Skip to main content

Measurement of Bacterial Bioluminescence Intensity and Spectrum: Current Physical Techniques and Principles

  • Chapter
  • First Online:
Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 3

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 154))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. King J, DiGrazia P, Applegate B, Burlage R, Sanseverino J, Dunbar P, Larimer F, Ga Sayler (1990) Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249(4970):778–781

    Article  CAS  Google Scholar 

  2. Marqués S, Aranda-Olmedo I, Ramos JL (2006) Controlling bacterial physiology for optimal expression of gene reporter constructs. Curr Opin Biotechnol 17(1):50–56

    Article  CAS  Google Scholar 

  3. Drepper T, Eggert T, Circolone F, Heck A, Krauß U, Guterl J-K, Wendorff M, Losi A, Gärtner W, Jaeger K-E (2007) Reporter proteins for in vivo fluorescence without oxygen. Nat Biotechnol 25(4):443–445

    Article  CAS  Google Scholar 

  4. Magrisso S, Erel Y, Belkin S (2008) Microbial reporters of metal bioavailability. Microbial Biotechnol 1(4):320–330

    Article  CAS  Google Scholar 

  5. Hay AG, Rice JF, Applegate BM, Bright NG, Sayler GS (2000) A bioluminescent whole-cell reporter for detection of 2, 4-dichlorophenoxyacetic acid and 2, 4-dichlorophenol in soil. Appl Environ Microbiol 66(10):4589–4594

    Article  CAS  Google Scholar 

  6. Valdman E, Battaglini F, Leite S, Valdman B (2004) Naphthalene detection by a bioluminescence sensor applied to wastewater samples. Sens Actuat B-Chem 103(1):7–12

    Article  CAS  Google Scholar 

  7. Jouanneau S, Durand M-J, Courcoux P, Blusseau T, Thouand G (2011) Improvement of the identification of four heavy metals in environmental samples by using predictive decision tree models coupled with a set of five bioluminescent bacteria. Environ Sci Technol 45(7):2925–2931

    Article  CAS  Google Scholar 

  8. Jouanneau S, Durand MJ, Thouand G (2012) Online detection of metals in environmental samples: comparing two concepts of bioluminescent bacterial biosensors. Environ Sci Technol 46(21):11979–11987

    Article  CAS  Google Scholar 

  9. Liao VH-C, Chien M-T, Tseng Y-Y, Ou K-L (2006) Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors. Environ Pollut 142(1):17–23

    Article  CAS  Google Scholar 

  10. Jia K, Eltzov E, Marks RS, Ionescu RE (2013) Bioluminescence enhancement through an added washing protocol enabling a greater sensitivity to carbofuran toxicity. Ecotoxicol Environ Saf 96:61–66

    Article  CAS  Google Scholar 

  11. Jia K, Eltzov E, Toury T, Marks RS, Ionescu RE (2012) A lower limit of detection for atrazine was obtained using bioluminescent reporter bacteria via a lower incubation temperature. Ecotoxicol Environ Saf 84:221–226

    Article  CAS  Google Scholar 

  12. Lee S, Suzuki M, Tamiya E, Karube I (1992) Sensitive bioluminescent detection of pesticides utilizing a membrane mutant of Escherichia coli and recombinant DNA technology. Anal Chim Acta 257(2):183–188

    Article  CAS  Google Scholar 

  13. Pham CH, Min J, Gu MB (2004) Pesticide induced toxicity and stress response in bacterial cells. Bull Environ Contam Tox 72(2):380–386

    Article  CAS  Google Scholar 

  14. Eltzov E, Ben-Yosef DZ, Kushmaro A, Marks R (2008) Detection of sub-inhibitory antibiotic concentrations via luminescent sensing bacteria and prediction of their mode of action. Sens Actuat B-Chem 129(2):685–692

    Article  CAS  Google Scholar 

  15. Tenhami M, Hakkila K, Karp M (2001) Measurement of effects of antibiotics in bioluminescent Staphylococcus aureus RN4220. Antimicrob Agents Chemother 45(12):3456–3461

    Article  CAS  Google Scholar 

  16. Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Rev 55(1):123–142

    CAS  Google Scholar 

  17. Girotti S, Ferri EN, Fumo MG, Maiolini E (2008) Monitoring of environmental pollutants by bioluminescent bacteria. Anal Chim Acta 608(1):2–29

    Article  CAS  Google Scholar 

  18. Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 568(1):200–210

    Article  CAS  Google Scholar 

  19. Robbens J, Dardenne F, Devriese L, De Coen W, Blust R (2010) Escherichia coli as a bioreporter in ecotoxicology. Appl Microbiol Biotechnol 88(5):1007–1025

    Article  CAS  Google Scholar 

  20. Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26(5):1788–1799

    Article  CAS  Google Scholar 

  21. Woutersen M, Belkin S, Brouwer B, van Wezel AP, Heringa MB (2011) Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources? Anal Bioanal Chem 400(4):915–929

    Article  CAS  Google Scholar 

  22. Abd-El-Haleem D, Ripp S, Scott C, Sayler G (2002) A luxCDABE-based bioluminescent bioreporter for the detection of phenol. J Ind Microbiol Biotechnol 29(5):233–237

    Article  CAS  Google Scholar 

  23. Hwang ET, Ahn J-M, Kim BC, Gu MB (2008) Construction of a nrdA: luxCDABE fusion and its use in Escherichia coli as a DNA damage biosensor. Sensors 8(2):1297–1307

    Article  CAS  Google Scholar 

  24. Lopes N, Hawkins SA, Jegier P, Menn F-M, Sayler GS, Ripp S (2012) Detection of dichloromethane with a bioluminescent (lux) bacterial bioreporter. J Ind Microbiol Biotechnol 39(1):45–53

    Article  CAS  Google Scholar 

  25. Van Dyk TK, Majarian WR, Konstantinov KB, Young RM, Dhurjati PS, Larossa RA (1994) Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl Environ Microbiol 60(5):1414–1420

    Google Scholar 

  26. Vollmer AC, Belkin S, Smulski DR, Van Dyk TK, LaRossa RA (1997) Detection of DNA damage by use of Escherichia coli carrying recA’: lux, uvrA’: lux, or alkA’: lux reporter plasmids. Appl Environ Microbiol 63(7):2566–2571

    CAS  Google Scholar 

  27. Morin JG, Hastings J (1971) Energy transfer in a bioluminescent system. J Cell Physiol 77(3):313–318

    Article  CAS  Google Scholar 

  28. Hastings J, Morin J (1991) Bioluminescence. In: Prosser CL (ed) Neural and integrative animal physiology. Wiley, New York, NY, pp 131–170

    Google Scholar 

  29. Thouand G, Daniel P, Horry H, Picart P, Durand MJ, Killham K, Knox OG, DuBow MS, Rousseau M (2003) Comparison of the spectral emission of lux recombinant and bioluminescent marine bacteria. Luminescence 18(3):145–155

    Article  CAS  Google Scholar 

  30. Ruby EG, Nealson KH (1977) A luminous bacterium that emits yellow light. Science 196(4288):432–434

    Article  CAS  Google Scholar 

  31. Hastings J (1996) Chemistries and colors of bioluminescent reactions: a review. Gene 173(1):5–11

    Article  CAS  Google Scholar 

  32. Stanley PE (1997) Commercially available luminometers and imaging devices for low-light level measurements and kits and reagents utilizing bioluminescence or chemiluminescence: survey update 5. J Biolumin Chemilumin 12(2):61–78

    Article  CAS  Google Scholar 

  33. Stanley PE (1992) A survey of more than 90 commercially available luminometers and imaging devices for low-light measurements of chemiluminescence and bioluminescence, including instruments for manual, automatic and specialized operation, for HPLC, LC, GLC and microtiter plates. Part1: descriptions. J Biolumin Chemilumin 7(2):77–108

    Article  CAS  Google Scholar 

  34. Eltzov E, Marks RS, Voost S, Wullings BA, Heringa MB (2009) Flow-through real time bacterial biosensor for toxic compounds in water. Sens Actuat B-Chem 142(1):11–18

    Article  CAS  Google Scholar 

  35. Eltzov E, Pavluchkov V, Burstin M, Marks RS (2011) Creation of a fiber optic based biosensor for air toxicity monitoring. Sens Actuat B-Chem 155(2):859–867

    Article  CAS  Google Scholar 

  36. Polyak B, Bassis E, Novodvorets A, Belkin S, Marks R (2000) Optical fiber bioluminescent whole-cell microbial biosensors to genotoxicants. Water Sci Technol 42(1–2):305–311

    Google Scholar 

  37. Polyak B, Bassis E, Novodvorets A, Belkin S, Marks RS (2001) Bioluminescent whole cell optical fiber sensor to genotoxicants: system optimization. Sens Actuat B-Chem 74(1–3):18–26

    Article  CAS  Google Scholar 

  38. Ikariyama Y, Nishiguchi S, Koyama T, Kobatake E, Aizawa M, Tsuda M, Nakazawa T (1997) Fiber-optic-based biomonitoring of benzene derivatives by recombinant E. coli bearing luciferase gene-fused TOL-plasmid immobilized on the fiber-optic end. Anal Chem 69(13):2600–2605

    Article  CAS  Google Scholar 

  39. Hakkila K, Green T, Leskinen P, Ivask A, Marks R, Virta M (2004) Detection of bioavailable heavy metals in EILATox-Oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. J Appl Toxicol 24(5):333–342

    Article  CAS  Google Scholar 

  40. Horry H, Charrier T, Durand M-J, Vrignaud B, Picart P, Daniel P, Thouand G (2007) Technological conception of an optical biosensor with a disposable card for use with bioluminescent bacteria. Sens Actuat B-Chem 122(2):527–534

    Article  CAS  Google Scholar 

  41. Buzhan P, Dolgoshein B, Filatov L, Ilyin A, Kantzerov V, Kaplin V, Karakash A, Kayumov F, Klemin S, Popova E (2003) Silicon photomultiplier and its possible applications. Nucl Instrum Methods Phys Res Sect A 504(1):48–52

    Article  CAS  Google Scholar 

  42. Stewart A, Saveliev V, Bellis S, Herbert D, Hughes P, Jackson J (2008) Performance of 1-mm2 silicon photomultiplier. IEEE Quantum Electron 44(2):157–164

    Article  CAS  Google Scholar 

  43. Daniel R, Almog R, Ron A, Belkin S, Diamand YS (2008) Modeling and measurement of a whole-cell bioluminescent biosensor based on a single photon avalanche diode. Biosens Bioelectron 24(4):882–887

    Article  CAS  Google Scholar 

  44. Li H, Lopes N, Moser S, Sayler G, Ripp S (2012) Silicon photomultiplier (SPM) detection of low-level bioluminescence for the development of deployable whole-cell biosensors: possibilities and limitations. Biosens Bioelectron 33(1):299–303

    Article  CAS  Google Scholar 

  45. Charrier T, Chapeau C, Bendria L, Picart P, Daniel P, Thouand G (2011) A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part II: technical development and proof of concept of the biosensor. Anal Bioanal Chem 400(4):1061–1070

    Article  CAS  Google Scholar 

  46. Ben-Yoav H, Biran A, Pedahzur R, Belkin S, Buchinger S, Reifferscheid G, Shacham-Diamand Y (2009) A whole cell electrochemical biosensor for water genotoxicity bio-detection. Electrochim Acta 54(25):6113–6118

    Article  CAS  Google Scholar 

  47. Ben-Yoav H, Ofek Almog R, Sverdlov Y, Sternheim M, Belkin S, Freeman A, Shacham-Diamand Y (2012) Modified working electrodes for electrochemical whole-cell microchips. Electrochim Acta 82:109–114

    Article  CAS  Google Scholar 

  48. Bolton EK, Sayler GS, Nivens DE, Rochelle JM, Ripp S, Simpson ML (2002) Integrated CMOS photodetectors and signal processing for very low-level chemical sensing with the bioluminescent bioreporter integrated circuit. Sens Actuat B-Chem 85(1–2):179–185

    Article  CAS  Google Scholar 

  49. Simpson ML, Sayler GS, Applegate BM, Ripp S, Nivens DE, Paulus MJ, Jellison GE Jr (1998) Bioluminescent-bioreporter integrated circuits form novel whole-cell biosensors. Trends Biotechnol 16(8):332–338

    Article  CAS  Google Scholar 

  50. Islam SK, Vijayaraghavan R, Zhang M, Ripp S, Caylor SD, Weathers B, Moser S, Terry S, Blalock BJ, Sayler GS (2007) Integrated circuit biosensors using living whole-cell bioreporters. IEEE Trans Circuits Syst I Regul Pap 54(1):89–98

    Article  Google Scholar 

  51. Vijayaraghavan R, Islam SK, Zhang M, Ripp S, Caylor S, Bull ND, Moser S, Terry SC, Blalock BJ, Sayler GS (2007) A bioreporter bioluminescent integrated circuit for very low-level chemical sensing in both gas and liquid environments. Sens Actuat B-Chem 123(2):922–928

    Article  CAS  Google Scholar 

  52. Melamed S, Ceriotti L, Weigel W, Rossi F, Colpo P, Belkin S (2011) A printed nanolitre-scale bacterial sensor array. Lab Chip 11(1):139–146

    Article  CAS  Google Scholar 

  53. Mitchell G, Hastings JW (1969) The effect of flavin isomers and analogues upon the color of bacterial bioluminescence. J Biol Chem 244(10):2572–2576

    CAS  Google Scholar 

  54. Cline TW, Hastings JW (1974) Mutated luciferases with altered bioluminescence emission spectra. J Biol Chem 249(14):4668–4669

    CAS  Google Scholar 

  55. Lin LY-C, Szittner R, Friedman R, Meighen EA (2004) Changes in the kinetics and emission spectrum on mutation of the chromophore-binding platform in Vibrio harveyi luciferase. Biochemistry 43(11):3183–3194

    Article  CAS  Google Scholar 

  56. Lee J, O’Kane DJ, Gibson BG (1989) Bioluminescence spectral and fluorescence dynamics study of the interaction of lumazine protein with the intermediates of bacterial luciferase bioluminescence. Biochemistry 28(10):4263–4271

    Article  CAS  Google Scholar 

  57. Karatani H, Hastings J (1993) Two active forms of the accessory yellow fluorescence protein of the luminous bacterium vibrio fischeri strain Y1. J Photochem Photobiol B: Biol 18(2):227–232

    Article  CAS  Google Scholar 

  58. Karatani H, Wilson T, Hastings J (1992) A blue fluorescent protein from a yellow-emitting luminous bacterium. Photochem Photobiol 55(2):293–299

    Article  CAS  Google Scholar 

  59. Petushkov VN, Ketelaars M, Gibson BG, Lee J (1996) Interaction of photobacterium leiognathi and vibrio fischeri Y1 luciferases with fluorescent (antenna) proteins: bioluminecence effects of the aliphatic additive. Biochemistry 35(37):12086–12093

    Article  CAS  Google Scholar 

  60. Ke D, Tu SC (2011) Activities, kinetics and emission spectra of bacterial luciferase-fluorescent protein fusion enzymes. Photochem Photobiol 87(6):1346–1353

    Article  CAS  Google Scholar 

  61. Xu X, Soutto M, Xie Q, Servick S, Subramanian C, von Arnim AG, Johnson CH (2007) Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues. P Natl Acad Sci USA 104(24):10264–10269

    Article  CAS  Google Scholar 

  62. Ahn J-M, Kim JH, Kim JH, Gu MB (2010) Randomly distributed arrays of optically coded functional microbeads for toxicity screening and monitoring. Lab Chip 10(20):2695–2701

    Article  CAS  Google Scholar 

  63. Kim B, Gu M (2005) A multi-channel continuous water toxicity monitoring system: its evaluation and application to water discharged from a power plant. Environ Monit Assess 109(1–3):123–133

    Article  CAS  Google Scholar 

  64. Elad T, Almog R, Yagur-Kroll S, Levkov K, Melamed S, Shacham-Diamand Y, Belkin S (2011) Online monitoring of water toxicity by use of bioluminescent reporter bacterial biochips. Environ Sci Technol 45(19):8536–8544

    Article  CAS  Google Scholar 

  65. Lee JH, Mitchell RJ, Kim BC, Cullen DC, Gu MB (2005) A cell array biosensor for environmental toxicity analysis. Biosens Bioelectron 21(3):500–507

    Article  CAS  Google Scholar 

  66. Rowe L, Dikici E, Daunert S (2009) Engineering bioluminescent proteins: expanding their analytical potential. Anal Chem 81(21):8662–8668

    Article  CAS  Google Scholar 

  67. Charrier T, Durand MJ, Jouanneau S, Dion M, Pernetti M, Poncelet D, Thouand G (2011) A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part I: design and optimization of bioluminescent bacterial strains. Anal Bioanal Chem 400(4):1051–1060

    Article  CAS  Google Scholar 

  68. Ben-Yoav H, Amzel T, Sternheim M, Belkin S, Rubin A, Shacham-Diamand Y, Freeman A (2011) Signal amelioration of electrophoretically deposited whole-cell biosensors using external electric fields. Electrochim Acta 56(26):9666–9672

    Article  CAS  Google Scholar 

  69. Ben-Yoav H, Freeman A, Sternheim M, Shacham-Diamand Y (2011) An electrochemical impedance model for integrated bacterial biofilms. Electrochim Acta 56(23):7780–7786

    Article  CAS  Google Scholar 

  70. Besra L, Liu M (2007) A review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci 52(1):1–61

    Article  CAS  Google Scholar 

  71. Neirinck B, Van Mellaert L, Fransaer J, Van der Biest O, Anné J, Vleugels J (2009) Electrophoretic deposition of bacterial cells. Electrochem Commun 11(9):1842–1845

    Article  CAS  Google Scholar 

  72. Elad T, Lee JH, Gu MB, Belkin S (2010) Microbial cell arrays. Adv Biochem Eng Biotechnol 117:85–108

    CAS  Google Scholar 

  73. Ibey BL, Mixon DG, Payne JA, Bowman A, Sickendick K, Wilmink GJ, Roach WP, Pakhomov AG (2010) Plasma membrane permeabilization by trains of ultrashort electric pulses. Bioelectrochemistry 79(1):114–121

    Article  CAS  Google Scholar 

  74. Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. Bioelectrochem Bioenerget 41(2):135–160

    Article  CAS  Google Scholar 

  75. Yagur-Kroll S, Bilic B, Belkin S (2010) Strategies for enhancing bioluminescent bacterial sensor performance by promoter region manipulation. Microb Biotechnol 3(3):300–310

    Article  CAS  Google Scholar 

  76. Yagur-Kroll S, Belkin S (2011) Upgrading bioluminescent bacterial bioreporter performance by splitting the lux operon. Anal Bioanal Chem 400(4):1071–1082

    Article  CAS  Google Scholar 

  77. Fernández-Pinas F, Wolk CP (1994) Expression of luxCD-E in Anabaena sp. can replace the use of exogenous aldehyde for in vivo localization of transcription by luxAB. Gene 150(1):169–174

    Article  Google Scholar 

  78. Davidov Y, Rozen R, Smulski DR, Van Dyk TK, Vollmer AC, Elsemore DA, LaRossa RA, Belkin S (2000) Improved bacterial SOS promoter∷lux fusions for genotoxicity detection. Mutat Res Genet Toxicol Environ Mutagenesis 466(1):97–107

    Article  CAS  Google Scholar 

  79. Stocker J, Balluch D, Gsell M, Harms H, Feliciano J, Daunert S, Malik KA, van der Meer JR (2003) Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environ Sci Technol 37(20):4743–4750

    Article  CAS  Google Scholar 

  80. Maehana K, Tani H, Shiba T, Kamidate T (2004) Effects of using a low-copy plasmid and controlling membrane permeability in SOS-based genotoxic bioassay. Anal Chim Acta 522(2):189–195

    Article  CAS  Google Scholar 

  81. Shapiro E, Baneyx F (2002) Stress-based identification and classification of antibacterial agents: second-generation Escherichia coli reporter strains and optimization of detection. Antimicrob Agents Chemother 46(8):2490–2497

    Article  CAS  Google Scholar 

  82. Rasmussen LD, Sørensen SJ, Turner RR, Barkay T (2000) Application of a mer-lux biosensor for estimating bioavailable mercury in soil. Soil Biol Biochem 32(5):639–646

    Article  CAS  Google Scholar 

  83. Ahn J-M, Gu M (2012) Geno-Tox: cell array biochip for genotoxicity monitoring and classification. Appl Biochem Biotechnol 168(4):752–760

    Article  CAS  Google Scholar 

  84. Elad T, Benovich E, Magrisso S, Belkin S (2008) Toxicant identification by a luminescent bacterial bioreporter panel: application of pattern classification algorithms. Environ Sci Technol 42(22):8486–8491

    Article  CAS  Google Scholar 

  85. Melamed S, Lalush C, Elad T, Yagur-Kroll S, Belkin S, Pedahzur R (2012) A bacterial reporter panel for the detection and classification of antibiotic substances. Microbial Biotechnol 5(4):536–548

    Article  CAS  Google Scholar 

  86. Smolander O-P, Ribeiro AS, Yli-Harja O, Karp M (2009) Identification of β-lactam antibiotics using bioluminescent Escherichia coli and a support vector machine classifier algorithm. Sens Actuat B-Chem 141(2):604–609

    Article  CAS  Google Scholar 

  87. Der Meer V, Roelof J, Tropel D, Jaspers M (2004) Illuminating the detection chain of bacterial bioreporters. Environ Microbiol 6(10):1005–1020

    Article  CAS  Google Scholar 

  88. Belkin S, Smulski DR, Dadon S, Vollmer AC, Van Dyk TK, Larossa RA (1997) A panel of stress-responsive luminous bacteria for the detection of selected classes of toxicants. Water Res 31(12):3009–3016

    Article  CAS  Google Scholar 

  89. Gu M, Choi S (2001) Monitoring and classification of toxicity using recombinant bioluminescent bacteria. Water Sci Technol 43(2):147–154

    CAS  Google Scholar 

  90. Premkumar JR, Rosen R, Belkin S, Lev O (2002) Sol–gel luminescence biosensors: encapsulation of recombinant E. coli reporters in thick silicate films. Anal Chim Acta 462(1):11–23

    Google Scholar 

  91. Gupta RK, Patterson SS, Ripp S, Simpson ML, Sayler GS (2003) Expression of the Photorhabdus luminescens lux genes (luxA, B, C, D, and E) in Saccharomyces cerevisiae. FEMS Yeast Res 4(3):305–313

    Article  CAS  Google Scholar 

  92. Close D, Xu T, Smartt A, Rogers A, Crossley R, Price S, Ripp S, Sayler G (2012) The evolution of the bacterial luciferase gene cassette (lux) as a real-time bioreporter. Sensors 12(1):732–752

    Article  CAS  Google Scholar 

  93. Close DM, Patterson SS, Ripp S, Baek SJ, Sanseverino J, Sayler GS (2010) Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux) in a mammalian cell line. PLoS One 5(8):e12441

    Article  CAS  Google Scholar 

  94. Nguyen VH, Kim H-S, Ha J-M, Hong Y, Choy HE, Min J-J (2010) Genetically engineered Salmonella typhimurium as an imageable therapeutic probe for cancer. Cancer Res 70(1):18–23

    Article  CAS  Google Scholar 

  95. Cronin M, Akin AR, Collins SA, Meganck J, Kim J-B, Baban CK, Joyce SA, van Dam GM, Zhang N, van Sinderen D (2012) High resolution in vivo bioluminescent imaging for the study of bacterial tumour targeting. PLoS One 7(1):e30940

    Article  CAS  Google Scholar 

  96. Foucault M-L, Thomas L, Goussard S, Branchini B, Grillot-Courvalin C (2010) In vivo bioluminescence imaging for the study of intestinal colonization by Escherichia coli in mice. Appl Environ Microbiol 76(1):264–274

    Article  CAS  Google Scholar 

  97. Alves E, Costa L, Cunha Â, Faustino MAF, Neves MGP, Almeida A (2011) Bioluminescence and its application in the monitoring of antimicrobial photodynamic therapy. Appl Microbiol Biotechnol 92(6):1115–1128

    Article  CAS  Google Scholar 

  98. Tavares A, Dias SR, Carvalho CM, Faustino MA, Tomé JP, Neves MG, Tomé AC, Cavaleiro JA, Cunha Â, Gomes NC (2011) Mechanisms of photodynamic inactivation of a gram-negative recombinant bioluminescent bacterium by cationic porphyrins. Photochem Photobiolog Sci 10(10):1659–1669

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the French Ministry of Foreign Affairs and the Israeli Ministry of Science for funding their project “Nano-chip platform for water probing pollutants” under the Research Networks Programs 2009–2011 and to the University of Technology of Troyes (UTT) for the Programme Stratégique 2009–2012. Kun Jia thanks the China Scholarship Council (CSC) for his PhD fellowship 2010–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodica Elena Ionescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jia, K., Ionescu, R.E. (2015). Measurement of Bacterial Bioluminescence Intensity and Spectrum: Current Physical Techniques and Principles. In: Thouand, G., Marks, R. (eds) Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 3. Advances in Biochemical Engineering/Biotechnology, vol 154. Springer, Cham. https://doi.org/10.1007/10_2015_324

Download citation

Publish with us

Policies and ethics