Skip to main content

Modeling the Growth of Filamentous Fungi at the Particle Scale in Solid-State Fermentation Systems

  • Chapter
  • First Online:
Filaments in Bioprocesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Cross-sectional area of the hypha (µm2)

A L :

Area of contact of the plasma membrane with the extracellular medium (µm2)

c 1 :

Proportionality constant (L3 s−1 g-nutrient−1 g-biomass−1)

c 2 :

Proportionality constant (L g-transporter g-biomass−1)

c 3 :

Proportionality constant (g-nutrient g-transporter-substrate-complex−1 s−1)

\( \left. {C_{{^{{{\text{O}}_{2} }} }}^{{}} } \right|_{j} \) :

O2 concentration around tank j (g-O2 L−1)

\( C_{{^{{{\text{O}}_{2} }} }}^{f} \) :

O2 concentration in the biofilm (g-O2 L−1)

D E :

Effective diffusivity of the enzyme in the solid particle (µm2 s−1)

\( D_{{^{{{\text{O}}_{2} }} }}^{f} \) :

Effective diffusivity of O2 in the biofilm layer (µm2 s−1)

D S :

Diffusivity of maltose inside the hypha (µm2 s−1)

\( D_{S}^{e} \) :

Effective diffusivity of the soluble nutrient or hydrolysis product in the solid particle (µm2 s−1)

E :

Enzyme concentration (g-enzyme L−1)

H(x):

Heaviside function

j :

Number of the tank

\( \left. {J_{E} } \right|_{z = 0} \) :

Flux of enzyme across the surface of the particle (g-enzyme µm−2 s−1)

k c :

Maximum rate of vesicle consumption (g-vesicles s−1)

K C :

Saturation constant for vesicle consumption (g-vesicles L−1)

k cat :

Catalytic constant of the enzyme (g-polymeric-nutrient g-enzyme−1 s−1)

K m :

Saturation constant for the hydrolysis of the polymeric carbon and energy source (g-polymeric-nutrient L−1)

k max :

Maximum specific transport rate of soluble nutrient or hydrolysis product across the plasma membrane (g-nutrient g-transporter−1 s−1)

\( K_{{{\text{O}}_{ 2} }} \) :

Saturation constant for O2 (g-O2 L−1)

k p :

Maximum rate of vesicle production (g-vesicles L−1 s−1)

K P :

Saturation constant for vesicle production (g-nutrient L−1)

K s :

Saturation constant for glucose in growth rate expression (g-nutrient L−1)

K t :

Saturation constant for the absorption of soluble nutrient or hydrolysis product across the membrane (g-nutrient L−1)

L :

Length of the tip-tank (µm)

m :

Maintenance coefficient (g-nutrient g-biomass−1 s−1)

n :

Tank number of the tip-tank

r :

Radial position in the biofilm (µm)

r a :

Rate of absorption across the plasma membrane (g-nutrient s−1)

r E :

Rate of secretion of enzyme (g-enzyme µm−2 s−1)

r EP :

Rate of production of extracellular products (g-extracellular-products s−1)

r IP :

Rate of production of intracellular products (g-intracellular-products s−1)

r LI :

Rate of production of lipids (g-lipids s−1)

r N :

Rate of consumption of alanine (g-alanine s−1)

\( r_{{{\text{O}}_{ 2} }} \) :

Rate of consumption of O2 (g-O2 s−1)

r s :

Rate of consumption of glucose (g-glucose s−1)

r X :

Rate of biomass growth [g-biomass L−1 s−1 for Eq. (12); g-biomass s−1 for Eq. (15)]

S f :

Concentration of soluble nutrient or hydrolysis product in the biofilm (g L−1)

S e :

Concentration of extracellular soluble nutrient or hydrolysis product (g L−1)

S i :

Concentration of intracellular soluble nutrient or hydrolysis product (g L−1)

\( \left. {S_{i} } \right|_{j} \) :

Concentration of maltose in tank j (g-maltose L−1)

S p :

Concentration of polymeric nutrient (g-polymeric-nutrient L−1)

SSF:

Solid-state fermentation

t :

Cultivation time (s)

T :

Transporter concentration per area of the plasma membrane (g-transporter µm−2)

t E :

Time when the secretion of enzyme ceases (s)

v :

Velocity of cytoplasmic flow (µm s−1)

X :

Concentration of biomass (g-biomass L−1)

Y E :

Yield of glucose from starch (g-glucose g-polymeric-nutrient−1)

Y L :

Extension of hyphal length per mass of vesicle consumed (µm g-vesicle−1)

\( Y_{{X/{\text{O}}_{2} }} \) :

Yield of biomass O2 (g-biomass g-O −12 )

\( Y_{\phi } \) :

Yield coefficient for production of vesicles from maltose (g-vesicles g-nutrient−1)

z :

Depth within the solid particle (µm)

η :

Membrane coordinate (µm)

Δz :

Length of a “normal” tank (µm)

θ :

Concentration of the transporter–substrate complex (g-transporter-substrate-complex L−1)

µ max :

Maximum specific growth rate constant (s−1)

ρ X :

Biomass dry weight per volume (g-biomass L−1)

\( \left. \phi \right|_{j} \) :

Concentration of vesicles in tank j (g-vesicles L−1)

ψ :

Velocity of active transport of vesicles (µm s−1)

References

  1. Auria R, Ortiz I, Villegas E, Revah S (1995) Influence of growth and high mould concentration on the pressure drop in solid state fermentations. Process Biochem 30:751–756

    Article  CAS  Google Scholar 

  2. Balmant W (2013) Mathematical modeling of the microscopic growth of filamentous fungi on solid surfaces. Ph.D. thesis, Universidade Federal do Paraná

    Google Scholar 

  3. Berepiki A, Lichius A, Read ND (2011) Actin organization and dynamics in filamentous fungi. Nat Rev Microbiol 9:876–887

    Article  CAS  Google Scholar 

  4. Bleichrodt R, Vinck A, Krijgsheld P, van Leeuwen MR, Dijksterhuis J, Wösten HAB (2013) Cytosolic streaming in vegetative mycelium and aerial structures of Aspergillus niger. Stud Mycol 74:31–46

    Article  CAS  Google Scholar 

  5. Boswell GP, Davidson FA (2012) Modelling hyphal networks. Fungal Biol Rev 26:30–38

    Article  Google Scholar 

  6. Boswell GP, Jacobs H, Ritz K, Gadd GM, Davidson FA (2007) The development of fungal networks in complex environments. Bull Math Biol 69:605–634

    Article  Google Scholar 

  7. Chahal DS, Moo-Young M, Vlach D (1983) Protein production and growth characteristics of Chaetomium cellulolyticum during solid state fermentation of corn stover. Mycologia 75:597–603

    Article  CAS  Google Scholar 

  8. Collinge AJ, Trinci APJ (1974) Hyphal tips of wild-type and spreading colonial mutants of Neurospora crassa. Arch Microbiol 99:353–368

    Article  CAS  Google Scholar 

  9. Coradin JH, Braun A, Viccini G, Luz LFL Jr, Krieger N, Mitchell DA (2011) A three-dimensional discrete lattice-based system for modeling the growth of aerial hyphae of filamentous fungi in solid-state fermentation systems. Biochem Eng J 54:164–171

    Article  CAS  Google Scholar 

  10. Davidson FA (2007) Mathematical modelling of mycelia: a question of scale. Fungal Biol Rev 21:30–41

    Article  Google Scholar 

  11. Du C, Lin SKC, Koutinas A, Wang R, Dorado P, Webb C (2008) A wheat biorefining strategy based on solid-state fermentation for fermentative production of succinic acid. Bioresour Technol 99:8310–8315

    Article  CAS  Google Scholar 

  12. Edelstein L, Hadar Y, Chet I, Henis Y, Segel LA (1983) A model for fungal colony growth applied to Sclerotium rolfsii. J Gen Microbiol 129:1873–1881

    Google Scholar 

  13. Edelstein L, Segel LA (1983) Growth and metabolism in mycelial fungi. J Theor Biol 104:187–210

    Article  CAS  Google Scholar 

  14. Ferrer J, Prats C,·López D (2008) Individual-based modelling: An essential tool for microbiology. J Biol Phys 34: 19–37

    Google Scholar 

  15. Fuhr MJ, Schubert M, Schwarze FWMR, Herrmann HJ (2011) Modelling the hyphal growth of the wood-decay fungus Physisporinus vitreus. Fungal Biol 115:919–932

    Article  CAS  Google Scholar 

  16. Georgiou G, Shuler ML (1986) A computer model for the growth and differentiation of a fungal colony on solid substrate. Biotechnol Bioeng 28:405–416

    Article  CAS  Google Scholar 

  17. Glass NL, Rasmussen C, Roca MG, Read ND (2004) Hyphal homing, fusion and mycelial interconnectedness. Trends Microbiol 12:135–141

    Article  CAS  Google Scholar 

  18. Gooday GW (1971) An autoradiographic study of hyphal growth of some fungi. J Gen Microbiol 67:125–133

    Article  CAS  Google Scholar 

  19. Goriely A, Tabor M (2008) Mathematical modeling of hyphal tip growth. Fungal Biol Rev 22:77–83

    Article  Google Scholar 

  20. Grimm LH, Kelly S, Krull R, Hempel DC (2005) Morphology and productivity of filamentous fungi. App Microbiol Biotechnol 69:375–384

    Article  CAS  Google Scholar 

  21. Harris SD (2008) Branching of fungal hyphae: regulation, mechanisms and comparison with other branching systems. Mycologia 100:823–832

    Article  Google Scholar 

  22. Heaton LLM, López E, Maini PK, Fricker MD, Jones NS (2010) Growth-induced mass flows in fungal networks. Proc R Soc B 277:3265–3274

    Article  Google Scholar 

  23. Hopkins S, Boswell GP (2012) Mycelial response to spatiotemporal nutrient heterogeneity: A velocity-jump mathematical model. Fungal Ecol 5:124–136

    Article  Google Scholar 

  24. Hutchinson SA, Sharma P, Clarke KR, MacDonald I (1980) Control of hyphal orientation in colonies of Mucor hiemalis. Trans Brit Mycol Soc 75:177–191

    Article  Google Scholar 

  25. Ikasari L, Mitchell DA (2000) Two-phase model of the kinetics of growth of Rhizopus oligosporus in membrane culture. Biotechnol Bioeng 68:619–627

    Article  CAS  Google Scholar 

  26. Ito K, Kimizuka A, Okazaki N, Kobayashi S (1989) Mycelial distribution in rice koji. J Ferment Bioeng 68:7–13

    Article  Google Scholar 

  27. Jurus AM, Sundberg WJ (1976) Penetration of Rhizopus oligosporus into soybeans in tempeh. Appl Environ Microbiol 32:284–287

    CAS  Google Scholar 

  28. Lew RR (2011) How does a hypha grow? The biophysics of pressurized growth in fungi. Nat Rev Microbiol 9:509–518

    Article  CAS  Google Scholar 

  29. López-Isunza F, Larralde-Corona CP, Viniegra-González G (1997) Mass transfer and growth kinetics in filamentous fungi. Chem Eng Sci 52:2629–2639

    Article  Google Scholar 

  30. Markham P, Collinge AJ (1987) Woronin bodies of filamentous fungi. FEMS Microbiol Lett 46:1–11

    Article  Google Scholar 

  31. Meeuwse P, Klok AJ, Haemers S, Tramper J, Rinzema A (2012) Growth and lipid production of Umbelopsis isabellina on a solid substrate—mechanistic modeling and validation. Process Biochem 47:1228–1242

    Article  CAS  Google Scholar 

  32. Mitchell DA, Berovic M, Krieger N (2000) Biochemical engineering aspects of solid state bioprocessing. Adv Biochem Eng/Biotechnol 68:61–138

    CAS  Google Scholar 

  33. Mitchell DA, Do DD, Greenfield PF, Doelle HW (1991) A semi-mechanistic mathematical model for growth of Rhizopus oligosporus in a model solid-state fermentation system. Biotechnol Bioeng 38:353–362

    Article  CAS  Google Scholar 

  34. Mitchell DA, Doelle HW, Greenfield PF (1989) Suppression of penetrative hyphae of Rhizopus oligosporus by membrane filters in a model solid-state fermentation system. Biotechnol Tech 3:45–50

    Article  Google Scholar 

  35. Mitchell DA, Krieger N, Berovič M (2006) Solid state fermentation bioreactors: fundamentals of design and operation. Springer, Heidelberg

    Book  Google Scholar 

  36. Mitchell DA, von Meien OF, Krieger N (2003) Recent developments in modeling of solid-state fermentation: heat and mass transfer in bioreactors. Biochem Eng J 13:137–147

    Article  CAS  Google Scholar 

  37. Mitchell DA, von Meien OF, Krieger N, Dalsenter FDH (2004) A review of recent developments in modeling of microbial growth kinetics and intraparticle phenomena in solid-state fermentation. Biochem Eng J 17:15–26

    Article  CAS  Google Scholar 

  38. Money NP (1995) Turgor pressure and the mechanics of fungal penetration. Can J Botany 73(S1):96–102

    Article  Google Scholar 

  39. Mussatto SI, Ballesteros LF, Martins S, Teixeira JA (2012) Use of agro-industrial wastes in solid-state fermentation processes. In: Show K-Y (ed), Industrial Waste, InTech, Rijeka, Croatia

    Google Scholar 

  40. Nopharatana M, Howes T, Mitchell D (1998) Modelling fungal growth on surfaces. Biotechnol Tech 12:313–318

    Article  CAS  Google Scholar 

  41. Nopharatana M, Mitchell DA, Howes T (2003) Use of confocal microscopy to follow the development of penetrative hyphae during growth of Rhizopus oligosporus in an artificial solid-state fermentation system. Biotechnol Bioeng 81:438–447

    Article  CAS  Google Scholar 

  42. Nopharatana M, Mitchell DA, Howes T (2003) Use of confocal scanning laser microscopy to measure the concentrations of aerial and penetrative hyphae during growth of Rhizopus oligosporus on a solid surface. Biotechnol Bioeng 84: 71

    Google Scholar 

  43. Oostra J, le Comte EP, van der Heuvel JC, Tramper J, Rinzema A (2001) Intra-particle oxygen diffusion limitation in solid-state fermentation. Biotechnol Bioeng 74:13–24

    Article  Google Scholar 

  44. Pandey A, Soccol CR, Mitchell D (2000) New developments in solid-state fermentation: I—bioprocesses and products. Process Biochem 35:1153–1169

    Article  CAS  Google Scholar 

  45. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22:189–259

    Article  CAS  Google Scholar 

  46. Peñalva MA (2010) Endocytosis in filamentous fungi: Cinderella gets her reward. Curr Opin Microbiol 13:684–692

    Article  Google Scholar 

  47. Prosser JI (1995) Kinetics of filamentous growth and branching. In: Gow NAR, Gadd GM (ed) The growing fungus, Chapman Hall, London

    Google Scholar 

  48. Prosser JI, Trinci APJ (1979) A model for hyphal growth and branching. J Gen Microbiol 111:153–164

    Article  CAS  Google Scholar 

  49. Rahardjo YSP, Sie S, Weber FJ, Tramper J, Rinzema A (2005) Aerial mycelia of Aspergillus oryzae accelerate α-amylase production in a model solid-state fermentation system. Enzyme Microb Technol 36:900–902

    Article  CAS  Google Scholar 

  50. Rahardjo YSP, Tramper J, Rinzema A (2006) Modeling conversion and transport phenomena in solid-state fermentation: a review and perspectives. Biotechnol Adv 24:161–177

    Article  CAS  Google Scholar 

  51. Rahardjo YSP, Weber FJ, le Comte EP, Tramper J, Rinzema A (2002) Contribution of aerial hyphae of Aspergillus oryzae to respiration in a model solid-state fermentation system. Biotechnol Bioeng 78:539–544

    Article  Google Scholar 

  52. Rajagopalan S, Modak JM (1995) Evaluation of relative growth limitation due to depletion of glucose and oxygen during fungal growth on a spherical solid particle. Chem Eng Sci 50:803–811

    Article  CAS  Google Scholar 

  53. Riquelme M, Bartnicki-García S (2008) Advances in understanding hyphal morphogenesis: ontogeny, phylogeny and cellular localization of chitin synthases. Fungal Biol Rev 22:56–70

    Article  Google Scholar 

  54. Riquelme M, Yarden O, Bartnicki-Garcia S, Bowman B, Castro-Longoria E, Free SJ, Fleißner A, Freitag M, Lew RR, Mourino-Pérez R, Plamann M, Rasmussen C, Richthammer C, Roberson RW, Sanchez-Leon E, Seiler S, Watters MK (2011) Architecture and development of the Neurospora crassa hypha—a model cell for polarized growth. Fungal Biol 115:446–474

    Article  Google Scholar 

  55. Schutyser MAI, de Pagter P, Weber FJ, Briels WJ, Boom RM, Rinzema A (2003) Substrate aggregation due to aerial hyphae during discontinuously mixed solid-state fermentation with Aspergillus oryzae: experiments and modeling. Biotechnol Bioeng 83:503–513

    Article  CAS  Google Scholar 

  56. Smits JP, van Sonsbeek HM, Tramper J, Knol W, Geelhoed W, Peeters M, Rinzema A (1999) Modelling fungal solid-state fermentation: the role of inactivation kinetics. Bioprocess Eng 20:391–404

    Article  CAS  Google Scholar 

  57. Steinberg G (2007) Hyphal growth: a tale of motors, lipids, and the Spitzenkörper. Eukaryotic Cell 6:351–360

    Article  CAS  Google Scholar 

  58. Sugden KEP, Evans MR, Poon WCK, Read ND (2007) A model of hyphal tip growth involving microtubule-based transport. Phys Rev E 75:031909

    Article  CAS  Google Scholar 

  59. Taheri-Talesh N, Horio T, Araujo-Bazán L, Dou X, Espeso EA, Peñalva MA, Osmani SA, Oakley BR (2008) The tip growth apparatus of Aspergillus nidulans. Mol Biol Cell 19:1439–1449

    Article  CAS  Google Scholar 

  60. te Biesebeke R, Boussier A, van Biezen N, Braaksma M, van den Hondel CAMJJ, de Vos WM, Punt PJ (2006) Expression of Aspergillus hemoglobin domain activities in Aspergillus oryzae grown on solid substrates improves growth rate and enzyme production. Biotechnol J 1:822–827

    Article  Google Scholar 

  61. te Biesebeke R, Record E, van Biezen N, Heerikhuisen M, Franken A, Punt PJ, van den Hondel CAMJJ (2005) Branching mutants of Aspergillus oryzae with improved amylase and protease production on solid substrates. Appl Genet Mol Biotechnol 69:44–50

    Google Scholar 

  62. Tindemans SH, Kern N, Mulder BM (2006) The diffusive vesicle supply center model for tip growth in fungal hyphae. J Theor Biol 238:937–948

    Article  Google Scholar 

  63. Trinci APJ (1971) Influence of the width of the peripheral growth zone on the radial growth rate of fungal colonies on solid media. J Gen Microbiol 67:324–344

    Google Scholar 

  64. Trinci APJ (1974) A study of the kinetics of hyphal extension and branch initiation of fungal mycelia. J Gen Microbiol 81:225–236

    Article  CAS  Google Scholar 

  65. Tunbridge A, Jones H (1995) An L-systems approach to the modelling of fungal growth. J Vis Comput Anim 6:91–107

    Article  Google Scholar 

  66. Varzakas T (1998) Rhizopus oligosporus mycelial penetration and enzyme diffusion in soya bean tempe. Process Biochem 33:741–747

    Article  CAS  Google Scholar 

  67. Viccini G, Mitchell DA, Boit SD, Gern JC, da Rosa AS, Costa RM, Dalsenter FDH, von Meien OF, Krieger N (2001) Analysis of growth kinetic profiles in solid-state fermentation. Food Technol Biotechnol 39:271–294

    CAS  Google Scholar 

  68. Wösten HAB, Moukha SM, Sietsma JH, Wessels JGH (1991) Localization of growth and secretion of proteins in Aspergillus niger. J Gen Microbiol 137:2017–2023

    Article  Google Scholar 

  69. Yang H, King R, Reichl U, Gilles ED (1992) Mathematical model for apical growth, septation, and branching of mycelial microorganisms. Biotechnol Bioeng 39:49–58

    Article  CAS  Google Scholar 

  70. Yang H, Reichl U, King R, Gilles ED (1992) Measurement and simulation of the morphological development of filamentous microorganisms. Biotechnol Bioeng 39:44–48

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Alexander Mitchell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sugai-Guérios, M.H., Balmant, W., Furigo, A., Krieger, N., Mitchell, D.A. (2015). Modeling the Growth of Filamentous Fungi at the Particle Scale in Solid-State Fermentation Systems. In: Krull, R., Bley, T. (eds) Filaments in Bioprocesses. Advances in Biochemical Engineering/Biotechnology, vol 149. Springer, Cham. https://doi.org/10.1007/10_2014_299

Download citation

Publish with us

Policies and ethics