Bioprocess Engineering for Microbial Synthesis and Conversion of Isoprenoids

  • Hendrik Schewe
  • Marco Antonio Mirata
  • Jens Schrader
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 148)



Isoprenoids represent a natural product class essential to living organisms. Moreover, industrially relevant isoprenoid molecules cover a wide range of products such as pharmaceuticals, flavors and fragrances, or even biofuels. Their often complex structure makes chemical synthesis a difficult and expensive task and extraction from natural sources is typically low yielding. This has led to intense research for biotechnological production of isoprenoids by microbial de novo synthesis or biotransformation. Here, metabolic engineering, including synthetic biology approaches, is the key technology to develop efficient production strains in the first place. Bioprocess engineering, particularly in situ product removal (ISPR), is the second essential technology for the development of industrial-scale bioprocesses. A number of elaborate bioreactor and ISPR designs have been published to target the problems of isoprenoid synthesis and conversion, such as toxicity and product inhibition. However, despite the many exciting applications of isoprenoids, research on isoprenoid-specific bioprocesses has mostly been, and still is, limited to small-scale proof-of-concept approaches. This review presents and categorizes different ISPR solutions for biotechnological isoprenoid production and also addresses the main challenges en route towards industrial application.

Graphical Abstract


Bioprocess In situ product removal Isoprenoids Solvent tolerance Terpenoids 


  1. 1.
    Ajikumar PK, Xiao W-H, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330(6000):70–74Google Scholar
  2. 2.
    Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng 19:33–41Google Scholar
  3. 3.
    Amsden BG, Bochanysz J, Daugulis AJ (2003) Degradation of xenobiotics in a partitioning bioreactor in which the partitioning phase is a polymer. Biotechnol Bioeng 84(4):399–405Google Scholar
  4. 4.
    Arifin AA, Don MM, Uzir MH (2011) Baker’s yeast mediated biotransformation of geraniol into citronellol using a continuous-closed-gas-loop bioreactor (CCGLB) system. Biochem Eng J 56(3):219–224Google Scholar
  5. 5.
    Arifin AA, Don MM, Uzir MH (2011) The feasibility of growing cells of Saccharomyces cerevisiae for citronellol production in a continuous-closed-gas-loop bioreactor (CCGLB). Bioresour Technol 102(19):9318–9320Google Scholar
  6. 6.
    Asadollahi MA, Maury J, Møller K, Nielsen KF, Schalk M, Clark A, Nielsen J (2008) Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol Bioeng 99(3):666–677Google Scholar
  7. 7.
    Asadollahi MA, Maury J, Patil KR, Schalk M, Clark A, Nielsen J (2009) Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metab Eng 11(6):328–334Google Scholar
  8. 8.
    Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46(2):446–475Google Scholar
  9. 9.
    Bicas JL, Fontanille P, Pastore GM, Larroche C (2010) A bioprocess for the production of high concentrations of R-(+)-α-terpineol from R-(+)-limonene. Process Biochem 45(4):481–486Google Scholar
  10. 10.
    Blanch HW (2012) Bioprocessing for biofuels. Curr Opin Biotechnol 23(3):390–395Google Scholar
  11. 11.
    Bluemke W, Schrader J (2001) Integrated bioprocess for enhanced production of natural flavors and fragrances by Ceratocystis moniliformis. Biomol Eng 17(4–5):137–142Google Scholar
  12. 12.
    Boghigian B, Myint M, Wu J, Pfeifer B (2011) Simultaneous production and partitioning of heterologous polyketide and isoprenoid natural products in an Escherichia coli two-phase bioprocess. J Ind Microbiol Biotechnol 38(11):1809–1820Google Scholar
  13. 13.
    Boontawan A, Stuckey DC (2005) Mass Transfer of Terpenes through a Silicone Rubber Membrane in a Liquid-Liquid Contacting System. Biotechnol Prog 21(6):1680–1687Google Scholar
  14. 14.
    Boontawan A, Stuckey DC (2006) A membrane bioreactor for the biotransformation of α-pinene oxide to isonovalal by Pseudomonas fluorescens NCIMB 11671. Appl Microbiol Biotechnol 69(6):643–649Google Scholar
  15. 15.
    Bormann S, Etschmann M, Mirata M-A, Schrader J (2012) Integrated bioprocess for the stereospecific production of linalool oxides from linalool with Corynespora cassiicola DSM 62475. J Ind Microbiol Biotechnol 39(12):1761–1769Google Scholar
  16. 16.
    Brennan TC, Turner CD, Kromer JO, Nielsen LK (2012) Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnol Bioeng 109(10):2513–2522Google Scholar
  17. 17.
    Brennan TCR, Krömer JO, Nielsen LK (2013) Physiological and transcriptional responses of Saccharomyces cerevisiae to d-Limonene show changes to the cell wall but not to the plasma membrane. Appl Environ Microbiol 79(12):3590–3600Google Scholar
  18. 18.
    Bruce LJ, Daugulis AJ (1991) Solvent selection strategies for extractive biocatalysis. Biotechnol Prog 7(2):116–124Google Scholar
  19. 19.
    Chandran SS, Kealey JT, Reeves CD (2011) Microbial production of isoprenoids. Process Biochem 46(9):1703–1710Google Scholar
  20. 20.
    Chang MCY, Keasling JD (2006) Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol 2(12):674–681Google Scholar
  21. 21.
    Cornelissen S, Julsing MK, Volmer J, Riechert O, Schmid A, Bühler B (2013) Whole-cell-based CYP153A6-catalyzed (S)-limonene hydroxylation efficiency depends on host background and profits from monoterpene uptake via AlkL. Biotechnol Bioeng 110(5):1282–1292Google Scholar
  22. 22.
    Cornelissen S, Liu S, Deshmukh AT, Schmid A, Buhler B (2011) Cell physiology rather than enzyme kinetics can determine the efficiency of cytochrome P450-catalyzed C-H-oxyfunctionalization. J Ind Microbiol Biotechnol 38(9):1359–1370Google Scholar
  23. 23.
    Cuellar MC, Heijnen JJ, van der Wielen LAM (2013) Large-scale production of diesel-like biofuels—process design as an inherent part of microorganism development. Biotechnol J 8(6):682–689Google Scholar
  24. 24.
    Daugulis AJ (1997) Partitioning bioreactors. Curr Opin Biotechnol 8(2):169–174Google Scholar
  25. 25.
    de Bont JAM (1998) Solvent-tolerant bacteria in biocatalysis. Trends Biotechnol 16(12):493–499Google Scholar
  26. 26.
    de Carvalho CCCR, da Fonseca MMR (2002) Maintenance of cell viability in the biotransformation of (−)-carveol with whole cells of Rhodococcus erythropolis. J Mol Catal B Enzym 19–20:389–398Google Scholar
  27. 27.
    de Carvalho CCR, da Fonseca MMR (2002) Influence of reactor configuration on the production of carvone from carveol by whole cells of Rhodococcus erythropolis DCL14. J Mol Catal B: Enzym 19–20:377–387Google Scholar
  28. 28.
    Déziel E, Comeau Y, Villemur R (1999) Two-liquid-phase bioreactors for enhanced degradation of hydrophobic/toxic compounds. Biodegradation 10(3):219–233Google Scholar
  29. 29.
    Doig SD, Boam AT, Leak DI, Livingston AG, Stuckey DC (1998) A membrane bioreactor for biotransformations of hydrophobic molecules. Biotechnol Bioeng 58(6):587–594Google Scholar
  30. 30.
    Doig SD, Boam AT, Livingston AG, Stuckey DC (1999) Mass transfer of hydrophobic solutes in solvent swollen silicone rubber membranes. J Membr Sci 154(1):127–140Google Scholar
  31. 31.
    Dunlop M (2011) Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels 4(1):32Google Scholar
  32. 32.
    Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, Hadi MZ, Mukhopadhyay A (2011) Engineering microbial biofuel tolerance and export using efflux pumps. Mol Sys Biol 7(1):n/a–n/aGoogle Scholar
  33. 33.
    Fichan I, Larroche C, Gros JB (1999) Water solubility, vapor pressure, and activity coefficients of terpenes and terpenoids. J Chem Eng Data 44(1):56–62Google Scholar
  34. 34.
    Fontanille P, Larroche C (2003) Optimization of isonovalal production from α-pinene oxide using permeabilized cells of Pseudomonas rhodesiae CIP 107491. Appl Microbiol Biotechnol 60(5):534–540Google Scholar
  35. 35.
    Freeman A, Woodley JM, Lilly MD (1993) In situ product removal as a tool for bioprocessing. Biotechnology (N Y) 11(9):1007–1012Google Scholar
  36. 36.
    Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3(7):408–414Google Scholar
  37. 37.
    Girhard M, Machida K, Itoh M, Schmid RD, Arisawa A, Urlacher VB (2009) Regioselective biooxidation of (+)-valencene by recombinant E. coli expressing CYP109B1 from Bacillus subtilis in a two-liquid-phase system. Microb Cell Fact 8:36Google Scholar
  38. 38.
    Halan B, Buehler K, Schmid A (2012) Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol 30(9):453–465Google Scholar
  39. 39.
    Heeres AS, Picone CSF, van der Wielen LAM, Cunha RL, Cuellar MC (2014) Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation. Trends Biotechnol 32(4):221–229Google Scholar
  40. 40.
    Heipieper H, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74(5):961–973Google Scholar
  41. 41.
    Isken S, Bont de JAM (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238Google Scholar
  42. 42.
    Jahn M, Seifert J, von Bergen M, Schmid A, Bühler B, Müller S (2013) Subpopulation-proteomics in prokaryotic populations. Curr Opin Biotechnol 24(1):79–87Google Scholar
  43. 43.
    Kampranis SC, Makris AM (2012) Developing a yeast cell factory for the production of terpenoids. Comput Struct Biotechnol J 3:e201210006Google Scholar
  44. 44.
    Kaspera R, Krings U, Pescheck M, Sell D, Schrader J, Berger RG (2005) Regio- and stereoselective fungal oxyfunctionalisation of limonenes. Z Naturforsch C 60(5–6):459–466Google Scholar
  45. 45.
    Krings U, Berger R (2008) In situ recovery of the aroma compound perillene from stirred-tank cultured Pleurotus ostreatus using gas stripping and adsorption on polystyrene. Biotechnol Lett 30(8):1347–1351Google Scholar
  46. 46.
    Krings U, Lehnert N, Fraatz MA, Hardebusch B, Zorn H, Berger RG (2009) Autoxidation versus Biotransformation of α-Pinene to Flavors with Pleurotus sapidus: Regioselective Hydroperoxidation of α-Pinene and Stereoselective Dehydrogenation of Verbenol. J Agric Food Chem 57(21):9944–9950Google Scholar
  47. 47.
    Laane C, Boeren S, Vos K, Veeger C (1987) Rules for optimization of biocatalysis in organic solvents. Biotechnol Bioeng 30(1):81–87Google Scholar
  48. 48.
    Linares D, Fontanille P, Larroche C (2009) Exploration of α-pinene degradation pathway of Pseudomonas rhodesiae CIP 107491. Application to novalic acid production in a bioreactor. Food Res Int 42(4):461–469Google Scholar
  49. 49.
    Lye GJ, Woodley JM (1999) Application of in situ product-removal techniques to biocatalytic processes. Trends Biotechnol 17(10):395–402Google Scholar
  50. 50.
    Lye GJ, Woodley JM (2001) Advances in the selection and design of two-liquid phase biocatalytic reactors. In: Mota M, Tramper J (eds) Cabral JMS. Taylor and Francis, London, pp 115–134Google Scholar
  51. 51.
    Malik S, Cusidó RM, Mirjalili MH, Moyano E, Palazón J, Bonfill M (2011) Production of the anticancer drug taxol in Taxus baccata suspension cultures: A review. Process Biochem 46(1):23–34Google Scholar
  52. 52.
    Malinowski JJ (2001) Two-phase partitioning bioreactors in fermentation technology. Biotechnol Adv 19(7):525–538Google Scholar
  53. 53.
    Mi J, Becher D, Lubuta P, Dany S, Tusch K, Schewe H, Buchhaupt M, Schrader J (2014) De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida. Microb Cell Fact 13(1):170Google Scholar
  54. 54.
    Mirata MA, Heerd D, Schrader J (2009) Integrated bioprocess for the oxidation of limonene to perillic acid with Pseudomonas putida DSM 12264. Process Biochem 44(7):764–771Google Scholar
  55. 55.
    Molina G, Pimentel M, Pastore G (2013) Pseudomonas: a promising biocatalyst for the bioconversion of terpenes. Appl Microbiol Biotechnol 97(5):1851–1864Google Scholar
  56. 56.
    Morrish JL, Brennan ET, Dry HC, Daugulis AJ (2008) Enhanced bioproduction of carvone in a two-liquid-phase partitioning bioreactor with a highly hydrophobic biocatalyst. Biotechnol Bioeng 101(4):768–775Google Scholar
  57. 57.
    Morrish JL, Daugulis AJ (2008) Improved reactor performance and operability in the biotransformation of carveol to carvone using a solid-liquid two-phase partitioning bioreactor. Biotechnol Bioeng 101(5):946–956Google Scholar
  58. 58.
    Müller S, Harms H, Bley T (2010) Origin and analysis of microbial population heterogeneity in bioprocesses. Curr Opin Biotechnol 21(1):100–113Google Scholar
  59. 59.
    Nacke C, Hüttmann S, Etschmann MW, Schrader J (2012) Enzymatic production and in situ separation of natural β-ionone from β-carotene. J Ind Microbiol Biotechnol 39(12):1771–1778Google Scholar
  60. 60.
    Newman JD, Marshall J, Chang M, Nowroozi F, Paradise E, Pitera D, Newman KL, Keasling JD (2006) High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnol Bioeng 95(4):684–691Google Scholar
  61. 61.
    Oda S, Inada Y, Kato A, Matsudomi N, Ohta H (1995) Production of (S)-citronellic acid and (R)-citronellol with an interface bioreactor. J Ferment Bioeng 80(6):559–564Google Scholar
  62. 62.
    Oda S, Sugai T, Ohta H (1999) Optical resolution of racemic citronellol via a double coupling system in an interface bioreactor. J Biosci Bioeng 87(4):473–480Google Scholar
  63. 63.
    Oda S, Sugai T, Ohta H (2001) Interface bioreactor. In: Vulfson E, Halling P, Holland H (eds) Enzymes in nonaqueous solvents. Humana Press, New York, p 401–416Google Scholar
  64. 64.
    Onken J, Berger RG (1999) Biotransformation of citronellol by the basidiomycete Cystoderma carcharias in an aerated-membrane bioreactor. Appl Microbiol Biotechnol 51(2):158–163Google Scholar
  65. 65.
    Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D et al (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496(7446):528–532Google Scholar
  66. 66.
    Peralta-Yahya PP, Keasling JD (2010) Advanced biofuel production in microbes. Biotechnol J 5(2):147–162Google Scholar
  67. 67.
    Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, Lee TS (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483Google Scholar
  68. 68.
    Pollak FC, Berger RG (1996) Geosmin and related volatiles in bioreactor-cultured Streptomyces citreus CBS 109.60. Appl Environ Microbiol 62(4):1295–1299Google Scholar
  69. 69.
    Pursell MR, Mendes-Tatsis MA, Stuckey DC (2004) Effect of fermentation broth and biosurfactants on mass transfer during liquid–liquid extraction. Biotechnol Bioeng 85(2):155–165Google Scholar
  70. 70.
    Ramos JL, Duque E, Gallegos M-T, Godoy P, Ramos-González MI, Rojas A, Terán W, Segura A (2002) Mechanisms of solvent tolerance in gram-negative bacteria. Ann Rev Microbiol 56(1):743–768Google Scholar
  71. 71.
    Ramos JL, Duque E, Rodriguez-Herva JJ, Godoy P, Haidour A, Reyes F, Fernandez-Barrero A (1997) Mechanisms for solvent tolerance in bacteria. The J biol chem 272(7):3887–3890Google Scholar
  72. 72.
    Rehmann L, Daugulis AJ (2007) Biodegradation of biphenyl in a solid–liquid two-phase partitioning bioreactor. Biochem Eng J 36(3):195–201Google Scholar
  73. 73.
    Rehmann L, Sun B, Daugulis AJ (2007) Polymer selection for biphenyl degradation in a solid-liquid two-phase partitioning bioreactor. Biotechnol Prog 23(4):814–819Google Scholar
  74. 74.
    Renninger NS, Newman J, Reiling KK, Regentin R, Paddon CJ, Amyris Biotechnologies, Inc., assignee (2010). Production of isoprenoids. U.S.A. patent US 7659097 B2Google Scholar
  75. 75.
    Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153(5):263–268Google Scholar
  76. 76.
    Savithiry N, Cheong T, Oriel P (1997) Production of α-Terpineol from escherichia coli cells expressing thermostable limonene hydratase. In: Davison B, Wyman C, Finkelstein M (eds) Biotechnology for fuels and chemicals. Humana Press, New York, p 213–220Google Scholar
  77. 77.
    Scalcinati G, Knuf C, Partow S, Chen Y, Maury J, Schalk M, Daviet L, Nielsen J, Siewers V (2012) Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene α-santalene in a fed-batch mode. Metab Eng 14(2):91–103Google Scholar
  78. 78.
    Scalcinati G, Partow S, Siewers V, Schalk M, Daviet L, Nielsen J (2012) Combined metabolic engineering of precursor and co-factor supply to increase alpha-santalene production by Saccharomyces cerevisiae. Microb Cell Fact 11:117Google Scholar
  79. 79.
    Schalk M, Pastore L, Mirata MA, Khim S, Schouwey M, Deguerry F, Pineda V, Rocci L, Daviet L (2012) Toward a biosynthetic route to sclareol and amber odorants. J Am Chem Soc 134(46):18900–18903Google Scholar
  80. 80.
    Schewe H, Holtmann D, Schrader J (2009) P450(BM-3)-catalyzed whole-cell biotransformation of a-pinene with recombinant Escherichia coli in an aqueous-organic two-phase system. Appl Microbiol Biotechnol 83(5):849–857Google Scholar
  81. 81.
    Schewe H, Kaup BA, Schrader J (2008) Improvement of P450(BM-3) whole-cell biocatalysis by integrating heterologous cofactor regeneration combining glucose facilitator and dehydrogenase in E. coli. Appl microbiol biotechnol 78(1):55–65Google Scholar
  82. 82.
    Schmid A, Kollmer A, Witholt B (1998) Effects of biosurfactant and emulsification on two-liquid phase pseudomonas oleovorans cultures and cell-free emulsions containing n-Decane. Enzyme Microb Technol 22(6):487–493Google Scholar
  83. 83.
    Schrader J (2007) Microbial flavour production. In: Berger RG (ed) Flavours and fragrances. Springer, Berlin, pp 507–574Google Scholar
  84. 84.
    Schügerl K, Hubbuch J (2005) Integrated bioprocesses. Curr Opin Microbiol 8(3):294–300Google Scholar
  85. 85.
    See-Toh YH, Ferreira FC, Livingston AG (2007) The influence of membrane formation parameters on the functional performance of organic solvent nanofiltration membranes. J Membr Sci 299(1–2):236–250Google Scholar
  86. 86.
    Segura A, Molina L, Fillet S, Krell T, Bernal P, Muñoz-Rojas J, Ramos J-L (2012) Solvent tolerance in Gram-negative bacteria. Curr Opin Biotechnol 23(3):415–421Google Scholar
  87. 87.
    Sikkema J, de Bont JA, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269(11):8022–8028Google Scholar
  88. 88.
    Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59(2):201–222Google Scholar
  89. 89.
    Stark D, von Stockar U (2003) In situ product removal (ISPR) in whole cell biotechnology during the last twenty years. Adv Biochem Eng/Biotechnol 80:149–175Google Scholar
  90. 90.
    Summers DK, Sherratt DJ (1984) Multimerization of high copy number plasmids causes instability: cole 1 encodes a determinant essential for plasmid monomerization and stability. Cell 36(4):1097–1103Google Scholar
  91. 91.
    Takors R (2004) Ganzzell-ISPR-Prozessentwicklung: chancen und risiken. Chemie Ingenieur Technik 76(12):1857–1864Google Scholar
  92. 92.
    Tan Q, Day DF (1998) Bioconversion of limonene to α-terpineol by immobilized Penicillium digitatum. Appl Microbiol Biotechnol 49(1):96–101Google Scholar
  93. 93.
    Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Micro 3(9):711–721Google Scholar
  94. 94.
    Tsuruta H, Paddon CJ, Eng D, Lenihan JR, Horning T, Anthony LC, Regentin R, Keasling JD, Renninger NS, Newman JD (2009) High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One 4(2):e4489Google Scholar
  95. 95.
    Vaidya AM, Halling PJ, Bell G (1994) Surfactant-induced breakthrough effects during the operation of two-phase biocatalytic membrane reactors. Biotechnol Bioeng 44(6):765–771Google Scholar
  96. 96.
    Valadez-Blanco R, Ferreira FC, Jorge RF, Livingston AG (2008) A membrane bioreactor for biotransformations of hydrophobic molecules using organic solvent nanofiltration (OSN) membranes. J Membr Sci 317(1–2):50–64Google Scholar
  97. 97.
    van Beilen JB, Holtackers R, Lüscher D, Bauer U, Witholt B, Duetz WA (2005) Biocatalytic production of perillyl alcohol from limonene by using a novel Mycobacterium sp. Cytochrome P450 alkane hydroxylase expressed in Pseudomonas putida. Appl Environ Microbiol 71(4):1737–1744Google Scholar
  98. 98.
    Van Sonsbeek HM, Beeftink HH, Tramper J (1993) Two-liquid-phase bioreactors. Enzyme Microb Technol 15(9):722–729Google Scholar
  99. 99.
    Wang DIC, Ochoa A (1972) Measurements on the interfacial areas of hydrocarbon in yeast fermentations and relationships to specific growth rates. Biotechnol Bioeng 14(3):345–360Google Scholar
  100. 100.
    Wang Y, Lim L, DiGuistini S, Robertson G, Bohlmann J, Breuil C (2013) A specialized ABC efflux transporter GcABC-G1 confers monoterpene resistance to Grosmannia clavigera, a bark beetle-associated fungal pathogen of pine trees. New Phytol 197(3):886–898Google Scholar
  101. 101.
    Wery J, Hidayat B, Kieboom J, de Bont JAM (2001) An insertion sequence prepares Pseudomonas putida S12 for severe solvent stress. J Biol Chem 276(8):5700–5706Google Scholar
  102. 102.
    Westfall PJ, Gardner TS (2011) Industrial fermentation of renewable diesel fuels. Curr Opin Biotechnol 22(3):344–350Google Scholar
  103. 103.
    Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A et al (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. PNAS 109(3):E111–E118Google Scholar
  104. 104.
    Westgate S, Vaidya AM, Bell G, Halling PJ (1998) High specific activity of whole cells in an aqueous-organic two-phase membrane bioreactor. Enzyme Microb Technol 22(7):575–577Google Scholar
  105. 105.
    Whited GM, Feher FJ, Benko DA, Cervin MA, Chotani GK, McAuliffe JC, LaDuca RJ, Ben-Shoshan EA, Sanford KJ (2010) Development of a gas-phase bioprocess for isoprene-monomer production using metabolic pathway engineering. Ind Biotechnol 6(3):152–163Google Scholar
  106. 106.
    Willemsen JHA, Dijkink BH, Togtema A (2004) Organophilic pervaporation for aroma isolation—industrial and commercial prospects. Membr Technol 2004(2):5–10Google Scholar
  107. 107.
    Willrodt C, David C, Cornelissen S, Bühler B, Julsing MK, Schmid A (2014) Engineering the productivity of recombinant Escherichia coli for limonene formation from glycerol in minimal media. Biotechnol J. doi:10.1002/biot.201400023 Google Scholar
  108. 108.
    Woodley JM, Bisschops M, Straathof AJJ, Ottens M (2008) Future directions for in situ product removal (ISPR). J Chem Technol Biotechnol 83(2):121–123Google Scholar
  109. 109.
    Wriessnegger T, Augustin P, Engleder M, Leitner E, Müller M, Kaluzna I, Schürmann M, Mink D, Zellnig G, Schwab H et al (2014) Production of the sesquiterpenoid (+)-nootkatone by metabolic engineering of Pichia pastoris. Metab Eng 24:18–29Google Scholar
  110. 110.
    Yang T, Stoopen G, Yalpani N, Vervoort J, de Vos R, Voster A, Verstappen FWA, Bouwmeester HJ, Jongsma MA (2011) Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns. Metab Eng 13(4):414–425Google Scholar
  111. 111.
    Zelder O, Hauer B (2000) Environmentally directed mutations and their impact on industrial biotransformation and fermentation processes. Curr Opin Microbiol 3(3):248–251Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hendrik Schewe
    • 1
  • Marco Antonio Mirata
    • 2
  • Jens Schrader
    • 1
  1. 1.DECHEMA Research Institute, Biochemical EngineeringFrankfurtGermany
  2. 2.Speciality Ingredients Research & Technology (RSI)Lonza LtdBaselSwitzerland

Personalised recommendations