Skip to main content

The Cell Factory Aspergillus Enters the Big Data Era: Opportunities and Challenges for Optimising Product Formation

Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE,volume 149)

Abstract

Living with limits. Getting more from less. Producing commodities and high-value products from renewable resources including waste. What is the driving force and quintessence of bioeconomy outlines the lifestyle and product portfolio of Aspergillus, a saprophytic genus, to which some of the top-performing microbial cell factories belong: Aspergillus niger, Aspergillus oryzae and Aspergillus terreus. What makes them so interesting for exploitation in biotechnology and how can they help us to address key challenges of the twenty-first century? How can these strains become trimmed for better growth on second-generation feedstocks and how can we enlarge their product portfolio by genetic and metabolic engineering to get more from less? On the other hand, what makes it so challenging to deduce biological meaning from the wealth of Aspergillus -omics data? And which hurdles hinder us to model and engineer industrial strains for higher productivity and better rheological performance under industrial cultivation conditions? In this review, we will address these issues by highlighting most recent findings from the Aspergillus research with a focus on fungal growth, physiology, morphology and product formation. Indeed, the last years brought us many surprising insights into model and industrial strains. They clearly told us that similar is not the same: there are different ways to make a hypha, there are more protein secretion routes than anticipated and there are different molecular and physical mechanisms which control polar growth and the development of hyphal networks. We will discuss new conceptual frameworks derived from these insights and the future scientific advances necessary to create value from Aspergillus Big Data.

Graphical Abstract

Keywords

  • Aspergillus
  • Protein secretion
  • Morphology
  • Modelling
  • Physiology
  • -omics
  • Database
  • Genome-scale model
  • Metabolism
  • Secondary metabolite

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/10_2014_297
  • Chapter length: 42 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-20511-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Meyer V (2008) Genetic engineering of filamentous fungi–progress, obstacles and future trends. Biotechnol Adv 26:177–185

    CAS  Google Scholar 

  2. Lubertozzi D, Keasling JD (2009) Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 27:53–75

    CAS  Google Scholar 

  3. Ward OP (2011) Production of recombinant proteins by filamentous fungi. Biotechnol Adv 30:1119–1139

    Google Scholar 

  4. Fiedler MRM, Nitsche BM, Franziska W, Meyer V (2013) Aspergillus: a cell factory with unlimited prospects. In: Gupta VK, Schmoll M, Maki M (eds) Appl Microb Eng. CRC Press, Taylor & Francis Group, Boca Raton, London, pp 1–51

    Google Scholar 

  5. Read ND (2011) Exocytosis and growth do not occur only at hyphal tips. Mol Microbiol 81:4–7

    CAS  Google Scholar 

  6. Hayakawa Y, Ishikawa E, Shoji J-Y, Nakano H, Kitamoto K (2011) Septum-directed secretion in the filamentous fungus Aspergillus oryzae. Mol Microbiol 81:40–55

    CAS  Google Scholar 

  7. Seidl V, Seibel C, Kubicek CP, Schmoll M (2009) Sexual development in the industrial workhorse Trichoderma reesei. Proc Natl Acad Sci USA 106:13909–13914

    CAS  Google Scholar 

  8. Böhm J, Hoff B, O’Gorman CM, Wolfers S, Klix V, Binger D, Zadra I, Kürnsteiner H, Pöggeler S, Dyer PS, Kück U (2013) Sexual reproduction and mating-type-mediated strain development in the penicillin-producing fungus Penicillium chrysogenum. Proc Natl Acad Sci USA 110:1476–1481

    Google Scholar 

  9. Richter L, Wanka F, Boecker S, Storm D, Kurt T, Vural Ö, Süßmuth R, Meyer V (2014) Engineering of Aspergillus niger for the production of secondary metabolites. Fungal Biol Biotechnol 1:4

    Google Scholar 

  10. Li A, van Luijk N, ter Beek M, Caspers M, Punt P, van der Werf M (2011) A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genet Biol 48:602–611

    CAS  Google Scholar 

  11. Van der Straat L, Vernooij M, Lammers M, van den Berg W, Schonewille T, Cordewener J, van der Meer I, Koops A, de Graaff LH (2014) Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger. Microb Cell Fact 13:11

    Google Scholar 

  12. Challenges and opportunities with big data challenges and opportunities with big data. http://www.cra.org/ccc/files/docs/init/bigdatawhitepaper.pdf

  13. Caspeta L, Nielsen J (2013) Toward systems metabolic engineering of Aspergillus and Pichia species for the production of chemicals and biofuels. Biotechnol J 8:534–544

    CAS  Google Scholar 

  14. Nitsche BM, Meyer V (2014) Transcriptomics of industrial filamentous fungi: a new view on regulation, physiology, and application. In: Nowrousian M (ed) Fungal genomics, vol 13. Berlin, Springer, pp 209–232

    Google Scholar 

  15. Statins: a success story involving FDA, academia and industry. http://www.fda.gov/AboutFDA/WhatWeDo/History/ProductRegulation/SelectionsFromFDLIUpdateSeriesonFDAHistory/ucm082054.htm

  16. Gusakov AV (2011) Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol 29:419–425

    CAS  Google Scholar 

  17. Pensupa N, Jin M, Kokolski M, Archer DB, Du C (2013) A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw. Bioresour Technol 149:261–267

    Google Scholar 

  18. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg 26:361–375

    Google Scholar 

  19. Kolasa M, Ahring BK, Lübeck PS, Lübeck M (2014) Co-cultivation of Trichoderma reesei RutC30 with three black Aspergillus strains facilitates efficient hydrolysis of pretreated wheat straw and shows promises for on-site enzyme production. Bioresour Technol 169:143–148

    Google Scholar 

  20. Yamada R, Yoshie T, Wakai S, Asai-Nakashima N, Okazaki F, Ogino C, Hisada H, Tsutsumi H, Hata Y, Kondo A (2014) Aspergillus oryzae-based cell factory for direct kojic acid production from cellulose. Microb Cell Fact 13:71

    Google Scholar 

  21. Klement T, Büchs J (2013) Itaconic acid–a biotechnological process in change. Bioresour Technol 135:422–431

    CAS  Google Scholar 

  22. Li A, Caspers M, Punt P (2013) A systems biology approach for the identification of target genes for the improvement of itaconic acid production in Aspergillus species. BMC Res Notes 6:505

    Google Scholar 

  23. Van der Straat L, de Graaff LH (2014) Pathway transfer in fungi: transporters are the key to success. Bioengineered 5

    Google Scholar 

  24. Meyer V, Wanka F, van Gent J, Arentshorst M, van den Hondel CAMJJ, Ram AFJ (2011) Fungal gene expression on demand: an inducible, tunable, and metabolism-independent expression system for Aspergillus niger. Appl Environ Microbiol 77:2975–2983

    Google Scholar 

  25. Meyer V, Wu B, Ram AFJ (2011) Aspergillus as a multi-purpose cell factory: current status and perspectives. Biotechnol Lett 33:469–476

    CAS  Google Scholar 

  26. Grigoriev I V, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, Riley R, Salamov A, Zhao X, Korzeniewski F, Smirnova T, Nordberg H, Dubchak I, Shabalov I (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42(Database issue):D699–D704

    Google Scholar 

  27. Andersen MR, Salazar MP, Schaap PJ, van de Vondervoort PJI, Culley D, Thykaer J, Frisvad JC, Nielsen KF, Albang R, Albermann K, Berka RM, Braus GH, Braus-Stromeyer SA, Corrochano LM, Dai Z, van Dijck PWM, Hofmann G, Lasure LL, Magnuson JK, Menke H, Meijer M, Meijer SL, Nielsen JB, Nielsen ML, van Ooyen AJJ, Pel HJ, Poulsen L, Samson RA, Stam H, Tsang A et al (2011) Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res 21:885–897

    CAS  Google Scholar 

  28. Jørgensen TR, Nielsen KF, Arentshorst M, Park J, van den Hondel C a, Frisvad JC, Ram AF (2011) Submerged conidiation and product formation by Aspergillus niger at low specific growth rates are affected in aerial developmental mutants. Appl Environ Microbiol 77:5270–5277

    Google Scholar 

  29. Delmas S, Pullan ST, Gaddipati S, Kokolski M, Malla S, Blythe MJ, Ibbett R, Campbell M, Liddell S, Aboobaker A, Tucker GA, Archer DB (2012) Uncovering the genome-wide transcriptional responses of the filamentous fungus Aspergillus niger to lignocellulose using RNA sequencing PLoS Genet 8:e1002875

    Google Scholar 

  30. Hayer K, Stratford M, Archer DB (2014) Germination of Aspergillus niger conidia is triggered by nitrogen compounds related to L-amino acids. Appl Environ Microbiol 80:6046–6053

    Google Scholar 

  31. Hayer K, Stratford M, Archer DB (2013) Structural features of sugars that trigger or support conidial germination in the filamentous fungus Aspergillus niger. Appl Environ Microbiol 79:6924–6931

    CAS  Google Scholar 

  32. Novodvorska M, Hayer K, Pullan ST, Wilson R, Blythe MJ, Stam H, Stratford M, Archer DB (2013) Trancriptional landscape of Aspergillus niger at breaking of conidial dormancy revealed by RNA-sequencing. BMC Genomics 14:246

    CAS  Google Scholar 

  33. Van Leeuwen MR, Krijgsheld P, Bleichrodt R, Menke H, Stam H, Stark J, Wösten HAB, Dijksterhuis J (2013) Germination of conidia of Aspergillus niger is accompanied by major changes in RNA profiles. Stud Mycol 74:59–70

    Google Scholar 

  34. Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JAE, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EGJ, Debets AJM, Dekker P, van Dijck PWM, van Dijk A, Dijkhuizen L, Driessen AJM, D’Enfert C, Geysens S, Goosen C, Groot GSP et al (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231

    Google Scholar 

  35. Jedd G, Pieuchot L (2012) Multiple modes for gatekeeping at fungal cell-to-cell channels. Mol Microbiol 86:1291–1294

    CAS  Google Scholar 

  36. Harris SD, Turner G, Meyer V, Espeso EA, Specht T, Takeshita N, Helmstedt K (2009) Morphology and development in Aspergillus nidulans: a complex puzzle. Fungal Genet Biol 46(Suppl 1):S82–S92

    CAS  Google Scholar 

  37. Levin AM, de Vries RP, Conesa A, de Bekker C, Talon M, Menke HH, van Peij NNME, Wösten HAB (2007) Spatial differentiation in the vegetative mycelium of Aspergillus niger. Eukaryot Cell 6:2311–2322

    CAS  Google Scholar 

  38. Krijgsheld P, Altelaar AFM, Post H, Ringrose JH, Müller WH, Heck AJR, Wösten HAB (2012) Spatially resolving the secretome within the mycelium of the cell factory Aspergillus niger. J Proteome Res 11:2807–2818

    CAS  Google Scholar 

  39. Gordon CL, Khalaj V, Ram a F, Archer DB, Brookman JL, Trinci a P, Jeenes DJ, Doonan JH, Wells B, Punt PJ, van den Hondel CA, Robson GD (2000) Glucoamylase::green fluorescent protein fusions to monitor protein secretion in Aspergillus niger. Microbiology 146(2):415–426

    Google Scholar 

  40. Vinck A, de Bekker C, Ossin A, Ohm RA, de Vries RP, Wösten HAB (2011) Heterogenic expression of genes encoding secreted proteins at the periphery of Aspergillus niger colonies. Environ Microbiol 13:216–225

    CAS  Google Scholar 

  41. De Bekker C, van Veluw GJ, Vinck A, Wiebenga LA, Wösten HAB (2011) Heterogeneity of Aspergillus niger microcolonies in liquid shaken cultures. Appl Environ Microbiol 77:1263–1267

    Google Scholar 

  42. Van Veluw GJ, Teertstra WR, de Bekker C, Vinck A, van Beek N, Muller WH, Arentshorst M, van der Mei HC, Ram AFJ, Dijksterhuis J, Wösten HAB (2013) Heterogeneity in liquid shaken cultures of Aspergillus niger inoculated with melanised conidia or conidia of pigmentation mutants. Stud Mycol 74:47–57

    Google Scholar 

  43. Wösten HAB, van Veluw GJ, de Bekker C, Krijgsheld P (2013) Heterogeneity in the mycelium: implications for the use of fungi as cell factories. Biotechnol Lett 35:1155–1164

    Google Scholar 

  44. Nitsche BM, Jørgensen TR, Akeroyd M, Meyer V, Ram AFJ (2012) The carbon starvation response of Aspergillus niger during submerged cultivation: insights from the transcriptome and secretome. BMC Genomics 13:380

    CAS  Google Scholar 

  45. Nitsche BM, Burggraaf-van Welzen AM, Lamers G, Meyer V, Ram AFJ (2013) Autophagy promotes survival in aging submerged cultures of the filamentous fungus Aspergillus niger. Appl Microbiol Biotechnol 97:8205–8218

    CAS  Google Scholar 

  46. Shoji J, Craven KD (2011) Autophagy in basal hyphal compartments: A green strategy of great recyclers. Fungal Biol Rev 25:79–83

    Google Scholar 

  47. Adams TH, Wieser JK, Yu JH (1998) Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev 62:35–54

    CAS  Google Scholar 

  48. Krijgsheld P, Bleichrodt R, van Veluw GJ, Wang F, Müller WH, Dijksterhuis J, Wösten HAB (2013) Development in Aspergillus. Stud Mycol 74:1–29

    CAS  Google Scholar 

  49. Harris SD (2012) Evolution of modular conidiophore development in the aspergilli. Ann N Y Acad Sci 1273:1–6

    CAS  Google Scholar 

  50. Jørgensen TR, Nitsche BM, Lamers GE, Arentshorst M, van den Hondel CA, Ram AF (2010) Transcriptomic insights into the physiology of Aspergillus niger approaching a specific growth rate of zero. Appl Environ Microbiol 76:5344–5355

    Google Scholar 

  51. Metz B, Seidl-Seiboth V, Haarmann T, Kopchinskiy A, Lorenz P, Seiboth B, Kubicek CP (2011) Expression of biomass-degrading enzymes is a major event during conidium development in Trichoderma reesei. Eukaryot Cell 10:1527–1535

    CAS  Google Scholar 

  52. Van Munster JM, Nitsche BM, Krijgsheld P, van Wijk A, Dijkhuizen L, Wösten HA, Ram AF, van der Maarel MJEC (2013) Chitinases CtcB and CfcI modify the cell wall in sporulating aerial mycelium of Aspergillus niger. Microbiology 159(9):1853–1867

    Google Scholar 

  53. Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22

    CAS  Google Scholar 

  54. Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11:21–32

    CAS  Google Scholar 

  55. Wiemann P, Keller NP (2014) Strategies for mining fungal natural products. J Ind Microbiol Biotechnol 41:301–313

    CAS  Google Scholar 

  56. Van Munster JM, Daly P, Delmas S, Pullan ST, Blythe MJ, Malla S, Kokolski M, Noltorp ECM, Wennberg K, Fetherston R, Beniston R, Yu X, Dupree P, Archer DB (2014) The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger. Fungal Genet Biol 72:34–47

    Google Scholar 

  57. Andersen MR, Giese M, de Vries RP, Nielsen J (2012) Mapping the polysaccaride degradation potential of Aspergillus niger. BMC Genomics 13:313

    CAS  Google Scholar 

  58. De Souza WR, de Gouvea PF, Savoldi M, Malavazi I, de Souza Bernardes LA, Goldman MHS, de Vries RP, de Castro Oliveira J V, Goldman GH (2011) Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse. Biotechnol Biofuels 4:40

    Google Scholar 

  59. Banuett F, Herskowitz I (1989) Different a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis. Proc Natl Acad Sci USA 86:5878–5882

    CAS  Google Scholar 

  60. Tey WK, North AJ, Reyes JL, Lu YF, Jedd G (2005) Polarized gene expression determines woronin body formation at the leading edge of the fungal colony. Mol Biol Cell 16:2651–2659

    CAS  Google Scholar 

  61. Levin AM, de Vries RP, Conesa A, de Bekker C, Talon M, Menke HH, van Peij NNME, Wösten HAB (2007) Spatial differentiation in the vegetative mycelium of Aspergillus niger. Eukaryot Cell 6:2311–2322

    CAS  Google Scholar 

  62. Bleichrodt R-J, van Veluw GJ, Recter B, Maruyama J-I, Kitamoto K, Wösten HAB (2012) Hyphal heterogeneity in Aspergillus oryzae is the result of dynamic closure of septa by Woronin bodies. Mol Microbiol 86:1334–1344

    Google Scholar 

  63. Taheri-Talesh N, Horio T, Araujo-baza L, Dou X, Espeso EA, Pen MA, Osmani SA, Oakley BR (2008) The tip growth apparatus of Aspergillus nidulans. Mol Biol Cell 19:1439–1449

    CAS  Google Scholar 

  64. Lew RR (2011) How does a hypha grow? The biophysics of pressurized growth in fungi. Nat Rev Microbiol 9:509–518

    CAS  Google Scholar 

  65. Plamann M (2009) Cytoplasmic streaming in Neurospora: disperse the plug to increase the flow? PLoS Genet 5:e1000526

    Google Scholar 

  66. Abadeh A, Lew RR (2013) Mass flow and velocity profiles in Neurospora hyphae: partial plug flow dominates intra-hyphal transport. Microbiology 159(11):2386–2394

    CAS  Google Scholar 

  67. Riquelme M (2013) Tip growth in filamentous fungi: a road trip to the apex. Annu Rev Microbiol 67:587–609

    CAS  Google Scholar 

  68. Takeshita N, Manck R, Grün N, de Vega SH, Fischer R (2014) Interdependence of the actin and the microtubule cytoskeleton during fungal growth. Curr Opin Microbiol 20C:34–41

    Google Scholar 

  69. Riquelme M, Sánchez-León E (2014) The Spitzenkörper: a choreographer of fungal growth and morphogenesis. Curr Opin Microbiol 20C:27–33

    Google Scholar 

  70. Free SJ (2013) Fungal cell wall organization and biosynthesis. Adv Genet 81:33–82

    CAS  Google Scholar 

  71. Hettema EH, Erdmann R, van der Klei I, Veenhuis M (2014) Evolving models for peroxisome biogenesis. Curr Opin Cell Biol 29C:25–30

    Google Scholar 

  72. Gierz G, Bartnicki-Garcia S (2001) A three-dimensional model of fungal morphogenesis based on the vesicle supply center concept. J Theor Biol 208:151–164

    CAS  Google Scholar 

  73. Bartnicki-Garcia S, Bracker CE, Gierz G, López-Franco R, Lu H (2000) Mapping the growth of fungal hyphae: orthogonal cell wall expansion during tip growth and the role of turgor. Biophys J 79:2382–2390

    Google Scholar 

  74. Caballero-Lima D, Kaneva IN, Watton SP, Sudbery PE, Craven CJ (2013) The spatial distribution of the exocyst and actin cortical patches is sufficient to organize hyphal tip growth. Eukaryot Cell 12:998–1008

    Google Scholar 

  75. Dijksterhuis J, Molenaar D (2013) Vesicle trafficking via the Spitzenkörper during hyphal tip growth in Rhizoctonia solani. Antonie Van Leeuwenhoek 103:921–931

    Google Scholar 

  76. Kwon MJ, Arentshorst M, Fiedler M, de Groen FLM, Punt PJ, Meyer V, Ram AFJ (2014) Molecular genetic analysis of vesicular transport in Aspergillus niger reveals partial conservation of the molecular mechanism of exocytosis in fungi. Microbiology 160(2):316–329

    CAS  Google Scholar 

  77. Higuchi Y, Ashwin P, Roger Y, Steinberg G (2014) Early endosome motility spatially organizes polysome distribution. J Cell Biol 204:343–357

    CAS  Google Scholar 

  78. Steinberg G (2014) Endocytosis and early endosome motility in filamentous fungi. Curr Opin Microbiol 20C:10–18

    Google Scholar 

  79. Sudbery P (2011) Fluorescent proteins illuminate the structure and function of the hyphal tip apparatus. Fungal Genet Biol 48:849–857

    CAS  Google Scholar 

  80. Durand H, Clanet M, Tiraby G (1988) Genetic improvement of Trichoderma reesei for large scale cellulase production. Enzyme Microb Technol 10:341–346

    CAS  Google Scholar 

  81. Finkelstein DB (1987) Improvement of enzyme production in Aspergillus. Antonie Van Leeuwenhoek 53:349–352

    CAS  Google Scholar 

  82. Su X, Schmitz G, Zhang M, Mackie RI, Cann IKO (2012) Heterologous gene expression in filamentous fungi. Adv Appl Microbiol 81:1–61

    Google Scholar 

  83. Pakula TM, Laxell M, Huuskonen A, Uusitalo J, Saloheimo M, Penttilä M (2003) The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei. Evidence for down-regulation of genes that encode secreted proteins in the stressed cells. J Biol Chem 278:45011–45020

    CAS  Google Scholar 

  84. Kwon MJ, Jørgensen TR, Nitsche BM, Arentshorst M, Park J, Ram AFJ, Meyer V (2012) The transcriptomic fingerprint of glucoamylase over-expression in Aspergillus niger. BMC Genomics 13:701

    CAS  Google Scholar 

  85. Van den Berg BA, Reinders MJT, Hulsman M, Wu L, Pel HJ, Roubos JA, de Ridder D (2012) Exploring sequence characteristics related to high-level production of secreted proteins in Aspergillus niger. PLoS One 7:e45869

    Google Scholar 

  86. Shoji J-Y, Kikuma T, Kitamoto K (2014) Vesicle trafficking, organelle functions, and unconventional secretion in fungal physiology and pathogenicity. Curr Opin Microbiol 20C:1–9

    Google Scholar 

  87. Le Bihan M-C, Bigot A, Jensen SS, Dennis JL, Rogowska-Wrzesinska A, Lainé J, Gache V, Furling D, Jensen ON, Voit T, Mouly V, Coulton GR, Butler-Browne G (2012) In-depth analysis of the secretome identifies three major independent secretory pathways in differentiating human myoblasts. J Proteomics 77:344–356

    Google Scholar 

  88. Steringer JP, Müller H-M, Nickel W (2014) Unconventional secretion of fibroblast growth factor 2-a novel type of protein translocation across membranes? J Mol Biol. doi: 10.1016/j.jmb.2014.07.012

  89. Ding Y, Robinson DG, Jiang L (2014) Unconventional protein secretion (UPS) pathways in plants. Curr Opin Cell Biol 29:107–115

    Google Scholar 

  90. De Marchis F, Bellucci M, Pompa A (2013) Unconventional pathways of secretory plant proteins from the endoplasmic reticulum to the vacuole bypassing the Golgi complex. Plant Signal Behav 8:piie25129

    Google Scholar 

  91. Fajardo-Somera RA, Bowman B, Riquelme M (2013) The plasma membrane proton pump PMA-1 is incorporated into distal parts of the hyphae independently of the Spitzenkörper in Neurospora crassa. Eukaryot Cell 12:1097–1105

    CAS  Google Scholar 

  92. Riquelme M, Bartnicki-García S, González-Prieto JM, Sánchez-León E, Verdín-Ramos JA, Beltrán-Aguilar A, Freitag M (2007) Spitzenkorper localization and intracellular traffic of green fluorescent protein-labeled CHS-3 and CHS-6 chitin synthases in living hyphae of Neurospora crassa. Eukaryot Cell 6:1853–1864

    Google Scholar 

  93. Stock J, Sarkari P, Kreibich S, Brefort T, Feldbrügge M, Schipper K (2012) Applying unconventional secretion of the endochitinase Cts1 to export heterologous proteins in Ustilago maydis. J Biotechnol 161:80–91

    CAS  Google Scholar 

  94. Arnaud MB, Cerqueira GC, Inglis DO, Skrzypek MS, Binkley J, Chibucos MC, Crabtree J, Howarth C, Orvis J, Shah P, Wymore F, Binkley G, Miyasato SR, Simison M, Sherlock G, Wortman JR (2012) The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Res 40(Database issue):D653–9

    Google Scholar 

  95. Cerqueira GC, Arnaud MB, Inglis DO, Skrzypek MS, Binkley G, Simison M, Miyasato SR, Binkley J, Orvis J, Shah P, Wymore F, Sherlock G, Wortman JR (2014) The Aspergillus Genome database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations. Nucleic Acids Res 42(Database issue):D705–10

    Google Scholar 

  96. Andersen MR, Nielsen ML, Nielsen J (2008) Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger. Mol Syst Biol 4:178

    Google Scholar 

  97. Vongsangnak W, Olsen P, Hansen K, Krogsgaard S, Nielsen J (2008) Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae. BMC Genomics 9:245

    Google Scholar 

  98. Andersen MR (2014) Elucidation of primary metabolic pathways in Aspergillus species: Orphaned research in characterizing orphan genes. Brief Funct Genomics 13:451–455

    Google Scholar 

  99. Battaglia E, Visser L, Nijssen A, van Veluw GJ, Wösten HAB, de Vries RP (2011) Analysis of regulation of pentose utilisation in Aspergillus niger reveals evolutionary adaptations in Eurotiales. Stud Mycol 69:31–38

    Google Scholar 

  100. Liu L, Feizi A, Österlund T, Hjort C, Nielsen J (2014) Genome-scale analysis of the high-efficient protein secretion system of Aspergillus oryzae. BMC Syst Biol 8:73

    Google Scholar 

  101. Choi J, Park J, Kim D, Jung K, Kang S, Lee Y-H (2010) Fungal secretome database: integrated platform for annotation of fungal secretomes. BMC Genomics 11:105

    Google Scholar 

  102. Sanchez JF, Somoza AD, Keller NP, Wang CCC (2012) Advances in Aspergillus secondary metabolite research in the post-genomic era. Nat Prod Rep 29:351–371

    CAS  Google Scholar 

  103. Peñalva MA, Galindo A, Abenza JF, Pinar M, Calcagno-Pizarelli AM, Arst HN, Pantazopoulou A (2012) Searching for gold beyond mitosis: Mining intracellular membrane traffic in Aspergillus nidulans. Cell Logist 2:2–14

    Google Scholar 

  104. Juvvadi PR, Lamoth F, Steinbach WJ (2014) Calcineurin-mediated regulation of hyphal growth, septation, and virulence in Aspergillus fumigatus. Mycopathologia 178:341–348

    Google Scholar 

  105. Martín JF (2014) Calcium-containing phosphopeptides pave the secretory pathway for efficient protein traffic and secretion in fungi. Microb Cell Fact 13:117

    Google Scholar 

  106. Malavazi I, Goldman GH, Brown NA (2014) The importance of connections between the cell wall integrity pathway and the unfolded protein response in filamentous fungi. Brief Funct Genomics 13:456–470

    Google Scholar 

  107. Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22:189–259

    CAS  Google Scholar 

  108. Colin VL, Baigorí MD, Pera LM (2013) Tailoring fungal morphology of Aspergillus niger MYA 135 by altering the hyphal morphology and the conidia adhesion capacity: biotechnological applications. AMB Express 3:27

    Google Scholar 

  109. Meyer V, Arentshorst M, Flitter SJ, Nitsche BM, Kwon MJ, Reynaga-Peña CG, Bartnicki-Garcia S, van den Hondel C a MJJ, Ram AFJ (2009) Reconstruction of signaling networks regulating fungal morphogenesis by transcriptomics. Eukaryot Cell 8:1677–1691

    Google Scholar 

  110. McIntyre M, Müller C, Dynesen J, Nielsen J (2001) Metabolic engineering of the morphology of Aspergillus. Adv Biochem Eng Biotechnol 73:103–128

    CAS  Google Scholar 

  111. Muller C, McIntyre M, Hansen K, Nielsen J (2002) Metabolic Engineering of the Morphology of Aspergillus oryzae by altering chitin synthesis. Appl Environ Microbiol 68:1827–1836

    CAS  Google Scholar 

  112. Te Biesebeke R, Record E, van Biezen N, Heerikhuisen M, Franken A, Punt PJ, van den Hondel CAMJJ (2005) Branching mutants of Aspergillus oryzae with improved amylase and protease production on solid substrates. Appl Microbiol Biotechnol 69:44–50

    Google Scholar 

  113. Wongwicharn A, McNeil B, Harvey LM (1999) Effect of oxygen enrichment on morphology, growth, and heterologous protein production in chemostat cultures of Aspergillus niger B1-D. Biotechnol Bioeng 65:416–424

    CAS  Google Scholar 

  114. Kwon MJ, Nitsche BM, Arentshorst M, Jørgensen TR, Ram AFJ, Meyer V (2013) The transcriptomic signature of RacA activation and inactivation provides new insights into the morphogenetic network of Aspergillus niger. PLoS One 8:e68946

    CAS  Google Scholar 

  115. Harris SD (2008) Branching of fungal hyphae: regulation, mechanisms and comparison with other branching systems. Mycologia 100:823–832

    Google Scholar 

  116. Meyer V, Minkwitz S, Schütze T, Hondel CAMJJ Van Den, Ram AFJ (2010) The Aspergillus niger RmsA protein. A node in a genetic network? Commun Integr Biol 3:195–197

    Google Scholar 

  117. Kwon MJ, Arentshorst M, Roos ED, van den Hondel C a MJJ, Meyer V, Ram AFJ (2011) Functional characterization of Rho GTPases in Aspergillus niger uncovers conserved and diverged roles of Rho proteins within filamentous fungi. Mol Microbiol 79:1151–1167

    Google Scholar 

  118. Harris SD (2011) Cdc42/Rho GTPases in fungi: variations on a common theme. Mol Microbiol 79:1123–1127

    CAS  Google Scholar 

  119. Scazzocchio C (2014) Fungal biology in the post-genomic era. Fungal Biol Biotechnol 2014:1

    Google Scholar 

  120. Krishnan K, Ren Z, Losada L, Nierman WC, Lu LJ, Askew DS (2014) Polysome profiling reveals broad translatome remodeling during endoplasmic reticulum (ER) stress in the pathogenic fungus Aspergillus fumigatus. BMC Genomics 15:159

    Google Scholar 

  121. Ramsubramaniam N, Harris SD, Marten MR (2014) The phosphoproteome of Aspergillus nidulans reveals functional association with cellular processes involved in morphology and secretion. Proteomics 14:2454–2459

    Google Scholar 

  122. Schachtschabel D, Arentshorst M, Nitsche BM, Morris S, Nielsen KF, van den Hondel CAMJJ, Klis FM, Ram AFJ (2013) The transcriptional repressor TupA in Aspergillus niger is involved in controlling gene expression related to cell wall biosynthesis, development, and nitrogen source availability. PLoS One 8:e78102

    CAS  Google Scholar 

  123. Brown NA, Ries LNA, Goldman GH (2014) How nutritional status signalling coordinates metabolism and lignocellulolytic enzyme secretion. Fungal Genet Biol 72:48–63

    Google Scholar 

  124. Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM (2014) Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 38:254–299

    Google Scholar 

  125. Paul JA, Barati MT, Cooper M, Perlin MH (2014) Physical and genetic interaction between ammonium transporters and the signaling protein, Rho1, in the plant pathogen Ustilago maydis. Eukaryot Cell

    Google Scholar 

  126. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274(546):563–567

    Google Scholar 

  127. Aguilar-Pontes MV, de Vries RP, Zhou M (2014) (Post-)Genomics approaches in fungal research. Brief Funct Genomics 72:73–81

    Google Scholar 

  128. Galagan JE, Calvo SE, Cuomo C, Ma L-J, Wortman JR, Batzoglou S, Lee S-I, Baştürkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus GH, Draht O, Busch S, D’Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M et al (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115

    CAS  Google Scholar 

  129. Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K-I, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R et al (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161

    Google Scholar 

  130. Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, Bennett J, Bowyer P, Chen D, Collins M, Coulsen R, Davies R, Dyer PS, Farman M, Fedorova N, Fedorova N, Feldblyum TV, Fischer R, Fosker N, Fraser A, García JL, García MJ, Goble A, Goldman GH, Gomi K, Griffith-Jones S et al (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151–1156

    CAS  Google Scholar 

  131. Hibbett DS, Stajich JE, Spatafora JW (2013) Toward genome-enabled mycology. Mycologia 105:1339–1349

    Google Scholar 

  132. Coutinho PM, Andersen MR, Kolenova K, vanKuyk PA, Benoit I, Gruben BS, Trejo-Aguilar B, Visser H, van Solingen P, Pakula T, Seiboth B, Battaglia E, Aguilar-Osorio G, de Jong JF, Ohm RA, Aguilar M, Henrissat B, Nielsen J, Stålbrand H, de Vries RP (2009) Post-genomic insights into the plant polysaccharide degradation potential of Aspergillus nidulans and comparison to Aspergillus niger and Aspergillus oryzae. Fungal Genet Biol 46(1):S161–S169

    Google Scholar 

  133. Fernandez-Fueyo E, Ruiz-Dueñas FJ, Ferreira P, Floudas D, Hibbett DS, Canessa P, Larrondo LF, James TY, Seelenfreund D, Lobos S, Polanco R, Tello M, Honda Y, Watanabe T, Watanabe T, Ryu JS, San RJ, Kubicek CP, Schmoll M, Gaskell J, Hammel KE, St John FJ, Vanden Wymelenberg A, Sabat G, Splinter BonDurant S, Syed K, Yadav JS, Doddapaneni H, Subramanian V, Lavín JL, et al (2012) Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Natl Acad Sci USA 109:5458–5463

    Google Scholar 

  134. Wiemann P, Guo C-J, Palmer JM, Sekonyela R, Wang CCC, Keller NP (2013) Prototype of an intertwined secondary-metabolite supercluster. Proc Natl Acad Sci USA 110:17065–17070

    Google Scholar 

  135. Takeda I, Umemura M, Koike H, Asai K, Machida M (2014) Motif-independent prediction of a secondary metabolism gene cluster using comparative genomics: application to sequenced genomes of Aspergillus and ten other filamentous fungal species. DNA Res 21:447–457

    CAS  Google Scholar 

  136. Ohm RA, Riley R, Salamov A, Min B, Choi I-G, Grigoriev IV (2014) Genomics of wood-degrading fungi. Fungal Genet Biol 72:82–90

    Google Scholar 

  137. Andersen MR, Nielsen JB, Klitgaard A, Petersen LM, Zachariasen M, Hansen TJ, Blicher LH, Gotfredsen CH, Larsen TO, Nielsen KF, Mortensen UH (2013) Accurate prediction of secondary metabolite gene clusters in filamentous fungi. Proc Natl Acad Sci USA 110:E99–107

    CAS  Google Scholar 

  138. Andersen MR, Lehmann L, Nielsen J (2009) Systemic analysis of the response of Aspergillus niger to ambient pH. Genome Biol 10:R47

    Google Scholar 

  139. Nitsche BM, Crabtree J, Cerqueira GC, Meyer V, Ram AFJ, Wortman JR, Fj A (2011) New resources for functional analysis of omics data for the genus Aspergillus. BMC Genomics 12:486

    CAS  Google Scholar 

  140. Van den Berg RA, Braaksma M, van der Veen D, van der Werf MJ, Punt PJ, van der Oost J, de Graaff LH (2010) Identification of modules in Aspergillus niger by gene co-expression network analysis. Fungal Genet Biol 47:539–550

    Google Scholar 

  141. Vongsangnak W, Hansen K, Nielsen J (2011) Integrated analysis of the global transcriptional response to α-amylase over-production by Aspergillus oryzae. Biotechnol Bioeng 108:1130–1139

    CAS  Google Scholar 

  142. Van den Berg BA, Reinders MJT, Hulsman M, Wu L, Pel HJ, Roubos JA, de Ridder D (2012) Exploring sequence characteristics related to high-level production of secreted proteins in Aspergillus niger. PLoS One 7:e45869

    Google Scholar 

  143. Van den Berg BA, Reinders MJT, van der Laan J-M, Roubos JA, de Ridder D (2014) Protein redesign by learning from data. Protein Eng Des Sel 27:281–288

    Google Scholar 

  144. Dunlap JC, Borkovich KA, Henn MR, Turner GE, Sachs MS, Glass NL, McCluskey K, Plamann M, Galagan JE, Birren BW, Weiss RL, Townsend JP, Loros JJ, Nelson MA, Lambreghts R, Colot HV, Park G, Collopy P, Ringelberg C, Crew C, Litvinkova L, DeCaprio D, Hood HM, Curilla S, Shi M, Crawford M, Koerhsen M, Montgomery P, Larson L, Pearson M et al (2007) Enabling a community to dissect an organism: overview of the Neurospora functional genomics project. Adv Genet 57:49–96

    CAS  Google Scholar 

  145. Park G, Colot H V, Collopy PD, Krystofova S, Crew C, Ringelberg C, Litvinkova L, Altamirano L, Li L, Curilla S, Wang W, Gorrochotegui-Escalante N, Dunlap JC, Borkovich KA (2011) High-throughput production of gene replacement mutants in Neurospora crassa. Methods Mol Biol 722:179–189

    Google Scholar 

  146. De Souza CP, Hashmi SB, Osmani AH, Andrews P, Ringelberg CS, Dunlap JC, Osmani SA (2013) Functional analysis of the Aspergillus nidulans kinome. PLoS One 8:e58008

    Google Scholar 

  147. Jiang D, Zhu W, Wang Y, Sun C, Zhang K-Q, Yang J (2013) Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies. Biotechnol Adv 31:1562–1574

    CAS  Google Scholar 

  148. Meyer V, Ram AFJ, Punt PJ (2010) Genetics, genetic manipulation, and approaches to strain improvement of filamentous fungi. Man Ind Microbiol Biotechnol 1:318–329

    Google Scholar 

  149. Schuster A, Bruno KS, Collett JR, Baker SE, Seiboth B, Kubicek CP, Schmoll M (2012) A versatile toolkit for high throughput functional genomics with Trichoderma reesei. Biotechnol Biofuels 5:1

    CAS  Google Scholar 

  150. Delmas S, Llanos A, Parrou J-L, Kokolski M, Pullan ST, Shunburne L, Archer DB (2014) Development of an unmarked gene deletion system for the filamentous fungi Aspergillus niger and Talaromyces versatilis. Appl Environ Microbiol 80:3484–3487

    Google Scholar 

  151. Magaña-Ortíz D, Coconi-Linares N, Ortiz-Vazquez E, Fernández F, Loske AM, Gómez-Lim MA (2013) A novel and highly efficient method for genetic transformation of fungi employing shock waves. Fungal Genet Biol 56:9–16

    Google Scholar 

  152. Loske AM, Fernández F, Magaña-Ortíz D, Coconi-Linares N, Ortíz-Vázquez E, Gómez-Lim MA (2014) Tandem shock waves to enhance genetic transformation of Aspergillus niger. Ultrasonics 54:1656–1662

    CAS  Google Scholar 

  153. Blumhoff M, Steiger MG, Marx H, Mattanovich D, Sauer M (2012) Six novel constitutive promoters for metabolic engineering of Aspergillus niger. Appl Microbiol Biotechnol 97:253–267

    Google Scholar 

  154. Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci USA 101:12248–12253

    CAS  Google Scholar 

  155. Krappmann S, Sasse C, Braus GH (2006) Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end joining-deficient genetic background. Eukaryot Cell 5:212–215

    CAS  Google Scholar 

  156. Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L, Murray SL, Hynes MJ, Osmani SA, Oakley BR (2006) A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172:1557–1566

    Google Scholar 

  157. Meyer V, Arentshorst M, El-Ghezal A, Drews A-C, Kooistra R, van den Hondel CAMJJ, Ram AFJ (2007) Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol 128:770–775

    Google Scholar 

  158. Carvalho NDSP, Arentshorst M, Kwon MJ, Meyer V, Ram AFJ (2010) Expanding the ku70 toolbox for filamentous fungi: establishment of complementation vectors and recipient strains for advanced gene analyses. Appl Microbiol Biotechnol 87:1463–1473

    CAS  Google Scholar 

  159. Krull R, Cordes C, Horn H, Kampen I, Kwade A, Neu TR, Nörtemann B (2010) Morphology of filamentous fungi: linking cellular biology to process engineering using Aspergillus niger. Adv Biochem Eng Biotechnol 121:1–21

    CAS  Google Scholar 

  160. Wucherpfennig T, Lakowitz A, Krull R (2013) Comprehension of viscous morphology—evaluation of fractal and conventional parameters for rheological characterization of Aspergillus niger culture broth. J Biotechnol 163:124–132

    CAS  Google Scholar 

  161. Coradin JH, Braun A, Viccini G, Fernando de Lima Luz L, Krieger N, Mitchell DA (2011) A three-dimensional discrete lattice-based system for modeling the growth of aerial hyphae of filamentous fungi on solid surfaces: A tool for investigating micro-scale phenomena in solid-state fermentation. Biochem Eng J 54:164–171

    Google Scholar 

  162. Liu Y, Liao W, Chen S (2008) Study of pellet formation of filamentous fungi Rhizopus oryzae using a multiple logistic regression model. Biotechnol Bioeng 99:117–128

    CAS  Google Scholar 

  163. Wucherpfennig T, Kiep KA, Driouch H, Wittmann C, Krull R (2010) Morphology and rheology in filamentous cultivations. Adv Appl Microbiol 72:89–136

    CAS  Google Scholar 

  164. Krull R, Wucherpfennig T, Esfandabadi ME, Walisko R, Melzer G, Hempel DC, Kampen I, Kwade A, Wittmann C (2013) Characterization and control of fungal morphology for improved production performance in biotechnology. J Biotechnol 163:112–123

    Google Scholar 

  165. Gao Q, Liu J, Liu L (2014) Relationship between morphology and itaconic acid production by Aspergillus terreus. J Microbiol Biotechnol 24:168–176

    CAS  Google Scholar 

  166. Formenti LR, Nørregaard A, Bolic A, Hernandez DQ, Hagemann T, Heins A-L, Larsson H, Mears L, Mauricio-Iglesias M, Krühne U, Gernaey KV (2014) Challenges in industrial fermentation technology research. Biotechnol J 9:727–738

    CAS  Google Scholar 

  167. Dochain D (2010) Automatic Control of Bioprocesses. vol 28. Wiley, New York

    Google Scholar 

  168. Mandenius C-F, Titchener-Hooker NJ (2013) Measurement and control of bioprocesses. Adv Biochem Eng Biotechnol 132:5–8

    Google Scholar 

  169. Cohen D (1967) Computer simulation of biological pattern generation processes. Nature 216:246–248

    Google Scholar 

  170. Prosser JI (1995) Mathematical modelling of fungal growth. In: Gow NAR, Gadd GM (eds) Grow fungus. Springer, Dordrecht, pp 319–335

    Google Scholar 

  171. Davidson FA (2007) Mathematical modelling of mycelia: a question of scale. Fungal Biol Rev 21:30–41

    Google Scholar 

  172. Celler K, Picioreanu C, van Loosdrecht MCM, van Wezel GP (2012) Structured morphological modeling as a framework for rational strain design of Streptomyces species. Antonie Van Leeuwenhoek 102:409–423

    Google Scholar 

  173. Davidson FA, Boswell GP, Fischer MWF, Heaton L, Hofstadler D, Roper M (2011) Mathematical modelling of fungal growth and function. IMA Fungus 2:33–37

    Google Scholar 

  174. Hopkins SM (2012) A hybrid mathematical model of fungal mycelia : tropisms, polarised growth and application to colony competition. PhD thesis, University of Glamorgan

    Google Scholar 

  175. King R (1998) Mathematical modelling of the morphology of streptomyces species. In: Schügerl K (ed) Advances in biochemical engineering, vol 60. Springer, Berlin, pp 95–119

    Google Scholar 

  176. Wittler R, Baumgartl H, Lübbers DW, Schügerl K (1986) Investigations of oxygen transfer into Penicillium chrysogenum pellets by microprobe measurements. Biotechnol Bioeng 28:1024–1036

    Google Scholar 

  177. Lejeune R, Baron GV (1997) Simulation of growth of a filamentous fungus in 3 dimensions. Biotechnol Bioeng 53:139–150

    CAS  Google Scholar 

  178. Nieminen L, Webb S, Smith MCM, Hoskisson PA (2013) A flexible mathematical model platform for studying branching networks: experimentally validated using the model actinomycete Streptomyces coelicolor. PLoS One 8:e54316

    CAS  Google Scholar 

  179. Rinas U, El-Enshasy H, Emmler M, Hille A, Hempel DC, Horn H (2005) Model-based prediction of substrate conversion and protein synthesis and excretion in recombinant Aspergillus niger biopellets. Chem Eng Sci 60:2729–2739

    Google Scholar 

  180. Werner S, Kaiser SC, Kraume M, Eibl D (2014) Computational fluid dynamics as a modern tool for engineering characterization of bioreactors. Pharm Bioprocess 2:85–99

    Google Scholar 

  181. Megee RD, Kinoshita S, Fredrickson AG, Tsuchiya HM (1970) Differentiation and product formation in molds. Biotechnol Bioeng 12:771–801

    CAS  Google Scholar 

  182. Nielsen J (1992) Modelling the growth of filamentous fungi. Adv Biochem Eng Biotechnol 46:187–223

    CAS  Google Scholar 

  183. Boswell GP, Davidson FA (2012) Modelling hyphal networks. Fungal Biol Rev 26:30–38

    Google Scholar 

  184. Edelstein L (1982) The propagation of fungal colonies: a model for tissue growth. J Theor Biol 98:679–701

    Google Scholar 

  185. Boswell GP, Jacobs H, Ritz K, Gadd GM, Davidson FA (2007) The development of fungal networks in complex environments. Bull Math Biol 69:605–634

    Google Scholar 

  186. Schnepf A, Roose T, Schweiger P (2008) Impact of growth and uptake patterns of arbuscular mycorrhizal fungi on plant phosphorus uptake—a modelling study. Plant Soil 312:85–99

    CAS  Google Scholar 

  187. Meskauskas A, Fricker MD, Moore D (2004) Simulating colonial growth of fungi with the neighbour-sensing model of hyphal growth. Mycol Res 108(11):1241–1256

    Google Scholar 

  188. Yang H, King R, Reichl U, Gilles ED (1992) Mathematical model for apical growth, septation, and branching of mycelial microorganisms. Biotechnol Bioeng 39:49–58

    Google Scholar 

  189. Heaton L, Obara B, Grau V, Jones N, Nakagaki T, Boddy L (2012) Fricker MD: analysis of fungal networks. Fungal Biol Rev 26:12–29

    Google Scholar 

  190. Bartnicki-Garcia S, Hergert F, Gierz G (1989) Computer simulation of fungal morphogenesis and the mathematical basis for hyphal (tip) growth. Protoplasma 153:46–57

    Google Scholar 

  191. Boudaoud A (2003) Growth of walled cells: from shells to vesicles. Phys Rev Lett 91:018104

    Google Scholar 

  192. Goriely A, Tabor M (2003) Biomechanical models of hyphal growth in actinomycetes. J Theor Biol 222:211–218

    Google Scholar 

  193. Tindemans SH, Kern N, Mulder BM (2006) The diffusive vesicle supply center model for tip growth in fungal hyphae. J Theor Biol 238:937–948

    Google Scholar 

  194. Sugden KEP, Evans MR, Poon WCK, Read ND (2007) Model of hyphal tip growth involving microtubule-based transport. Phys Rev E Stat Nonlin Soft Matter Phys 75(3 Pt 1):031909

    CAS  Google Scholar 

  195. Heaton LLM, López E, Maini PK, Fricker MD, Jones NS (2010) Growth-induced mass flows in fungal networks. Proc Biol Sci 277:3265–3274

    Google Scholar 

  196. Mabey Gilsenan J, Cooley J, Bowyer P (2012) CADRE the central Aspergillus data REpository 2012. Nucleic Acids Res 40(Database issue):D660–666

    Google Scholar 

  197. Kersey PJ, Allen JE, Christensen M, Davis P, Falin LJ, Grabmueller C, Hughes DST, Humphrey J, Kerhornou A, Khobova J, Langridge N, McDowall MD, Maheswari U, Maslen G, Nuhn M, Ong CK, Paulini M, Pedro H, Toneva I, Tuli MA, Walts B, Williams G, Wilson D, Youens-Clark K, Monaco MK, Stein J, Wei X, Ware D, Bolser DM, Howe KL, et al (2014) Ensembl genomes 2013: scaling up access to genome-wide data. Nucleic Acids Res 42(Database issue):D546–552

    Google Scholar 

  198. Stajich JE, Harris T, Brunk BP, Brestelli J, Fischer S, Harb OS, Kissinger JC, Li W, Nayak V, Pinney DF, Stoeckert CJ, Roos DS (2012) FungiDB: an integrated functional genomics database for fungi. Nucleic Acids Res 40(Database issue):D675–681

    Google Scholar 

  199. Choi J, Cheong K, Jung K, Jeon J, Lee G-W, Kang S, Kim S, Lee Y-W, Lee Y-H (2013) CFGP 2.0: a versatile web-based platform for supporting comparative and evolutionary genomics of fungi and Oomycetes. Nucleic Acids Res 41(Database issue):D714–719

    Google Scholar 

  200. Jung K, Park J, Choi J, Park B, Kim S, Ahn K, Choi J, Choi D, Kang S, Lee Y-H (2008) SNUGB: a versatile genome browser supporting comparative and functional fungal genomics. BMC Genomics 9:586

    Google Scholar 

  201. Pagani I, Liolios K, Jansson J, Chen I-MA, Smirnova T, Nosrat B, Markowitz VM, Kyrpides NC (2012) The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 40(Database issue):D571–579

    Google Scholar 

  202. Priebe S, Linde J, Albrecht D, Guthke R, Brakhage AA (2011) FungiFun: a web-based application for functional categorization of fungal genes and proteins. Fungal Genet Biol 48:353–358

    CAS  Google Scholar 

  203. Lum G, Min XJ (2011) FunSecKB: the fungal secretome knowledgebase. Database (Oxford) 2011:bar001

    Google Scholar 

  204. Park J, Park J, Jang S, Kim S, Kong S, Choi J, Ahn K, Kim J, Lee S, Kim S, Park B, Jung K, Kim S, Kang S, Lee Y-H (2008) FTFD: an informatics pipeline supporting phylogenomic analysis of fungal transcription factors. Bioinformatics 24:1024–1025

    CAS  Google Scholar 

  205. Park J, Lee S, Choi J, Ahn K, Park B, Park J, Kang S, Lee Y-H (2008) Fungal cytochrome P450 database. BMC Genomics 9:402

    Google Scholar 

  206. Garcia-Albornoz M, Thankaswamy-Kosalai S, Nilsson A, Väremo L, Nookaew I, Nielsen J (2014) BioMet Toolbox 2.0: genome-wide analysis of metabolism and omics data. Nucleic Acids Res 42(Web Server issue):W175–181

    Google Scholar 

  207. Pabinger S, Snajder R, Hardiman T, Willi M, Dander A, Trajanoski Z (2014) MEMOSys 2.0: an update of the bioinformatics database for genome-scale models and genomic data. Database (Oxford) 2014:bau004

    Google Scholar 

  208. Boele J, Olivier BG, Teusink B (2012) FAME, the flux analysis and modeling environment. BMC Syst Biol 6:8

    Google Scholar 

  209. Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M, Paley S, Rhee SY, Shearer AG, Tissier C, Walk TC, Zhang P, Karp PD (2008) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 36(Database issue):D623–631

    Google Scholar 

  210. Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Muertter RN, Holko M, Ayanbule O, Yefanov A, Soboleva A (2011) NCBI GEO: archive for functional genomics data sets–10 years on. Nucleic Acids Res 39(Database issue):D1005–1010

    Google Scholar 

  211. Rustici G, Kolesnikov N, Brandizi M, Burdett T, Dylag M, Emam I, Farne A, Hastings E, Ison J, Keays M, Kurbatova N, Malone J, Mani R, Mupo A, Pedro Pereira R, Pilicheva E, Rung J, Sharma A, Tang YA, Ternent T, Tikhonov A, Welter D, Williams E, Brazma A, Parkinson H, Sarkans U (2013) ArrayExpress update–trends in database growth and links to data analysis tools. Nucleic Acids Res 41(Database issue):D987–990

    Google Scholar 

  212. Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, Fedorova ND (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol 47:736–741

    Google Scholar 

  213. Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T (2013) antiSMASH 2.0–a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41(Web Server issue):W204–212

    Google Scholar 

  214. Sanli K, Karlsson FH, Nookaew I, Nielsen J (2013) FANTOM: functional and taxonomic analysis of metagenomes. BMC Bioinform 14:38

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meyer, V., Fiedler, M., Nitsche, B., King, R. (2015). The Cell Factory Aspergillus Enters the Big Data Era: Opportunities and Challenges for Optimising Product Formation. In: Krull, R., Bley, T. (eds) Filaments in Bioprocesses. Advances in Biochemical Engineering/Biotechnology, vol 149. Springer, Cham. https://doi.org/10.1007/10_2014_297

Download citation