Skip to main content

MIPs in Aqueous Environments

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 150))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wulff G, Sarhan A (1972) The use of polymers with enzyme-analogous structures for the resolution of racemates. Angew Chem Int Ed 11:341

    CAS  Google Scholar 

  2. Arshady R, Mosbach K (1981) Synthesis of substrate-selective polymers by host-guest polymerization. Macromol Chem Phys 182:687–692

    CAS  Google Scholar 

  3. Vlatakis G, Andersson LI, Müller R, Mosbach K (1993) Drug assay using antibody mimics made by molecular imprinting. Nature 361:645–647

    CAS  Google Scholar 

  4. Whitcombe MJ, Rodriguez ME, Villar P, Vulfson EN (1995) A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting—synthesis and characterization of polymeric receptors for chloresterol. J Am Chem Soc 117:7105–7111

    Google Scholar 

  5. Turiel E, Martín-Esteban A (2010) Molecularly imprinted polymers for sample preparation: a review. Anal Chim Acta 668:87–99

    CAS  Google Scholar 

  6. Tse Sum Bui B, Haupt K (2010) Molecularly imprinted polymers: synthetic receptors in bioanalysis. Anal Bioanal Chem 398:2481–2492

    Google Scholar 

  7. Tamayo FG, Turiel E, Martín-Esteban A (2007) Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: recent developments and future trends. J Chromatogr A 1152(1–2):32–40

    CAS  Google Scholar 

  8. Pichon V (2007) Selective sample treatment using molecularly imprinted polymers. J Chromatogr A 1152(1–2):41–53

    CAS  Google Scholar 

  9. Jiang M, Zhang JH, Mei SR, Shi Y, Zou LJ, Zhu YX, Dai K, Lu B (2006) Direct enrichment and high performance liquid chromatography analysis of ultra-trace bisphenol A in water samples with narrowly dispersible bisphenol A imprinted polymeric microspheres column. J Chromatogr A 1110(1–2):27–34

    CAS  Google Scholar 

  10. Zheng C, Huang YP, Liu ZS (2013) Synthesis and theoretical study of molecularly imprinted monoliths for HPLC. Anal Bioanal Chem 405:2147–2161

    CAS  Google Scholar 

  11. Martin PD, Jones GR, Stringer F, Wilson ID (2004) Comparison of extraction of a beta-blocker from plasma onto a molecularly imprinted polymer with liquid-liquid extraction and solid phase extraction methods. J Pharm Biomed Anal 35:1231–1239

    CAS  Google Scholar 

  12. Le Moullec S, Truong L, Montauban C, Begos A, Pichon V, Bellier B (2007) Extraction of alkyl methylphosphonic acids from aqueous samples using a conventional polymeric solid-phase extraction sorbent and a molecularly imprinted polymer. J Chromatogr A 1139:171–177

    Google Scholar 

  13. Piletska EV, Romero-Guerra M, Guerreiro AR, Karim K, Turner APF, Piletsky SA (2005) Adaptation of the molecular imprinted polymers towards polar environment. Anal Chim Acta 542:47–51

    CAS  Google Scholar 

  14. Hu Y, Liu R, Zhang Y, Li G (2009) Improvement of extraction capability of magnetic molecularly imprinted polymer beads in aqueous media via dual-phase solvent system. Talanta 79:576–582

    CAS  Google Scholar 

  15. Hu Y, Wang Y, Hu Y, Li G (2009) Liquid–liquid–solid microextraction based on membrane-protected molecularly imprinted polymer fiber for trace analysis of triazines in complex aqueous samples. J Chromatogr A 1216:8304–8311

    CAS  Google Scholar 

  16. Haginaka J, Takehira H, Hosoya K, Tanaka N, Haginaka J (1999) Uniform-sized molecularly imprinted polymer for (S)-naproxen selectively modified with hydrophilic external layer. J Chromatogr A 849:331–339

    CAS  Google Scholar 

  17. Haginaka J, Sanbe H (2000) Uniform-sized molecularly imprinted polymers for 2-arylpropionic acid derivatives selectively modified with hydrophilic external layer and their applications to direct serum injection analysis. Anal Chem 72:5206–5210

    CAS  Google Scholar 

  18. Sanbe H, Haginaka J (2003) Restricted access media-molecularly imprinted polymer for propranolol and its application to direct injection analysis of beta-blockers in biological fluids. Analyst 128:593–597

    CAS  Google Scholar 

  19. Puoci F, Iemma F, Cirillo G, Curcio M, Parisi OI, Spizzirri UG, Picci N (2009) New restricted access materials combined to molecularly imprinted polymers for selective recognition/release in water media. Eur Polym J 45:1634–1640

    CAS  Google Scholar 

  20. Parisi OI, Cirillo G, Curcio M, Puoci F, Iemma F, Spizzirri UG, Picci N (2010) Surface modifications of molecularly imprinted polymers for improved template recognition in water media. J Polym Res 17:355–362.)

    Google Scholar 

  21. Yang K, Berg MM, Zhao C, Ye L (2009) One-pot synthesis of hydrophilic molecularly imprinted nanoparticles. Macromolecules 42:8739–8746

    CAS  Google Scholar 

  22. Yao GH, Liang RP, Huang CF, Wang Y, Qiu JD (2013) Surface plasmon resonance sensor based on magnetic molecularly imprinted polymers amplification for pesticide recognition. Anal Chem 85:11944–11951

    CAS  Google Scholar 

  23. Xia Z, Lin Z, Xiao Y, Wang L, Zheng J, Yang H, Chen G (2013) Facile synthesis of polydopamine-coated molecularly imprinted silica nanoparticles for protein recognition and separation. Biosens Bioelectron 47:120–126

    CAS  Google Scholar 

  24. Nematollahzadeh A, Shojaei A, Abdekhodaie MJ, Sellergren B (2013) Molecularly imprinted polydopamine nano-layer on the pore surface of porous particles for protein capture in HPLC column. J Colloid Interface Sci 404:117–126

    CAS  Google Scholar 

  25. Jia X, Xu M, Wang Y, Ran D, Yang S, Zhang M (2013) Polydopamine-based molecular imprinting on silica-modified magnetic nanoparticles for recognition and separation of bovine hemoglobin. Analyst 138:651–658

    CAS  Google Scholar 

  26. Ma Y, Pan G, Zhang Y, Guo X, Zhang H (2013) Narrowly dispersed hydrophilic molecularly imprinted polymer nanoparticles for efficient molecular recognition in real aqueous samples including river water, milk, and bovine serum. Angew Chem Int Ed 52:1511–1514

    CAS  Google Scholar 

  27. Southard GE, Van Houten KA, Ott EW Jr, Murray GM (2007) Luminescent sensing of organophosphates using europium(III) containing imprinted polymers prepared by RAFT polymerization. Anal Chim Acta 581:202–207

    CAS  Google Scholar 

  28. Li Y, Dong C, Chu J, Qi J, Li X (2011) Surface molecular imprinting onto fluorescein-coated magnetic nanoparticles via reversible addition fragmentation chain transfer polymerization: a facile three-in-one system for recognition and separation of endocrine disrupting chemicals. Nanoscale 3:280–287

    CAS  Google Scholar 

  29. Li Y, Zhou WH, Yang HH, Wang XR (2009) Grafting of molecularly imprinted polymers from the surface of silica gel particles via reversible addition-fragmentation chain transfer polymerization: a selective sorbent for theophylline. Talanta 79:141–145

    CAS  Google Scholar 

  30. Li Y, Li X, Dong C, Li Y, Jin P, Qi J (2009) Selective recognition and removal of chlorophenols from aqueous solution using molecularly imprinted polymer prepared by reversible addition-fragmentation chain transfer polymerization. Biosens Bioelectron 25:306–312

    Google Scholar 

  31. Pan G, Ma Y, Zhang Y, Guo X, Li C, Zhang H (2011) Controlled synthesis of water-compatible molecularly imprinted polymer microspheres with ultra thin hydrophilic polymer shells via surface-initiated reversible addition-fragmentation chain transfer polymerization. Soft Matter 7:8428–8439

    CAS  Google Scholar 

  32. Ma Y, Zhang Y, Zhao M, Guo X, Zhang H (2012) Efficient synthesis of narrowly dispersed molecularly imprinted polymer microspheres with multiple stimuli-responsive template binding properties in aqueous media. Chem Commun 48:6217–6219

    CAS  Google Scholar 

  33. Kugimiya A, Takeuchi T (2001) Surface plasmon resonance sensor using molecularly imprinted polymer for detection of sialic acid. Biosens Bioelectron 16:1059–1062

    CAS  Google Scholar 

  34. Zhao M, Chen X, Zhang H, Yan H, Zhang H (2014) Well-defined hydrophilic molecularly imprinted polymer microspheres for efficient molecular recognition in real biological samples by facile RAFT coupling chemistry. Biomacromolecules 15:1663–1675

    CAS  Google Scholar 

  35. Liu S, Yan H, Wang M, Wang L (2013) Water-compatible molecularly imprinted microspheres in pipette tip solid-phase extraction for simultaneous determination of five fluoroquinolones in eggs. J Agric Food Chem 61:11974–11980

    CAS  Google Scholar 

  36. Zengin A, Yildirim E, Tamer U, Caykara T (2013) Molecularly imprinted superparamagnetic iron oxide nanoparticles for rapid enrichment and separation of cholesterol. Analyst 138:7238–7245

    CAS  Google Scholar 

  37. Yang M, Zhang Y, Lin S, Yang X, Fan Z, Yang L, Dong X (2013) Preparation of a bifunctional pyrazosulfuron-ethyl imprinted polymer with hydrophilic external layers by reversible addition-fragmentation chain transfer polymerization and its application in the sulfonylurea residue analysis. Talanta 114:143–151

    CAS  Google Scholar 

  38. Ban L, Han X, Wang XH, Huang YP, Liu ZS (2013) Carprofen-imprinted monolith prepared by reversible addition-fragmentation chain transfer polymerization in room temperature ionic liquids. Anal Bioanal Chem 405:8597–8605

    CAS  Google Scholar 

  39. Li X, Zhou M, Turson M, Lin S, Jiang P, Dong X (2013) Preparation of clenbuterol imprinted monolithic polymer with hydrophilic outer layers by reversible addition-fragmentation chain transfer radical polymerization and its application in the clenbuterol determination from human serum by on-line solid-phase extraction/HPLC analysis. Analyst 138:3066–3074

    CAS  Google Scholar 

  40. Ma Y, Pan G, Zhang Y, Guo X, Zhang H (2013) Comparative study of the molecularly imprinted polymers prepared by reversible addition-fragmentation chain transfer “bulk” polymerization and traditional radical “bulk” polymerization. J Mol Recogn 26:240–251

    CAS  Google Scholar 

  41. Hu X, Fan Y, Zhang Y, Dai G, Cai Q, Cao Y, Guo C (2012) Molecularly imprinted polymer coated solid-phase microextraction fiber prepared by surface reversible addition-fragmentation chain transfer polymerization for monitoring of Sudan dyes in chilli tomato sauce and chilli pepper samples. Anal Chim Acta 731:40–48

    CAS  Google Scholar 

  42. Pan G, Zhang Y, Ma Y, Li C, Zhang H (2011) Efficient one-pot synthesis of water-compatible molecularly imprinted polymer microspheres by facile RAFT precipitation polymerization. Angew Chem Int Ed Engl 50:11731–11734

    CAS  Google Scholar 

  43. Xu S, Li J, Chen L (2011) Molecularly imprinted polymers by reversible addition-fragmentation chain transfer precipitation polymerization for preconcentration of atrazine in food matrices. Talanta 85:282–289

    CAS  Google Scholar 

  44. Chang L, Li Y, Chu J, Qi J, Li X (2010) Preparation of core-shell molecularly imprinted polymer via the combination of reversible addition-fragmentation chain transfer polymerization and click reaction. Anal Chim Acta 680:65–71

    CAS  Google Scholar 

  45. Pan G, Zhang Y, Guo X, Li C, Zhang H (2010) An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization. Biosens Bioelectron 26:976–982

    Google Scholar 

  46. Yoshimatsu K, Ye L, Lindberg J, Chronakis IS (2008) Selective molecular adsorption using electrospun nanofiber affinity membranes. Biosens Bioelectron 23:1208–1215

    CAS  Google Scholar 

  47. Wu Y, Zhang Y, Zhang M, Liu F, Wan Y, Huang Z, Ye L, Zhou Q, Shi Y, Lu B (2014) Selective and simultaneous determination of trace bisphenol A and tebuconazole in vegetable and juice samples by membrane-based molecularly imprinted solid-phase extraction and HPLC. Food Chem 164:527–535

    CAS  Google Scholar 

  48. Horemans F, Weustenraed A, Spivak D, Cleij TJ (2012) Towards water compatible MIPs for sensing in aqueous media. J Mol Recogn 25:344–351

    CAS  Google Scholar 

  49. Xu L, Hu Y, Shen F, Li Q, Ren X (2013) Specific recognition of tyrosine-phosphorylated peptides by epitope imprinting of phenylphosphonic acid. J Chromatogr A 1293:85–91

    CAS  Google Scholar 

  50. Caro E, Marcé RM, Cormack PA, Sherrington DC, Borrull F (2004) Molecularly imprinted solid-phase extraction of naphthalene sulfonates from water. J Chromatogr A 1047:175–180

    CAS  Google Scholar 

  51. Baggiani C, Giovannoli C, Anfossi L, Tozzi C (2001) Molecularly imprinted solid-phase extraction sorbent for the clean-up of chlorinated phenoxyacids from aqueous samples. J Chromatogr A 938(1–2):35–44

    CAS  Google Scholar 

  52. Suedee R, Seechamnanturakit V, Suksuwan A, Canyuk B (2008) Recognition properties and competitive assays of a dual dopamine/serotonin selective molecularly imprinted polymer. Int J Mol Sci 9:2333–2356

    CAS  Google Scholar 

  53. Scorrano S, Longo L, Vasapollo G (2010) Molecularly imprinted polymers for solid-phase extraction of 1-methyladenosine from human urine. Anal Chim Acta 659:167–171

    CAS  Google Scholar 

  54. Pakade V, Lindahl S, Chimuka L, Turner C (2012) Molecularly imprinted polymers targeting quercetin in high-temperature aqueous solutions. J Chromatogr A 1230:15–23

    CAS  Google Scholar 

  55. Mayes AG, Mosbach K (1996) Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal Chem 68:3769–3774

    CAS  Google Scholar 

  56. Kempe H, Kempe M (2006) Development and evaluation of spherical molecularly imprinted polymer beads. Anal Chem 78:3659–3666

    CAS  Google Scholar 

  57. Walsh R, Osmani Q, Hughes H, Duggan P, McLoughlin P (2011) Synthesis of imprinted beads by aqueous suspension polymerisation for chiral recognition of antihistamines. J Chromatogr B Anal Technol Biomed Life Sci 879:3523–3530

    CAS  Google Scholar 

  58. Zourob M, Mohr S, Mayes AG, Macaskill A, Pérez-Moral N, Fielden PR, Goddard NJ (2006) A micro-reactor for preparing uniform molecularly imprinted polymer beads. Lab Chip 6:296–301

    CAS  Google Scholar 

  59. Hu SG, Wang SW, He XW (2003) An amobarbital molecularly imprinted microsphere for selective solid-phase extraction of phenobarbital from human urine and medicines and their determination by high-performance liquid chromatography. Analyst 128:1485–1489

    CAS  Google Scholar 

  60. Baggiani C, Anfossi L, Baravalle P, Giovannoli C, Giraudi G, Barolo C, Viscardi G (2009) Determination of banned Sudan dyes in food samples by molecularly imprinted solid phase extraction-high performance liquid chromatography. J Sep Sci 32:3292–3300

    CAS  Google Scholar 

  61. Qiao J, Yan H, Wang H, Lv Y (2011) Determination of ofloxacin and lomefloxacin in chicken muscle using molecularly imprinted solid-phase extraction coupled with liquid chromatography. J Sep Sci 34:2668–2673

    CAS  Google Scholar 

  62. Yang T, Li YH, Wei S, Li Y, Deng A (2008) Development of a selective molecularly imprinted polymer-based solid-phase extraction for indomethacin from water samples. Anal Bioanal Chem 391:2905–2914

    CAS  Google Scholar 

  63. Lenain P, Diana Di Mavungu J, Dubruel P, Robbens J, De Saeger S (2012) Development of suspension polymerized molecularly imprinted beads with metergoline as template and application in a solid-phase extraction procedure toward ergot alkaloids. Anal Chem 84:10411–10418

    CAS  Google Scholar 

  64. Suedee R, Srichana T, Martin GP (2000) Evaluation of matrices containing molecularly imprinted polymers in the enantioselective-controlled delivery of β-blockers. J Controlled Release 66:135–147

    CAS  Google Scholar 

  65. Yan H, Liu S, Gao M, Sun N (2013) Ionic liquids modified dummy molecularly imprinted microspheres as solid phase extraction materials for the determination of clenbuterol and clorprenaline in urine. J Chromatogr A 1294:10–16

    CAS  Google Scholar 

  66. Hu Y, Li Y, Liu R, Tan W, Li G (2011) Magnetic molecularly imprinted polymer beads prepared by microwave heating for selective enrichment of β-agonists in pork and pig liver samples. Talanta 84:462–470

    CAS  Google Scholar 

  67. Chen FF, Xie XY, Shi YP (2012) Magnetic molecularly imprinted polymer for the detection of rhaponticin in Chinese patent medicines. J Chromatogr A 1252:8–14

    CAS  Google Scholar 

  68. Zhang Y, Liu R, Hu Y, Li G (2009) Microwave heating in preparation of magnetic molecularly imprinted polymer beads for trace triazines analysis in complicated samples. Anal Chem 81:967–976

    CAS  Google Scholar 

  69. Andaç M, Say R, Denizli A (2004) Molecular recognition based cadmium removal from human plasma. J Chromatogr B Anal Technol Biomed Life Sci 811:119–126

    Google Scholar 

  70. Lai JP, Chen F, Sun H, Fan L, Liu GL (2014) Molecularly imprinted microspheres for the anticancer drug aminoglutethimide: synthesis, characterization, and solid-phase extraction applications in human urine samples. J Sep Sci 37:1170–1176

    CAS  Google Scholar 

  71. Shi X, Wu A, Zheng S, Li R, Zhang D (2007) Molecularly imprinted polymer microspheres for solid-phase extraction of chloramphenicol residues in foods. J Chromatogr B Anal Technol Biomed Life Sci 850:24–30

    CAS  Google Scholar 

  72. Yu J, Wan F, Zhang C, Yan M, Zhang X, Wang S (2010) Molecularly imprinted polymeric microspheres for determination of bovine serum albumin based on flow injection chemiluminescence sensor. Biosens Bioelectron 26:632–637

    CAS  Google Scholar 

  73. He J, Lv R, Cheng J, Li Y, Xue J, Lu K, Wang F (2010) Preparation and characterization of molecularly imprinted microspheres for dibutyl phthalate recognition in aqueous environment. J Sep Sci 33:3409–3414

    CAS  Google Scholar 

  74. Shaikh H, Memon N, Khan H, Bhanger M, Nizamani S (2012) Preparation and characterization of molecularly imprinted polymer for di (2-ethylhexyl) phthalate: Application to sample clean-up prior to gas chromatographic determination. J Chromatogr A 1247:125–133

    CAS  Google Scholar 

  75. Wang X, Fang Q, Liu S, Chen L (2012) Preparation of a magnetic molecularly imprinted polymer with pseudo template for rapid simultaneous determination of cyromazine and melamine in bio-matrix samples. Anal Bioanal Chem 404:1555–1564

    CAS  Google Scholar 

  76. Zhang Y, Li Y, Hu Y, Li G, Chen Y (2010) Preparation of magnetic indole-3-acetic acid imprinted polymer beads with 4-vinylpyridine and β-cyclodextrin as binary monomer via microwave heating initiated polymerization and their application to trace analysis of auxins in plant tissues. J Chromatogr A 1217:7337–7344

    CAS  Google Scholar 

  77. Madrakian T, Ahmadi M, Afkhami A, Soleimani M (2013) Selective solid-phase extraction of naproxen drug from human urine samples using molecularly imprinted polymer-coated magnetic multi-walled carbon nanotubes prior to its spectrofluorometric determination. Analyst 138:4542–4549

    CAS  Google Scholar 

  78. Yan H, Wang F, Han D, Yang G (2012) Simultaneous determination of four plant hormones in bananas by molecularly imprinted solid-phase extraction coupled with high performance liquid chromatography. Analyst 137:2884–2890

    CAS  Google Scholar 

  79. Jantarat C, Tangthong N, Songkro S, Martin GP, Suedee R (2008) S-propranolol imprinted polymer nanoparticle-on-microsphere composite porous cellulose membrane for the enantioselectively controlled delivery of racemic propranolol. Int J Pharm 349:212–225

    CAS  Google Scholar 

  80. Lian ZR, Wang JT (2013) Study of molecularly imprinted solid-phase extraction of gonyautoxins 2,3 in the cultured dinoflagellate Alexandrium tamarense by high-performance liquid chromatography with fluorescence detection. Environ Pollut 182:385–391

    CAS  Google Scholar 

  81. Kempe H, Kempe M (2004) Novel method for the synthesis of molecularly imprinted polymer bead libraries. Macromol Rapid Commun 25:315–320

    CAS  Google Scholar 

  82. Lai JP, Niessner R, Knopp D (2004) Benzo [a] pyrene imprinted polymers: synthesis, characterization and SPE application in water and coffee samples. Anal Chim Acta 522:137–144

    CAS  Google Scholar 

  83. Hu SG, Li L, He XW (2005) Comparison of trimethoprim molecularly imprinted polymers in bulk and in sphere as the sorbent for solid-phase extraction and extraction of trimethoprim from human urine and pharmaceutical tablet and their determination by high-performance liquid chromatography. Anal Chim Acta 537:215–222

    CAS  Google Scholar 

  84. Matsui J, Fujiwara K, Ugata S, Takeuchi T (2000) Solid-phase extraction with a dibutylmelamine-imprinted polymer as triazine herbicide-selective sorbent. J Chromatogr A 889:25–31

    CAS  Google Scholar 

  85. Kawaguchi M, Hayatsu Y, Nakata H, Ishii Y, Ito R, Saito K, Nakazawa H (2005) Molecularly imprinted solid phase extraction using stable isotope labeled compounds as template and liquid chromatography–mass spectrometry for trace analysis of bisphenol A in water sample. Anal Chim Acta 539:83–89

    CAS  Google Scholar 

  86. Ansell RJ, Mosbach K (1997) Molecularly imprinted polymers by suspension polymerisation in perfluorocarbon liquids, with emphasis on the influence of the porogenic solvent. J Chromatogr A 787:55–66

    CAS  Google Scholar 

  87. Lai JP, He XW, Jiang Y, Chen F (2003) Preparative separation and determination of matrine from the Chinese medicinal plant Sophora flavescens Ait by molecularly imprinted solid-phase extraction. Anal Bioanal Chem 375:264–269

    CAS  Google Scholar 

  88. Priego-Capote F, Ye L, Shakil S, Shamsi SA, Nilsson S (2008) Monoclonal behavior of molecularly imprinted polymer nanoparticles in capillary electrochromatography. Anal Chem 80:2881–2887

    CAS  Google Scholar 

  89. Shen X, Ye L (2011) Interfacial molecular imprinting in nanoparticle-stabilized emulsions. Macromolecules 44:5631–5637

    CAS  Google Scholar 

  90. Shen X, Ye L (2011) Molecular imprinting in Pickering emulsions: a new insight into molecular recognition in water. Chem Commun 47:10359–10361

    CAS  Google Scholar 

  91. Huang C, Shen X (2014) Janus molecularly imprinted polymer particles. Chem Commun 50:2646–2649

    CAS  Google Scholar 

  92. Hang H, Li C, Pan J, Li L, Dai J, Dai X, Yu P, Feng Y (2013) Selective separation of lambdacyhalothrin by porous/magnetic molecularly imprinted polymers prepared by Pickering emulsion polymerization. J Sep Sci 36:3285–3294

    CAS  Google Scholar 

  93. Zhang H, Dramou P, He H, Tan S, Pham-Huy C, Pan H (2012) Molecularly imprinted stationary phase prepared by reverse micro-emulsion polymerization for selective recognition of gatifloxacin in aqueous media. J Chromatogr Sci 50:499–508

    CAS  Google Scholar 

  94. Lv YK, Zhao CX, Li P, He YD, Yang ZR, Sun HW (2013) Preparation of doxycycline-imprinted magnetic microspheres by inverse-emulsion suspension polymerization for magnetic dispersion extraction of tetracyclines from milk samples. J Sep Sci 36:2656–2663

    CAS  Google Scholar 

  95. Tan CJ, Tong YW (2007) Preparation of superparamagnetic ribonuclease A surface-imprinted submicrometer particles for protein recognition in aqueous media. Anal Chem 79:299–306

    CAS  Google Scholar 

  96. Luo X, Zhan Y, Huang Y, Yang L, Tu X, Luo S (2011) Removal of water-soluble acid dyes from water environment using a novel magnetic molecularly imprinted polymer. J Hazard Mater 187:274–282

    CAS  Google Scholar 

  97. Monier M, Elsayed NH (2014) Selective extraction of uranyl ions using ion-imprinted chelating microspheres. J Colloid Interface Sci 423:113–122

    CAS  Google Scholar 

  98. Dai J, Pan J, Xu L, Li X, Zhou Z, Zhang R, Yan Y (2012) Preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization for the selective recognition of tetracycline from aqueous medium. J Hazard Mater 205–206:179–188

    Google Scholar 

  99. Ornelas M, Loureiro D, Araujo MJ, Marques E, Dias-Cabral C, Azenha M, Silva F (2013) Synthesis of glycylglycine-imprinted silica microspheres through different water-in-oil emulsion techniques. J Chromatogr A 1297:138–145

    CAS  Google Scholar 

  100. Tonglairoum P, Chaijaroenluk W, Rojanarata T, Ngawhirunpat T, Akkaramongkolporn P, Opanasopit P (2013) Development and characterization of propranolol selective molecular imprinted polymer composite electrospun nanofiber membrane. AAPS Pharm Sci Tech 14:838–846

    CAS  Google Scholar 

  101. Sener G, Ozgur E, Yilmaz E, Uzun L, Say R, Denizli A (2010) Quartz crystal microbalance based nanosensor for lysozyme detection with lysozyme imprinted nanoparticles. Biosens Bioelectron 26:815–821

    CAS  Google Scholar 

  102. Curcio P, Zandanel C, Wagner A, Mioskowski C, Baati R (2009) Semi-covalent surface molecular imprinting of polymers by one-stage mini-emulsion polymerization: glucopyranoside as a model analyte. Macromol Biosci 9:596–604

    CAS  Google Scholar 

  103. Esfandyari-Manesh M, Javanbakht M, Dinarvand R, Atyabi F (2012) Molecularly imprinted nanoparticles prepared by miniemulsion polymerization as selective receptors and new carriers for the sustained release of carbamazepine. J Mater Sci Mater Med 23:963–972

    CAS  Google Scholar 

  104. Tan CJ, Chua HG, Ker KH, Tong YW (2008) Preparation of bovine serum albumin surface-imprinted submicrometer particles with magnetic susceptibility through core-shell miniemulsion polymerization. Anal Chem 80:683–692

    CAS  Google Scholar 

  105. Perez-Moral N, Mayes AG (2004) Noncovalent imprinting in the shell of core-shell nanoparticles. Langmuir 20:3775–3779

    CAS  Google Scholar 

  106. Ashraf S, Cluley A, Mercado C, Mueller A (2011) Imprinted polymers for the removal of heavy metal ions from water. Water Sci Technol 64:1325–1332

    CAS  Google Scholar 

  107. Fujiwara I, Maeda M, Takagi M (2003) Preparation of ferrocyanide-imprinted pyridine-carrying microspheres by surface imprinting polymerization. Anal Sci 19:617–620

    CAS  Google Scholar 

  108. Shen X, Zhou T, Ye L (2012) Molecular imprinting of protein in Pickering emulsion. Chem Commun 48:8198–8200

    CAS  Google Scholar 

  109. Pan J, Li L, Hang H, Wu R, Dai X, Shi W, Yan Y (2013) Fabrication and evaluation of magnetic/hollow double-shelled imprinted sorbents formed by Pickering emulsion polymerization. Langmuir 29:8170–8178

    CAS  Google Scholar 

  110. Zhu W, Ma W, Li C, Pan J, Dai X, Gan M, Qu Q, Zhang Y (2014) Magnetic molecularly imprinted microspheres via yeast stabilized Pickering emulsion polymerization for selective recognition of λ-cyhalothrin. Colloids Surf A 453:27–36

    CAS  Google Scholar 

  111. Gu XH, Xu R, Yuan GL, Lu H, Gu BR, Xie HP (2010) Preparation of chlorogenic acid surface-imprinted magnetic nanoparticles and their usage in separation of traditional Chinese medicine. Anal Chim Acta 675:64–70

    CAS  Google Scholar 

  112. Dirion B, Cobb Z, Schillinger E, Andersson LI, Sellergren B (2003) Water-compatible molecularly imprinted polymers obtained via high-throughput synthesis and experimental design. J Am Chem Soc 125:15101–15109

    CAS  Google Scholar 

  113. Lulinski P, Maciejewska D (2013) Effect of functional monomers and porogens on morphology, structure and recognition properties of 2-(4-methoxyphenyl)ethylamine imprinted polymers. Mater Sci Eng C Mater Biol Appl 33:1162–1169

    CAS  Google Scholar 

  114. Mehdinia A, Aziz-Zanjani MO, Ahmadifar M, Jabbari A (2013) Design and synthesis of molecularly imprinted polypyrrole based on nanoreactor SBA-15 for recognition of ascorbic acid. Biosens Bioelectron 39:88–93

    CAS  Google Scholar 

  115. Zhang M, Zhang X, He X, Chen L, Zhang Y (2012) A self-assembled polydopamine film on the surface of magnetic nanoparticles for specific capture of protein. Nanoscale 4:3141–3147

    CAS  Google Scholar 

  116. Zhou WH, Tang SF, Yao QH, Chen FR, Yang HH, Wang XR (2010) A quartz crystal microbalance sensor based on mussel-inspired molecularly imprinted polymer. Biosens Bioelectron 26:585–589

    CAS  Google Scholar 

  117. Ouyang R, Lei J, Ju H (2010) Artificial receptor-functionalized nanoshell: facile preparation, fast separation and specific protein recognition. Nanotechnology 21:185502

    Google Scholar 

  118. Liu K, Wei WZ, Zeng JX, Liu XY, Gao YP (2006) Application of a novel electrosynthesized polydopamine-imprinted film to the capacitive sensing of nicotine. Anal Bioanal Chem 385:724–729

    CAS  Google Scholar 

  119. Xu ZF, Wen G, Kuang DZ, Zhang FX, Tang SP (2013) Selective separation of deltamethrin by molecularly imprinted polymers using a beta-cyclodextrin derivative as the functional monomer. J Environ Sci Health B 48:336–343

    CAS  Google Scholar 

  120. Zhang H, Dramou P, He H, Tan S, Pham-Huy C, Pan H (2012) Molecularly imprinted stationary phase prepared by reverse micro-emulsion polymerization for selective recognition of gatifloxacin in aqueous media. J Chromatogr Sci 50:499–508

    CAS  Google Scholar 

  121. Zhang Z, Yang X, Zhang H, Zhang M, Luo L, Hu Y, Yao S (2011) Novel molecularly imprinted polymers based on multi-walled carbon nanotubes with binary functional monomer for the solid-phase extraction of erythromycin from chicken muscle. J Chromatogr B Anal Technol Biomed Life Sci 879:1617–1624

    CAS  Google Scholar 

  122. Zhang Y, Li Y, Hu Y, Li G, Chen Y (2010) Preparation of magnetic indole-3-acetic acid imprinted polymer beads with 4-vinylpyridine and beta-cyclodextrin as binary monomer via microwave heating initiated polymerization and their application to trace analysis of auxins in plant tissues. J Chromatogr A 1217:7337–7344

    CAS  Google Scholar 

  123. Qin L, He XW, Li WY, Zhang YK (2008) Molecularly imprinted polymer prepared with bonded beta-cyclodextrin and acrylamide on functionalized silica gel for selective recognition of tryptophan in aqueous media. J Chromatogr A 1187(1–2):94–102

    CAS  Google Scholar 

  124. Yang Y, Long Y, Cao Q, Li K, Liu F (2008) Molecularly imprinted polymer using beta-cyclodextrin as functional monomer for the efficient recognition of bilirubin. Anal Chim Acta 606:92–97

    CAS  Google Scholar 

  125. Xu Z, Kuang D, Liu L, Deng Q (2007) Selective adsorption of norfloxacin in aqueous media by an imprinted polymer based on hydrophobic and electrostatic interactions. J Pharm Biomed Anal 45:54–61

    CAS  Google Scholar 

  126. Hsieh RY, Tsai HA, Syu MJ (2006) Designing a molecularly imprinted polymer as an artificial receptor for the specific recognition of creatinine in serums. Biomaterials 27:2083–2089

    CAS  Google Scholar 

  127. Tsai HA, Syu MJ (2005) Synthesis of creatinine-imprinted poly(beta-cyclodextrin) for the specific binding of creatinine. Biomaterials 26:2759–2766

    CAS  Google Scholar 

  128. Osman B, Uzun L, Besirli N, Denizli A (2013) Microcontact imprinted surface plasmon resonance sensor for myoglobin detection. Mater Sci Eng C Mater Biol Appl 33:3609–3614

    CAS  Google Scholar 

  129. Nestic M, Babic S, Pavlovic DM, Sutlovic D (2013) Molecularly imprinted solid phase extraction for simultaneous determination of Delta9-tetrahydrocannabinol and its main metabolites by gas chromatography-mass spectrometry in urine samples. Forensic Sci Int 231:317–324

    CAS  Google Scholar 

  130. Koc I, Baydemir G, Bayram E, Yavuz H, Denizli A (2011) Selective removal of 17beta-estradiol with molecularly imprinted particle-embedded cryogel systems. J Hazard Mater 192:1819–1826

    CAS  Google Scholar 

  131. Liu Y, Hoshina K, Haginaka J (2010) Monodispersed, molecularly imprinted polymers for cinchonidine by precipitation polymerization. Talanta 80:1713–1718

    CAS  Google Scholar 

  132. Ansell RJ, Wang D (2009) Imprinted polymers for chiral resolution of (±)-ephedrine. Part 3: NMR predictions and HPLC results with alternative functional monomers. Analyst 134:564–576

    CAS  Google Scholar 

  133. Yan H, Tian M, Row KH (2008) Determination of enrofloxacin and ciprofloxacin in milk using molecularly imprinted solid-phase extraction. J Sep Sci 31:3015–3020

    CAS  Google Scholar 

  134. Urraca JL, Carbajo MC, Torralvo MJ, Gonzalez-Vazquez J, Orellana G, Moreno-Bondi MC (2008) Effect of the template and functional monomer on the textural properties of molecularly imprinted polymers. Biosens Bioelectron 24:155–161

    CAS  Google Scholar 

  135. Bereli N, Andac M, Baydemir G, Say R, Galaev IY, Denizli A (2008) Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels. J Chromatogr A 1190:18–26

    CAS  Google Scholar 

  136. Ng SM, Narayanaswamy R (2006) Fluorescence sensor using a molecularly imprinted polymer as a recognition receptor for the detection of aluminium ions in aqueous media. Anal Bioanal Chem 386:1235–1244

    CAS  Google Scholar 

  137. Oral E, Peppas NA (2006) Hydrophilic molecularly imprinted poly(hydroxyethyl-methacrylate) polymers. J Biomed Mater Res A 78:205–210

    Google Scholar 

  138. Perez-Moral N, Mayes AG (2006) Direct rapid synthesis of MIP beads in SPE cartridges. Biosens Bioelectron 21:1798–1803

    CAS  Google Scholar 

  139. Piletska EV, Turner NW, Turner AP, Piletsky SA (2005) Controlled release of the herbicide simazine from computationally designed molecularly imprinted polymers. J Controlled Release 108:132–139

    CAS  Google Scholar 

  140. Andac M, Say R, Denizli A (2004) Molecular recognition based cadmium removal from human plasma. J Chromatogr B Anal Technol Biomed Life Sci 811:119–126

    CAS  Google Scholar 

  141. Kugimiya A, Takeuchi T (2002) Molecular recognition by indoleacetic acid-imprinted polymers—effects of 2-hydroxyethyl methacrylate content. Anal Bioanal Chem 372:305–307

    CAS  Google Scholar 

  142. Kugimiya A, Takeuchi T (2001) Surface plasmon resonance sensor using molecularly imprinted polymer for detection of sialic acid. Biosens Bioelectron 16:1059–1062

    CAS  Google Scholar 

  143. Monier M, El-Sokkary AMA (2010) Preparation of molecularly imprinted cross-linked chitosan/glutaraldehyde resin for enantioselective separation of L-glutamic acid. Int J Biol Macromol 47:207–213

    CAS  Google Scholar 

  144. Hua K, Zhang L, Zhang Z, Guo Y, Guo T (2011) Surface hydrophilic modification with a sugar moiety for a uniform-sized polymer molecularly imprinted for phenobarbital in serum. Acta Biomater 7:3086–3093

    CAS  Google Scholar 

  145. Griffete N, Frederich H, Maître A, Ravaine S, Chehimi MM, Mangeney C (2012) Inverse opals of molecularly imprinted hydrogels for the detection of bisphenol A and pH sensing. Langmuir 28:1005–1012

    CAS  Google Scholar 

  146. Le Noir M, Plieva FM, Hey T, Guieysse B, Mattiasson B (2007) Macroporous molecularly imprinted polymer/cryogel composite systems for the removal of endocrine disrupting trace contaminants. J Chromatogr A 1154:158–164

    Google Scholar 

  147. Le Noir M, Plieva FM, Mattiasson B (2009) Removal of endocrine disrupting compounds from water using macroporous molecularly imprinted cryogels in a moving-bed reactor. J Sep Sci 32:1471–1479

    Google Scholar 

  148. Önnby L, Pakade V, Mattiasson B, Kirsebom H (2012) Polymer composite adsorbents using particles of molecularly imprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters. Water Res 46:4111–4120

    Google Scholar 

  149. Lin Z, Yang F, He X, Zhao X, Zhang Y (2009) Preparation and evaluation of a macroporous molecularly imprinted hybrid silica monolithic column for recognition of proteins by high performance liquid chromatography. J Chromatogr A 1216:8612–8622

    CAS  Google Scholar 

  150. Nematollahzadeh A, Lindemann P, Sun W, Stute J, Lutkemeyer D, Sellergren B (2014) Robust and selective nano cavities for protein separation: an interpenetrating polymer network modified hierarchically protein imprinted hydrogel. J Chromatogr A 1345:154–163

    CAS  Google Scholar 

  151. Troiani D, Dion JR, Burns DH (2011) Ultrasonic quantification using smart hydrogel sensors. Talanta 83:1371–1375

    CAS  Google Scholar 

  152. Parmpi P, Kofinas P (2004) Biomimetic glucose recognition using molecularly imprinted polymer hydrogels. Biomaterials 25:1969–1973

    CAS  Google Scholar 

  153. Bolisay LD, Culver JN, Kofinas P (2006) Molecularly imprinted polymers for tobacco mosaic virus recognition. Biomaterials 27:4165–4168

    CAS  Google Scholar 

  154. Wang C, Javadi A, Ghaffari M, Gong S (2010) A pH-sensitive molecularly imprinted nanospheres/hydrogel composite as a coating for implantable biosensors. Biomaterials 31:4944–4951

    CAS  Google Scholar 

  155. Ali M, Horikawa S, Venkatesh S, Saha J, Hong JW, Byrne ME (2007) Zero-order therapeutic release from imprinted hydrogel contact lenses within in vitro physiological ocular tear flow. J Controlled Release 124:154–162

    CAS  Google Scholar 

  156. Wang X, Mu Z, Liu R, Pu Y, Yin L (2013) Molecular imprinted photonic crystal hydrogels for the rapid and label-free detection of imidacloprid. Food Chem 141:3947–3953

    CAS  Google Scholar 

  157. Meng L, Meng P, Tang B, Zhang Q, Wang Y (2013) Molecularly imprinted photonic hydrogels for fast screening of atropine in biological samples with high sensitivity. Forensic Sci Int 231:6–12

    CAS  Google Scholar 

  158. Qiu H, Fan L, Li X, Li L, Sun M, Luo C (2013) A microflow chemiluminescence sensor for indirect determination of dibutyl phthalate by hydrolyzing based on biological recognition materials. J Pharm Biomed Anal 75:123–129

    CAS  Google Scholar 

  159. Lu F, Sun M, Fan L, Qiu H, Li X, Luo C (2012) Flow injection chemiluminescence sensor based on core–shell magnetic molecularly imprinted nanoparticles for determination of chrysoidine in food samples. Sens Actuators B 173:591–598

    CAS  Google Scholar 

  160. Hua Z, Zhou S, Zhao M (2009) Fabrication of a surface imprinted hydrogel shell over silica microspheres using bovine serum albumin as a model protein template. Biosens Bioelectron 25:615–622

    CAS  Google Scholar 

  161. Bai W, Spivak DA (2014) A double-imprinted diffraction-grating sensor based on a virus-responsive super-aptamer hydrogel derived from an impure extract. Angew Chem Int Ed Engl 53:2095–2098

    CAS  Google Scholar 

  162. Li SH, Wang J, Zhao MP (2009) Cupric ion enhanced molecular imprinting of bovine serum albumin in hydrogel. J Sep Sci 32:3359–3363

    CAS  Google Scholar 

  163. Ali M, Byrne ME (2009) Controlled release of high molecular weight hyaluronic acid from molecularly imprinted hydrogel contact lenses. Pharm Res 26:714–726

    CAS  Google Scholar 

  164. Xia YQ, Guo TY, Song MD, Zhang BH, Zhang BL (2005) Hemoglobin recognition by imprinting in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan. Biomacromolecules 6:2601–2606

    CAS  Google Scholar 

  165. Reddy SM, Phan QT, El-Sharif H, Govada L, Stevenson D, Chayen NE (2012) Protein crystallization and biosensor applications of hydrogel-based molecularly imprinted polymers. Biomacromolecules 13:3959–3965

    CAS  Google Scholar 

  166. Yin D, Ulbricht M (2013) Antibody-imprinted membrane adsorber via two-step surface grafting. Biomacromolecules 14:4489–4496

    CAS  Google Scholar 

  167. Espinosa-Garcia BM, Arguelles-Monal WM, Hernandez J, Felix-Valenzuela L, Acosta N, Goycoolea FM (2007) Molecularly imprinted chitosan-genipin hydrogels with recognition capacity toward o-xylene. Biomacromolecules 8:3355–3364

    CAS  Google Scholar 

  168. Wang LQ, Lin FY, Yu LP (2012) A molecularly imprinted photonic polymer sensor with high selectivity for tetracyclines analysis in food. Analyst 137:3502–3509

    CAS  Google Scholar 

  169. Zhang C, Jia X, Wang Y, Zhang M, Yang S, Guo J (2014) Thermosensitive molecularly imprinted hydrogel cross-linked with N-malely chitosan for the recognition and separation of BSA. J Sep Sci 37:419–426

    CAS  Google Scholar 

  170. Hua Z, Chen Z, Li Y, Zhao M (2008) Thermosensitive and salt-sensitive molecularly imprinted hydrogel for bovine serum albumin. Langmuir 24:5773–5780

    CAS  Google Scholar 

  171. Wang W, Zong L, Wang A (2013) A nanoporous hydrogel based on vinyl-functionalized alginate for efficient absorption and removal of Pb2+ ions. Int J Biol Macromol 62:225–231

    CAS  Google Scholar 

  172. Mafu LD, Msagati TAM, Mamba BB (2013) Ion-imprinted polymers for environmental monitoring of inorganic pollutants: synthesis, characterization, and applications. Environ Sci Pollut Res 20:790–802

    CAS  Google Scholar 

  173. Giakisikli G, Anthemidis AN (2013) Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review. Anal Chim Acta 789:1–16

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wan, Yc., Ma, Ht., Lu, B. (2015). MIPs in Aqueous Environments. In: Mattiasson, B., Ye, L. (eds) Molecularly Imprinted Polymers in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 150. Springer, Cham. https://doi.org/10.1007/10_2015_317

Download citation

Publish with us

Policies and ethics