGoogle Scholar
  9. 9.
    Rea G, Esposito D, Damasso M, Serafini A, Margonelli A, Faraloni C, Torzillo G, Zanini A, Bertalan I, Johanningmeier U, Giardi MT (2008) Ionizing radiation impacts photochemical quantum yield and oxygen evolution activity of Photosystem II in photosynthetic microorganisms. Int J Radiat Biol 84(11):867–877CrossRefGoogle Scholar
  10. 10.
    Polyakov Y, Musaev I, Polyakov S (2010) Closed bioregenerative life support systems: applicability to hot deserts. Available from nature precedings <http://dx.doi.org/10.1038/npre.2010.3926.2> (2010)
  11. 11.
    Nelson M, Allen J, Alling A, Dempster WF, Silverstone S (2003) Earth applications of closed ecological systems: relevance to the development of sustainability in our global biosphere. Adv Space Res 31(7):1649–1655CrossRefGoogle Scholar
  12. 12.
    Xiao Y, Liu Y, Wang G, Hao Z, An Y (2010) Simulated microgravity alters growth and microcystin production in Microcystis aeruginosa (cyanophyta). Toxicon 56:1–7CrossRefGoogle Scholar
  13. 13.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefGoogle Scholar
  14. 14.
    Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159CrossRefGoogle Scholar
  15. 15.
    Javanmardian M, Palsson B (1992) Design and operation of an algal photobiore actor system. Adv Space Res 12(5):5231–5235CrossRefGoogle Scholar
  16. 16.
    Wharton RA, Smernoff DT, Averner MM (1988) Algae in space. In: Lembi CE, Waaland JR (eds) Algae and human affairs. Cambridge University Press, Cambridge, pp. 486–509Google Scholar
  17. 17.
    Gitelson JI (1992) Biological life-support systems for Mars mission. Adv Space Res 12(5):167–192CrossRefGoogle Scholar
  18. 18.
    Spolaore P, Joannis-Cassan C, Duran E, Isamber A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96CrossRefGoogle Scholar
  19. 19.
    Becker W (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of microalgal culture, pp 312–351Google Scholar
  20. 20.
    Tang H, Chen M, Simon Ng KY, Salley SO (2012) Continuous microalgae cultivation in a photobioreactor. Biotechnol Bioeng 109(10):2468–2474CrossRefGoogle Scholar
  21. 21.
    Maeda I, Seto Y, Ueda S, Yukoh CG, Heri J, Kawase M, Miyasaka H, Yagi K (2006) Simultaneous control of turbidity and dilution rate through adjustment of medium composition in semi-continuous Chlamydomonas cultures. Biotechnol Bioeng 94(4):722–729CrossRefGoogle Scholar
  22. 22.
    Lamers PP, van de Laack CCW, Kaasenbrood PS, Lorier J, Janssen M, De Vos RCH, Bino RJ, Wijffels RH (2010) Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnol Bioeng 106(4):638–648CrossRefGoogle Scholar
  23. 23.
    Oguchi M, Otsubo K, Nitta K, Shimada A, Fujii S, Koyano T, Miki K (1989) Closed and continuous algae cultivation system for food production and gas exchange in CELSS. Adv Space Res 9(8):8169–8177CrossRefGoogle Scholar
  24. 24.
    Gitelson II, Degermendzhy AG, Rodicheva EK (2003) Self-restoration as fundamental property of CES providing their sustainability. Adv Space Res 31(7):1641–1648CrossRefGoogle Scholar
  25. 25.
    Korogodin VI (1966) Problems of post-radiation restoration. Atomizdat, Moscow 392Google Scholar
  26. 26.
    Klanjscek T, Legovic T (2001) Toward a closed life support system for interplanetary missions. Ecol Model 138:41–54CrossRefGoogle Scholar
  27. 27.
    Lehr F, Morweiser M, Rosello Sastre R, Kruse O, Posten C (2012) Process development for hydrogen production with Chlamydomonas reinhardtii based on growth and product formation kinetics. J Biotechnol 162(1):89–96CrossRefGoogle Scholar
  28. 28.
    Lehr F, Posten C (2009) Closed photo-bioreactors as tools for biofuel production. Curr Opin Biotechnol 20:280–285CrossRefGoogle Scholar
  29. 29.
    Schaub G, Vetter A (2007) Biokraftstoffe—Eine Übersicht. Chem Ing Tech 79:569–578CrossRefGoogle Scholar
  30. 30.
    Zhu X-G, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261CrossRefGoogle Scholar
  31. 31.
    Li G-B, Liu Y-D, Wang G-H, Song L-R (2004) Reactive oxygen species and antioxidant enzymes activity of Anabena sp. PCC 7120 (Cyanobacterium) under simulated microgravity. Acta Astronaut 55:953–957CrossRefGoogle Scholar
  32. 32.
    Cerff M, Posten C (2012) Enhancing the growth of Physcomitrella patens by combination of monochromatic red and blue light—a kinetic study. Biotechnol J 7:527–536CrossRefGoogle Scholar
  33. 33.
    Carvalho AP, Silva SO, Baptista JM, Malcata FX (2011) Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol 89:1275–1288CrossRefGoogle Scholar
  34. 34.
    Nedbal L, Trtilek M, Cerveny J, Komárek O, Pakrasi HB (2008) A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics. Biotechnol Bioeng 100(5):902–910CrossRefGoogle Scholar
  35. 35.
    Gordon J, Polle J (2007) Ultrahigh bioproductivity from algae. Appl Microbiol Biotechnol 76:969–975CrossRefGoogle Scholar
  36. 36.
    Bitog JP, Lee IB, Lee CG, Kim KS, Hwang H-S, Hong S-W, Seo I-H, Kwon K-S, Mostafa E (2011) Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: a review. Comput Electron Agric 76:131–147CrossRefGoogle Scholar
  37. 37.
    Kreimer G, Melkonian M (1990) Reflection confocal laser scanning microscopy of eyespots in flagellated green algae. Eur J Cell Biol 53(1):101–111Google Scholar
  38. 38.
    Schaller KRD, Uhl R (1997) How Chlamydomonas keeps track of the light once it has reached the right phototactic orientation. Biophys J 73(3):1562–1572CrossRefGoogle Scholar
  39. 39.
    Hegemann P, Harz H (1998) How microalgae see the light. Microbial responses to light and time. Cambridge University Press, CambridgeGoogle Scholar
  40. 40.
    Nagel GDO, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296(5577):2395–2398CrossRefGoogle Scholar
  41. 41.
    Nagel GT, Szellas T, Kateriya S, Adeishvili N, Hegemann P, Bamberg E (2005) Channelrhodopsins: directly light-gated cation channels. Biochem Soc Trans 33(4):863–886CrossRefGoogle Scholar
  42. 42.
    Rodríguez MC, Barsanti L, Passarelli V, Evangelista V, Conforti V, Gualtieri P (2007) Effects of chromium on the photosynthetic and photoreceptive apparatus of the alga Chlamydomonas reinhardtii. Environ Res 105:234–239CrossRefGoogle Scholar
  43. 43.
    Gualtieri P, Passarelli V, Barsanti L (1989) A simple instrument to perform in vivo absorption spectra of pigmented cellular organelles. Micron Microscopica Acta 20(2):107–110CrossRefGoogle Scholar
  44. 44.
    Emerson R, Rabinowitsch E (1960) Red drop and role of auxiliary pigments in photosynthesis. Plant Physiol 35(4):477–485CrossRefGoogle Scholar
  45. 45.
    Haupt W (1959) Phototaxis der Algen. Handbuch der Pflanzenphysiologie. Bd. 17/1. S. 318–370. E. Bünning. Springer, Berlin-Göttingen-Heidelberg 1959Google Scholar
  46. 46.
    Farmintzin A (1878) Die Wirkung des Lichtes auf Algen und einige andere ihnen verwandte Organismen. Jahrbücher für Wissenschaftliche Botanik VIGoogle Scholar
  47. 47.
    Stavis RL, Hirschberg R (1973) Phototaxis in Chlamydomonas reinhardtii. J Cell Biol 59:367–377CrossRefGoogle Scholar
  48. 48.
    Nultsch W, Thorm G, Rimscha IV (1971) Phototaktische Untersuchungen an Chlamydomonas reinhardtii Dangeard in homokontinuierlicher Kultur. Arch Microbiol 80:351–369Google Scholar
  49. 49.
    Häder DP, Colombetti G, Lenci F, Quaglia M (1981) Phototaxis in the flagellates, Euglena gracilis and Ochromonas danica. Arch Microbiol 130: 78–82Google Scholar
  50. 50.
    Haldall P (1957) Importance of calcium and magnesium ions in phototaxis of motile green algae. Nature 26:215–216CrossRefGoogle Scholar
  51. 51.
    Mayer AM (1968) Chlamydomonas: adaption phenomena in phototaxis. Nature 217:875–876CrossRefGoogle Scholar
  52. 52.
    Takahashi T, Watanabe M (1993) Photosynthesis modulates the sign of phototaxis of wild-type Chlamydomonas reinhardtii. Effects of red background illumination and 3-(3’,4’-dichlorophenyl)-1,1-dimethylurea. FEBS Lett 336(3):516–520CrossRefGoogle Scholar
  53. 53.
    Ehrenberg GS (1883) Die Infusionstierchen als vollkommene organismen. In: Engelmann TW (ed), Leipzig, p 15Google Scholar
  54. 54.
    Melkonian M, Robeneck H (1984) The eyespot apparatus of flagellated green algae: a critical review. Progress in Phycological Research 3:193–286Google Scholar
  55. 55.
    Mittag M, Kiaulehn S, Johnson CH (2005) The circadian clock in Chlamydo-monas reinhardtii. What is it for? What is it similar to? Plant Physiol 137(2): 399–409Google Scholar
  56. 56.
    Foster KW, Saranak J, Patel N, Zarilli G, Okabe M, Kline T, Nakashini K (1984) A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature 311:756–759CrossRefGoogle Scholar
  57. 57.
    Sineshchekov OA, Jung K-H, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. PNAS 99(13):8689–8694CrossRefGoogle Scholar
  58. 58.
    Forbes-Stovall J, Howton J, Young M, Davis G, Chandler T, Kessler B, Rinehart CA, Jacobshagen S (2014) Chlamydomonas reinhardtii strain CC-124 is highly sensitive to blue light in addition to green and red light in resetting its circadian clock, with the blue-light photoreceptor plant cryptochrome likely acting as negative modulator. Plant Physiol Biochem 75:14–23CrossRefGoogle Scholar
  59. 59.
    Kondo T, Hirschie Johnson C, Woodland Hastings J (1991) Action Spectrum for resetting the circadian phototaxis rhythm in the cw15 strain of Chlamydomonas. Plant Physiol 95:197–205CrossRefGoogle Scholar
  60. 60.
    Oldenhof H, Bisová K, van den Ende H, Zachleder V (2004) Effect of red and blue light on the timing of cyclin-dependent kinase activity and the timing of cell division in Chlamydomonas reinhardtii. Plant Physiol Biochem 42:341–348CrossRefGoogle Scholar
  61. 61.
    Münzner P, Voigt J (1992) Blue light regulation of cell division in Chlamydomonas reinhardtii. Plant Physiol 99:1370–1375CrossRefGoogle Scholar
  62. 62.
    Beckmann M, Hegemann P (1991) In vitro identification of rhodopsin in the green alga Chlamydomonas. Biochemistry 30(15):3692–3697CrossRefGoogle Scholar
  63. 63.
    Foster KW, Saranak J, Zarilli G (1988) Autoregulation of rhodopsin synthesis in Chlamydomonas reinhardtii. Proc Nat Acad Sci USA 85:6379–6383CrossRefGoogle Scholar
  64. 64.
    Hegemann P, Hegemann U, Foster KW (1988) Reversible bleaching of Chlamydomonas reinhardtii rhodopsin in vivo. Photochem Photobiol 48:123–128CrossRefGoogle Scholar
  65. 65.
    Oldenhof H, Zachleder V, van den Ende H (2004) Blue light delays commitment to cell division in Chlamydomonas reinhardtii. Plant Biol 6:689–695CrossRefGoogle Scholar
  66. 66.
    Huang K, Beck CF (2003) Phototropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydomonas reinhardtii. PNAS 100(10):6269–6274CrossRefGoogle Scholar
  67. 67.
    Kim DG, Lee C, Park S-M, Choi Y-E (2014) Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using chlorella vulgaris. Bioresour Technol 159:240–248CrossRefGoogle Scholar
  68. 68.
    Dionisio ML et al (1989) Blue light induction of carbonic-anhydrase activity in Chlamydomonas reinhardtii. Plant Cell Physiology 30:215–219Google Scholar
  69. 69.
    Dionisio ML, Tsuzuki K, Miyachi S (1989) Light requirement for carbonicanhydrase induction in Chlamydomonas reinhardtii. Plant Cell Physiol 30:207–213Google Scholar
  70. 70.
    Weissig H, Beck CF (1991) Action spectrum for the light-dependent step in gamete differentiation in Chlamydomonas reinhardtii. Plant Physiol 97:118–121CrossRefGoogle Scholar
  71. 71.
    Grossmann AR, Lohr M, Im CS (2004) Chlamydomonas reinhardtii in the landscape of pigments. Annu Rev Genet 38:119–173CrossRefGoogle Scholar
  72. 72.
    Jacobi A, Steinweg C, Rosello Sastre R, Posten C (2012) Advanced photobioreactor LED illumination system: scale-down approach to study microalgal growth kinetics. Eng Life Sci 12(6):621–630CrossRefGoogle Scholar
  73. 73.
    Lee CG, Palsson B (1994) High-density algal photo-bioreactors using light-emitting diodes. Biotechnol Bioeng 44(10):1161–1167CrossRefGoogle Scholar
  74. 74.
    Kommareddy A, Anderson G (2003) Study of light as parameter in the growth of algae in a photo-bio-reactor (PBR). ASAE annual international meeting presentation 034057, Las Vegas, USAGoogle Scholar
  75. 75.
    Javanmardian M, Palsson B (1991) High-density photoautotrophic algal cultures: design, construction, and operation of a novel photo-bioreactor system. Biotechnol Bioeng 38(10):1182–1189CrossRefGoogle Scholar
  76. 76.
    Pirt SJ, Lee YK, Richmond A, Watts-Pirt M (1980) The photosynthetic efficiency of Chlorella biomass growth with reference to solar energy utilization. J Chem Technol Biotechnol 30:25–34CrossRefGoogle Scholar
  77. 77.
    Cuello JL (2002) Latest developments in artificial lighting technologies in Dutch horticulture for bioregenerative space life support. Acta Horti 580:49–56CrossRefGoogle Scholar
  78. 78.
    Massa GD, Emmerich JC, Morrow RC, Bourget CM, Mitchell CA (2006) Plant-Growth lighting for space life support: a review. Gravitational Space Biol 19(2):19–30Google Scholar
  79. 79.
    Pinho P, Jokinen K, Halonen L (2012) Horticultural lighting—present and future challenges. Lighting Res Technol 44:427–437CrossRefGoogle Scholar
  80. 80.
    Kuwahara SS, Cuello JL, Myhre G, Pau S (2011) Growth of the green algae Chlamydomonas reinhardtii under red and blue lasers. Opt Lasers Eng 49:434–438CrossRefGoogle Scholar
  81. 81.
    Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506CrossRefGoogle Scholar
  82. 82.
    Ferreira BS, Fernandes HL, Reis A, Mateus M (1998) Microporous hollow fibers for carbon dioxide absorption: mass transfer model fitting and the supplying of carbon dioxide to microalgal cultures. J Chem Technol Biotechnol 71:61–70CrossRefGoogle Scholar
  83. 83.
    Drexler ILC, Yeh DH (2014) Membrane applications for microalgae cultivation and harvesting: a review. Rev Environ Sci Biotechnol 13:487–504CrossRefGoogle Scholar
  84. 84.
    Barbosa MJ, Janssen M, Ham N, Tramper J, Wijffels RH (2003) Microalgae cultivation in air-lift reactors: modeling biomass yield and growth rate as a function of mixing frequency. Biotechnol Bioeng 82(2):170–179CrossRefGoogle Scholar
  85. 85.
    Heussler P, Castillo J, Merino S, Vasquez V (1978) Improvement in pond construction and CO2 supply for the mass production of microalgae. Archiv für Hydrobiologie 11:254–260Google Scholar
  86. 86.
    Talbot P, Gortares MP, Lencki RW, de la Noue J (1991) Absorption of CO2 in algal mass culture systems: a different characterization approach. Biotechnol Bioeng 37(9):834–842CrossRefGoogle Scholar
  87. 87.
    Frahm B, Kirchner S, Kauling J, Brod H, Langer U, Bödeker B (2007) Dynamische Membranbegasung im Bioreaktor zur Intensivierung der Sauerstoffversorgung empfindlicher Zelllinien. Chem Ing Tech 79(7):1052–1058CrossRefGoogle Scholar
  88. 88.
    Frahm B, Brod H, Langer U (2009) Improving bioreactor cultivation conditions for sensitive cell lines by dynamic membrane aeration. Cytotechnology 59:17–30CrossRefGoogle Scholar
  89. 89.
    Rubio FC, Fernandez FG, Perez JA, Camacho FG, Grima EM (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnol Bioeng 62(1):71–86CrossRefGoogle Scholar
  90. 90.
    Fan LH, Zhang YT, Cheng LH, Zhang L, Chen HL (2008) Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris. J Membr Sci 325:336–345CrossRefGoogle Scholar
  91. 91.
    Sun X, Wang C, Tang Y, Wang W, Wie J (2013) A comparative study of microfiltration and ultrafiltration for algae harvesting. Algal Res 2:437–444CrossRefGoogle Scholar
  92. 92.
    Hwang T, Park SJ, Oh YK, Rashid N, Han JI (2013) Harvesting of Chlorella sp. KR-1 using a cross flow membrane filtration system equipped with an anti-fouling membrane. Bioresour Technol 139:379–382CrossRefGoogle Scholar
  93. 93.
    Cheng L, Zhang L, Chen H, Gao C (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 50:324–329CrossRefGoogle Scholar
  94. 94.
    Côté P, Bersillon JL, Huyard A, Faup G (1988) Bubble-free aeration using membranes: process analysis. J Water Pollut Control Fed 60:1986–1992Google Scholar
  95. 95.
    Côté P, Bersillon JL, Huyard A (1989) Bubble-free aeration using membranes: mass transfer analysis. J Membr Sci 47:91–108CrossRefGoogle Scholar
  96. 96.
    Ahmed T, Semmens MJ (1992) The use of independently sealed microporous hollow fiber membranes for oxygenation of water: model development. J Membr Sci 69:11–20CrossRefGoogle Scholar
  97. 97.
    Ahmed T, Semmens MJ (1992) The use of independently sealed microporous hollow fiber membranes for oxygenation of water: experimental studies. J Membr Sci 69:1–10CrossRefGoogle Scholar
  98. 98.
    Lehmann J, Piehl GW, Schulz R (1987) Bubble-free cell culture aeration with porous moving membranes. Dev Biol Stand 66:227–240Google Scholar
  99. 99.
    Vorlop J, Lehmann J (1988) Scale-up of bioreactors for fermentation of mammalian cell cultures with special reference to oxygen. Chem Eng Technol 11:171–178CrossRefGoogle Scholar
  100. 100.
    Schneider M, Reymond F, Marison IW, von Stockar U (1995) Bubble-free oxygenation by means of hydrophobic porous membranes. Enzym Microb Technol 17:839–847CrossRefGoogle Scholar
  101. 101.
    Lee Y-K, Hing H-K (1989) Supplying CO2 to photosynthetic algal cultures by diffusion through gas-permeable membranes. Appl Microbiol Biotechnol 31:298–301CrossRefGoogle Scholar
  102. 102.
    Carvalho AP, Malcata FX (2001) Transfer of carbon dioxide within cultures of microalgae: plain bubbling versus hollow-fiber modules. Biotechnol Prog 17:265–272CrossRefGoogle Scholar
  103. 103.
    Cogne G, Cornet J-F, Gros J-B (2005) Design, operation, and modeling of a membrane photobioreactor to study the growth of the cyanobacterium Arthrospira platensis in space conditions. Biotechnol Prog 21:741–750CrossRefGoogle Scholar
  104. 104.
    Ai W, Guo S, Qin L, Tang Y (2008) Development of a ground-based space microalgae photo-bioreactor. Adv Space Res 41:742–747CrossRefGoogle Scholar
  105. 105.
    Farges B, Duchez D, Dussap CG, Cornet JF (1012) Preliminary characterization of carbon dioxide transfer in a hollow fiber membrane module as a possible solution for gas-liquid transfer in microgravity conditions. Adv Space Res 49:254–261CrossRefGoogle Scholar
  106. 106.
    Brechignac F, Schiller P (1992) Pilot CELSS based on a maltose-excreting Chlorella: concept and overview on the technological developments. Adv Space Res 12(5):533–536CrossRefGoogle Scholar
  107. 107.
    Oguchi M, Otsubo K, Nitta K, Shimada A, Fujii S, Koyano T, Miki K (1989) Closed and continuous algae cultivation system for food production and gas exchange in CELSS. Adv Space Res 9(8):8169–8177CrossRefGoogle Scholar
  108. 108.
    Mori K, Ohya H, Matsumoto K, Furuune H, Isozaki K, Siekmeier P (1989) Design for a bioreactor with sunlight supply and operations systems for use in the space environment. Adv Space Res 9(8):8161–8168CrossRefGoogle Scholar
  109. 109.
    Podhajsky S, Slenzka K, Harting B, Di Capua M, Posten C, Wagner I (2014) Physiological research and functional verification of the ModuLES-PBR. In: Presented at the 65th international astronautical congress IAC, TorontoGoogle Scholar
  110. 110.
    Posten C, Walter C (2012) Microalgal biotechnology: potential and production. De Gruyter, Berlin/BostonCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ines Wagner
    • 1
  • Markus Braun
    • 2
  • Klaus Slenzka
    • 3
  • Clemens Posten
    • 1
  1. 1.Department Bioprocess EngineeringKIT, Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.OHB Ag Life SciencesBremenGermany
  3. 3.Gravitational BiologyDLRBonnGermany

Personalised recommendations