Skip to main content

Terpene Hydroxylation with Microbial Cytochrome P450 Monooxygenases

  • Chapter
  • First Online:
Book cover Biotechnology of Isoprenoids

Abstract

Terpenoids comprise a highly diverse group of natural products. In addition to their basic carbon skeleton, they differ from one another in their functional groups. Functional groups attached to the carbon skeleton are the basis of the terpenoids’ diverse properties. Further modifications of terpene olefins include the introduction of acyl-, aryl-, or sugar moieties and usually start with oxidations catalyzed by cytochrome P450 monooxygenases (P450s, CYPs). P450s are ubiquitously distributed throughout nature, involved in essential biological pathways such as terpenoid biosynthesis as well as the tailoring of terpenoids and other natural products. Their ability to introduce oxygen into nonactivated C–H bonds is unique and makes P450s very attractive for applications in biotechnology. Especially in the field of terpene oxidation, biotransformation methods emerge as an attractive alternative to classical chemical synthesis. For this reason, microbial P450s depict a highly interesting target for protein engineering approaches in order to increase selectivity and activity, respectively. Microbial P450s have been described to convert industrial and pharmaceutically interesting terpenoids such as ionones, limone, valencene, resin acids, and triterpenes (including steroids) as well as vitamin D3. Highly selective and active mutants have been evolved by applying classical site-directed mutagenesis as well as directed evolution of proteins. As P450s usually depend on electron transfer proteins, mutagenesis has also been applied to improve the interactions between P450s and their respective redox partners. This chapter provides an overview of terpenoid hydroxylation reactions catalyzed by bacterial P450s and highlights the achievements made by protein engineering to establish productive hydroxylation processes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The difference between terpenes and terpenoids is that compounds belonging to the latter category contain additional functional groups whereas terpenes are solely composed of carbon and hydrogen. Cytochromes P450 are often involved in the further functionalization of terpenes into terpenoids, but terpenoids themselves can also be substrates for P450 enzymes. For this reason the terms terpenes and terpenoids are used synonymously throughout the chapter.

Abbreviations

Adx:

Adrenodoxin

P450s:

Cytochrome P450 enzymes

BM3:

Cytochrome P450 102A1

P450cam :

Cytochrome P450 101A1

CPR:

Cytochrome P450 reductase

DMSO:

Dimethylsulfoxide

epPCR:

Error-prone polymerase chain reaction

Fdx:

Ferredoxin

FdR:

Ferredoxin reductase

FMN:

Flavine mononucleotide

FAD:

Flavine adenine dinucleotide

NAD(P)H:

Nicotine amide adenine dinucleotide (phosphate)

Pdx:

Putidaredoxin

THF:

Tetrahydrofuran

VD3 :

Vitamin D3

1α,25(OH)2VD3 :

1α,25-dihydroxyvitamin D3

CYP:

cytochrome P450

KBA:

11-keto-β-boswellic acid

PDB:

Protein Data Bank

VDR:

Vitamin D receptor

References

  1. Cane DE, Ikeda H (2012) Exploration and mining of the bacterial terpenome. Acc Chem Res 45(3):463–472

    CAS  Google Scholar 

  2. Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355

    CAS  Google Scholar 

  3. Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124(1):128–145

    CAS  Google Scholar 

  4. Ortiz de Monetellano PR (2010) Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem Rev 110(2):932–948

    Google Scholar 

  5. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Heme-containing oxygenases. Chem Rev 96(7):2841–2888

    CAS  Google Scholar 

  6. Guengerich FP, Munro AW (2013) Unusual cytochrome p450 enzymes and reactions. J Biol Chem 288(24):17065–17073

    CAS  Google Scholar 

  7. Nelson DR (2009) The cytochrome p450 homepage. Hum Genomics 4(1):59–65

    CAS  Google Scholar 

  8. Hannemann F, Bichet A, Ewen KM, Bernhardt R (2007) Cytochrome P450 systems–biological variations of electron transport chains. Biochim Biophys Acta 1770(3):330–344

    CAS  Google Scholar 

  9. Bernhardt R, Urlacher VB (2014) Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl Microbiol Biotechnol 1–19

    Google Scholar 

  10. Urlacher VB, Girhard M (2012) Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. Trends Biotechnol 30(1):26–36

    CAS  Google Scholar 

  11. Urlacher VB, Lutz-Wahl S, Schmid RD (2004) Microbial P450 enzymes in biotechnology. Appl Microbial Biotechnol 64(3):317–325

    CAS  Google Scholar 

  12. Nelson DR (2013) A world of cytochrome P450s. Philos Trans R Soc Lond B: Biol Sci 368:1–4

    Google Scholar 

  13. Wohlgemuth R (2009) The locks and keys to industrial biotechnology. N Biotechnol 25(4):204–213

    CAS  Google Scholar 

  14. Janocha S, Bernhardt R (2013) Design and characterization of an efficient CYP105A1-based whole-cell biocatalyst for the conversion of resin acid diterpenoids in permeabilized Escherichia coli. Appl Microbiol Biotechnol 97(17):7639–7649

    CAS  Google Scholar 

  15. Bradshaw WH, Conrad HE, Corey EJ, Gunsalus IC, Lednicer DJ (1959) Microbiological degradation of (+)-camphor. J Am Chem Soc 81:5507

    CAS  Google Scholar 

  16. Gunsalus IC, Ganguli BN, Katagiri M, Tsibris JC, Debrunner P, Frauenfelder H (1968) Oxygenation: a specific soluble cytochrome p-450 coupled enzyme complex. Science 160(3826):438–439

    CAS  Google Scholar 

  17. Katagiri M, Ganguli BN, Gunsalus IC (1968) A soluble cytochrome P-450 functional in methylene hydroxylation. J Biol Chem 243(12):3543–3546

    CAS  Google Scholar 

  18. Bhattacharyya PK, Prema BR, Kulkarni BD, Pradhan SK (1960) Microbiological transformation of terpenes: hydroxylation of alpha-pinene. Nature 187:689–690

    CAS  Google Scholar 

  19. Demyttenaere JC, Willemen HM (1998) Biotransformation of linalool to furanoid and pyranoid linalool oxides by Aspergillus niger. Phytochemistry 47(6):1029–1036

    CAS  Google Scholar 

  20. Menendez P, Garcia C, Rodriguez P, Moyna P, Heinzen H (2002) Isolation and screening of d-limonene-resistant microorganisms. Braz Arch Biol Techn 45(2):111–114

    CAS  Google Scholar 

  21. Sawada N, Sakaki T, Yoneda S, Kusudo T, Shinkyo R, Ohta M, Inouye K (2004) Conversion of vitamin D3 to 1α,25-dihydroxyvitamin D3 by Streptomyces griseolus cytochrome P450SU-1. Biochem Biophys Res Commun 320(1):156–164

    CAS  Google Scholar 

  22. Chang HC, Oriel P (1994) Bioproduction of perillyl alcohol and related monoterpenes by isolates of Bacillus stearothermophilus. J Food Sci 59(3):660–662

    CAS  Google Scholar 

  23. Guengerich FP, Tang Z, Salamanca-Pinzón SG, Cheng Q (2010) Characterizing proteins of unknown function: orphan cytochrome p450 enzymes as a paradigm. Mol Interv 10(3):153–163

    CAS  Google Scholar 

  24. Poulos TL, Finzel BC, Gunsalus IC, Wagner GC, Kraut J (1985) The 2.6-A crystal structure of Pseudomonas putida cytochrome P-450. J Biol Chem 260(30):16122–16130

    CAS  Google Scholar 

  25. Ravichandran KG, Boddupalli SS, Hasermann CA, Peterson JA, Deisenhofer J (1993) Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450’s. Science 261(5122):731–736

    CAS  Google Scholar 

  26. Capdevila JH, Wei S, Helvig C, Falck JR, Belosludtsev Y, Truan G, Graham-Lorence SE, Peterson JA (1996) The highly stereoselective oxidation of polyunsaturated fatty acids by cytochrome P450BM-3. J Biol Chem 271(37):22663–22671

    CAS  Google Scholar 

  27. Urlacher VB, Makhsumkhanov A, Schmid RD (2006) Biotransformation of beta-ionone by engineered cytochrome P450 BM-3. Appl Microbiol Biotechnol 70(1):53–59

    CAS  Google Scholar 

  28. Nguyen KT, Virus C, Günnewich N, Hannemann F, Bernhardt R (2012) Changing the regioselectivity of a P450 from C15 to C11 hydroxylation of progesterone. Chembiochem. 13(8):1161–1166

    CAS  Google Scholar 

  29. Wong TS, Arnold FH, Schwaneberg U (2004) Laboratory evolution of cytochrome p450 BM-3 monooxygenase for organic cosolvents. Biotechnol Bioeng 85(3):351–358

    CAS  Google Scholar 

  30. Bell SG, Chen X, Xu F, Rao Z, Wong LL (2003) Engineering substrate recognition in catalysis by cytochrome P450cam. Biochem Soc Trans 31(Pt 3):558–562

    CAS  Google Scholar 

  31. Bell SG, Chen X, Sowden RJ, Xu F, Williams JN, Wong LL, Rao Z (2003) Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam. J Am Chem Soc 125(3):705–714

    CAS  Google Scholar 

  32. Bell SG, Harford-Cross CF, Wong LL (2001) Engineering the CYP101 system for in vivo oxidation of unnatural substrates. Protein Eng 14(10):797–802

    CAS  Google Scholar 

  33. Graham-Lorence S, Truan G, Peterson JA, Falck JR, Wei S, Helvig C, Capdevila JH (1997) An active site substitution, F87V, converts cytochrome P450 BM-3 into a regio- and stereoselective (14S,15R)-arachidonic acid epoxygenase. J Biol Chem 272(2):1127–1135

    CAS  Google Scholar 

  34. Appel D, Lutz-Wahl S, Fischer P, Schwaneberg U, Schmid RD (2001) A P450 BM-3 mutant hydroxylates alkanes, cycloalkanes, arenes and heteroarenes. J Biotechnol 88(2):167–171

    CAS  Google Scholar 

  35. Stemmer WP (1994) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci USA 91(22):10747–10751

    CAS  Google Scholar 

  36. Zhao H, Giver L, Shao Z, Affholter JA, Arnold FH (1998) Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat Biotechnol 16(3):258–261

    CAS  Google Scholar 

  37. Otey CR, Silberg JJ, Voigt CA, Endelman JB, Bandara G, Arnold FH (2004) Functional evolution and structural conservation in chimeric cytochromes p450: calibrating a structure-guided approach. Chem Biol 11(3):309–318

    CAS  Google Scholar 

  38. Murataliev MB, Trinh LN, Moser LV, Bates RB, Feyereisen R, Walker FA (2004) Chimeragenesis of the fatty acid binding site of cytochrome P450BM3. Replacement of residues 73-84 with the homologous residues from the insect cytochrome P450 CYP4C7. Biochemistry 43(7):1771–1780

    CAS  Google Scholar 

  39. Sutherland TD, Unnithan GC, Andersen JF, Evans PH, Murataliev MB, Szabo LZ, Mash EA, Bowers WS, Feyereisen R (1998) A cytochrome P450 terpenoid hydroxylase linked to the suppression of insect juvenile hormone synthesis. Proc Natl Acad Sci USA 95(22):12884–12889

    CAS  Google Scholar 

  40. Chen CK, Berry RE, Shokhireva TKh, Murataliev MB, Zhang H, Walker FA (2010) Scanning chimeragenesis: the approach used to change the substrate selectivity of fatty acid monooxygenase CYP102A1 to that of terpene omega-hydroxylase CYP4C7. J Biol Inorg Chem 15(2):159–174

    CAS  Google Scholar 

  41. Robin A, Roberts GA, Kisch J, Sabbadin F, Grogan G, Bruce N, Turner NJ, Flitsch SL (2009) Engineering and improvement of the efficiency of a chimeric [P450cam-RhFRed reductase domain] enzyme. Chem Commun (Camb) 18:2478–2480

    Google Scholar 

  42. Robin A, Köhler V, Jones A, Ali A, Kelly PP, O’Reilly E, Turner NJ, Flitsch SL (2011) Chimeric self-sufficient P450cam-RhFRed biocatalysts with broad substrate scope. Beilstein J Org Chem 7:1494–1498

    CAS  Google Scholar 

  43. Ewen KM, Kleser M, Bernhardt R (2011) Adrenodoxin: the archetype of vertebrate-type [2Fe–2S] cluster ferredoxins. Biochim Biophys Acta 1814(1):111–125

    CAS  Google Scholar 

  44. Mouri T, Kamiya N, Goto M (2006) Increasing the catalytic performance of a whole cell biocatalyst harboring a cytochrome p450cam system by stabilization of an electron transfer component. Biotechnol Lett 28(18):1509–1513

    CAS  Google Scholar 

  45. Khatri Y, Girhard M, Romankiewicz A, Ringle M, Hannemann F, Urlacher VB, Hutter MC, Bernhardt R (2010) Regioselective hydroxylation of norisoprenoids by CYP109D1 from Sorangium cellulosum So ce56. Appl Microbiol Biotechnol 88(2):485–495

    CAS  Google Scholar 

  46. Schiffler B, Kiefer M, Wilken A, Hannemann F, Adolph HW, Bernhardt R (2001) The interaction of bovine adrenodoxin with CYP11A1 (cytochrome P450scc) and CYP11B1 (cytochrome P45011beta). Acceleration of reduction and substrate conversion by site-directed mutagenesis of adrenodoxin. J Biol Chem 276(39):36225–36232

    CAS  Google Scholar 

  47. Ewen KM, Ringle M, Bernhardt R (2012) Adrenodoxin—a versatile ferredoxin. IUBMB Life 64(6):506–512

    CAS  Google Scholar 

  48. Ishida T, Enomoto H, Nishida R (2008) New attractants for males of the solanaceous fruit fly Bactrocera latifrons. J Chem Ecol 34(12):1532–1535

    CAS  Google Scholar 

  49. Tamura S, Nagao M (1970) Syntheses and biological activities of new plant growth inhibitors structurally related to abscisic acid. Agric Biol Chem 34(9):1393–1401

    CAS  Google Scholar 

  50. Larroche C, Creuly C, Gros J-B (1995) Fed-batch biotransformation of β-ionone by Aspergillus niger. Appl Microbiol Biotechnol 43:222–227

    CAS  Google Scholar 

  51. Lutz-Wahl S, Fischer P, Schmidt-Dannert C, Wohlleben W, Hauer B, Schmid RD (1998) Stereo- and regioselective hydroxylation of alpha-ionone by Streptomyces strains. Appl Environ Microbiol 64(10):3878–3881

    CAS  Google Scholar 

  52. Celik A, Flitsch SL, Turner NJ (2005) Efficient terpene hydroxylation catalysts based upon P450 enzymes derived from actinomycetes. Org Biomol Chem 3(16):2930–2934

    CAS  Google Scholar 

  53. Ly TT, Khatri Y, Zapp J, Hutter MC, Bernhardt R (2012) CYP264B1 from Sorangium cellulosum So ce56: a fascinating norisoprenoid and sesquiterpene hydroxylase. Appl Microbiol Biotechnol 95(1):123–133

    CAS  Google Scholar 

  54. Ma M, Bell SG, Yang W, Hao Y, Rees NH, Bartlam M, Zhou W, Wong LL, Rao Z (2011) Structural analysis of CYP101C1 from Novosphingobium aromaticivorans DSM12444. Chembiochem 12(1):88–99

    CAS  Google Scholar 

  55. Miyazawa M, Shindo M, Shimada T (2002) Metabolism of (+)- and (−)-limonenes to respective carveols and perillyl alcohols by CYP2C9 and CYP2C19 in human liver microsomes. Drug Metab Dispos 30(5):602–607

    CAS  Google Scholar 

  56. Vottero E, Rea V, Lastdrager J, Honing M, Vermeulen NP, Commandeur JN (2011) Role of residue 87 in substrate selectivity and regioselectivity of drug-metabolizing cytochrome P450 CYP102A1 M11. J Biol Inorg Chem 16(6):899–912

    CAS  Google Scholar 

  57. Oriel PJ, Savithiry S, Chang HC (1997) Process for the preparation of monoterpenes using bacterium containing recombinant DNA. US patent 5688673

    Google Scholar 

  58. Van Beilen JB, Holtackers R, Lüscher D, Bauer U, Witholt B, Duetz WA (2005) Biocatalytic production of perillyl alcohol from limonene by using a novel Mycobacterium sp. cytochrome P450 alkane hydroxylase expressed in Pseudomonas putida. Appl Environ Microbiol 71(4):1737–1744

    Google Scholar 

  59. Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng 19:33–41

    CAS  Google Scholar 

  60. Kim D, de Montellano PRO (2009) Tricistronic overexpression of cytochrome P450cam, putidaredoxin, and putidaredoxin reductase provides a useful cell-based catalytic system. Biotechnol Lett 31(9):1427–1431

    CAS  Google Scholar 

  61. Seifert A, Antonovici M, Hauer B, Pleiss J (2011) An efficient route to selective bio-oxidation catalysts: an iterative approach comprising modeling, diversification, and screening, based on CYP102A1. Chembiochem 12(9):1346–1351

    CAS  Google Scholar 

  62. Dietrich M, Eiben S, Asta C, Do TA, Pleiss J, Urlacher VB (2008) Cloning, expression and characterisation of CYP102A7, a self-sufficient P450 monooxygenase from Bacillus licheniformis. Appl Microbiol Biotechnol 79(6):931–940

    CAS  Google Scholar 

  63. Bhattarai S, Liou K, Oh TJ (2012) Homology modeling and docking studies of Streptomyces peucetius CYP147F1 as limonene hydroxylase. J Microbiol Biotechnol 22(7):917–922

    CAS  Google Scholar 

  64. Dietrich G, Dolan MC, Peralta-Cruz J, Schmidt J, Piesman J, Eisen RJ, Karchesy JJ (2006) Repellent activity of fractioned compounds from Chamaecyparis nootkatensis essential oil against nymphal Ixodes scapularis (Acari: Ixodidae). J Med Entomol 43(5):957–961

    CAS  Google Scholar 

  65. Jordan RA, Schulze TL, Dolan MC (2012) Efficacy of plant-derived and synthetic compounds on clothing as repellents against Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae). J Med Entomol 49(1):101–106

    CAS  Google Scholar 

  66. Gavira C, Höfer R, Lesot A, Lambert F, Zucca J, Werck-Reichhart D (2013) Challenges and pitfalls of P450-dependent (+)-valencene bioconversion by Saccharomyces cerevisiae. Metab Eng 18:25–35

    CAS  Google Scholar 

  67. Fraatz MA, Berger RG, Zorn H (2009) Nootkatone—a biotechnological challenge. Appl Microbiol Biotechnol 83(1):35–41

    CAS  Google Scholar 

  68. Kaspera R, Krings U, Nanzad T, Berger RG (2005) Bioconversion of (+)-valencene in submerged cultures of the ascomycete Chaetomium globosum. Appl Microbiol Biotechnol 67(4):477–483

    CAS  Google Scholar 

  69. Girhard M, Machida K, Itoh M, Schmid RD, Arisawa A, Urlacher VB (2009) Regioselective biooxidation of (+)-valencene by recombinant E. coli expressing CYP109B1 from Bacillus subtilis in a two-liquid-phase system. Microb Cell Fact 8:36

    Google Scholar 

  70. Sowden RJ, Yasmin S, Rees NH, Bell SG, Wong LL (2005) Biotransformation of the sesquiterpene (+)-valencene by cytochrome P450cam and P450BM-3. Org Biomol Chem 3(1):57–64

    CAS  Google Scholar 

  71. Smith DJ, Patrauchan MA, Florizone C, Eltis LD, Mohn WW (2008) Distinct roles for two CYP226 family cytochromes P450 in abietane diterpenoid catabolism by Burkholderia xenovorans LB400. J Bacteriol 190(5):1575–1583

    CAS  Google Scholar 

  72. Smith DJ, Martin VJ, Mohn WW (2004) A cytochrome P450 involved in the metabolism of abietane diterpenoids by Pseudomonas abietaniphila BKME-9. J Bacteriol. 186(11):3631–3639

    CAS  Google Scholar 

  73. Bleif S, Hannemann F, Lisurek M, von Kries JP, Zapp J, Dietzen M, Antes I, Bernhardt R (2011) Identification of CYP106A2 as a regioselective allylic bacterial diterpene hydroxylase. Chembiochem 12(4):576–582

    CAS  Google Scholar 

  74. Virus C, Lisurek M, Simgen B, Hannemann F, Bernhardt R (2006) Function and engineering of the 15beta-hydroxylase CYP106A2. Biochem Soc Trans 34(Pt 6):1215–1218

    CAS  Google Scholar 

  75. Lisurek M, Simgen B, Antes I, Bernhardt R (2008) Theoretical and experimental evaluation of a CYP106A2 low homology model and production of mutants with changed activity and selectivity of hydroxylation. Chembiochem 9(9):1439–1449

    CAS  Google Scholar 

  76. Janocha S, Zapp J, Hutter M, Kleser M, Bohlmann J, Bernhardt R (2013) Resin acid conversion with CYP105A1: an enzyme with potential for the production of pharmaceutically relevant diterpenoids. Chembiochem 14(4):467–473

    CAS  Google Scholar 

  77. Dzubak P, Hajduch M, Vydra D, Hustova A, Kvasnica M, Biedermann D, Markova L, Urban M, Sarek J (2006) Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat Prod Rep 23(3):394–411

    CAS  Google Scholar 

  78. Muffler K, Leipold D, Scheller M-C, Haas C, Steingroewer J, Bley T, Neuhaus HE, Mirata MA, Schrader J, Ulber R (2011) Biotransformation of Triterpenes. Proc Biochem 46:1–15

    CAS  Google Scholar 

  79. Chatterjee P, Kouzi SA, Pezzuto JM, Hamann MT (2000) Biotransformation of the antimelanoma agent betulinic acid by Bacillus megaterium ATCC 13368. Appl Environ Microbiol. 66(9):3850–3855

    CAS  Google Scholar 

  80. Bleif S, Hannemann F, Zapp J, Hartmann D, Jauch J, Bernhardt R (2012) A new Bacillus megaterium whole-cell catalyst for the hydroxylation of the pentacyclic triterpene 11-keto-β-boswellic acid (KBA) based on a recombinant cytochrome P450 system. Appl Microbiol Biotechnol 93(3):1135–1146

    CAS  Google Scholar 

  81. Brill E, Hannemann F, Zapp J, Brüning G, Jauch J, Bernhardt R (2014) A new cytochrome P450 system from Bacillus megaterium DSM319 for the hydroxylation of 11-keto-β-boswellic acid (KBA). Appl Microbiol Biotechnol 98(4):1701–1717

    Google Scholar 

  82. Jauch J, Bergmann J (2003) An efficient method for large-scale preparation of 3-O-Acetyl-11-oxo-β-boswellic acid and other boswellic acids. Eur J Org Chem 24:4752–4756

    Google Scholar 

  83. Schmitz D, Zapp J, Bernhardt R (2012) Hydroxylation of the triterpenoid dipterocarpol with CYP106A2 from Bacillus megaterium. FEBS J. 279(9):1663–1674

    CAS  Google Scholar 

  84. Tong WY, Dong X (2009) Microbial biotransformation: recent developments on steroid drugs. Recent Pat Biotechnol 3(2):141–153

    CAS  Google Scholar 

  85. Bernhardt R (2014) Mammalian and bacterial cytochromes P450 involved in steroid hydroxylation: regulation of catalysis and selectivity, and potential applications. Yamazaki H (ed) Fifty years of cytochrome P450 research. Springer, Berlin

    Google Scholar 

  86. Donova MV, Egorova OV (2012) Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 94(6):1423–1447

    CAS  Google Scholar 

  87. Bracco P, Janssen DB, Schallmey A (2013) Selective steroid oxyfunctionalisation by CYP154C5, a bacterial cytochrome P450. Microb Cell Fact. 12:95

    Google Scholar 

  88. Berg A, Carlstrom K, Gustafsson JA, Ingelman-Sundberg M (1975) Demonstration of a cytochrome P-450-dependent steroid 15beta-hydroxylase in Bacillus megaterium. Biochem Biophys Res Commun 66(4):1414–1423

    CAS  Google Scholar 

  89. Berg A, Gustafsson JA, Ingelman-Sundberg M (1976) Characterization of a cytochrome P-450-dependent steroid hydroxylase system present in Bacillus megaterium. J Biol Chem 251(9):2831–2838

    CAS  Google Scholar 

  90. Berg A, Ingelman-Sundberg M, Gustafsson JA (1979) Isolation and characterization of cytochrome P-450meg. Acta Biol Med Ger 38(2–3):333–344

    CAS  Google Scholar 

  91. Simgen B, Contzen J, Schwarzer R, Bernhardt R, Jung C (2000) Substrate binding to 15beta-hydroxylase (CYP106A2) probed by FT infrared spectroscopic studies of the iron ligand CO stretch vibration. Biochem Biophys Res Commun 269(3):737–742

    CAS  Google Scholar 

  92. Schmitz D, Zapp J, Bernhardt R (2014) Steroid conversion with CYP106A2—production of pharmaceutically interesting DHEA metabolites. Microb Cell Fact 13(1):81

    Google Scholar 

  93. Zehentgruber D, Hannemann F, Bleif S, Bernhardt R, Lütz S (2010) Towards preparative scale steroid hydroxylation with cytochrome P450 monooxygenase CYP106A2. Chembiochem 11(5):713–721

    CAS  Google Scholar 

  94. McAleer WJ, Jacob TA, Turnbull LB, Schoenewaldt EF, Stoudt TH (1958) Hydroxylation of progesterone by Bacillus cereus and Bacillus megaterium. Arch Biochem Biophys 73(1):127–130

    CAS  Google Scholar 

  95. Virus C, Bernhardt R (2008) Molecular evolution of a steroid hydroxylating cytochrome P450 using a versatile steroid detection system for screening. Lipids 43(12):1133–1141

    CAS  Google Scholar 

  96. Van Vugt-Lussenburg BM, Damsten MC, Maasdijk DM, Vermeulen NP, Commandeur JN (2006) Heterotropic and homotropic cooperativity by a drug-metabolising mutant of cytochrome P450 BM3. Biochem Biophys Res Commun 346(3):810–818

    Google Scholar 

  97. Van Vugt-Lussenburg BM, Stjernschantz E, Lastdrager J, Oostenbrink C, Vermeulen NP, Commandeur JN (2007) Identification of critical residues in novel drug metabolizing mutants of cytochrome P450 BM3 using random mutagenesis. J Med Chem 50(3):455–461

    Google Scholar 

  98. Kille S, Zilly FE, Acevedo JP, Reetz MT (2011) Regio- and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution. Nat Chem 3(9):738–743

    CAS  Google Scholar 

  99. Venkataraman H, Beer SB, Bergen LA, van Essen N, Geerke DP, Vermeulen NP, Commandeur JN (2012) A single active site mutation inverts stereoselectivity of 16-hydroxylation of testosterone catalyzed by engineered cytochrome P450 BM3. Chembiochem 13(4):520–523

    CAS  Google Scholar 

  100. Zittermann A, Gummert JF (2010) Nonclassical vitamin D action. Nutrients 2(4):408–425

    CAS  Google Scholar 

  101. Bikle DD (2014) Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 21(3):319–329

    CAS  Google Scholar 

  102. Schuster I (2011) Cytochromes P450 are essential players in the vitamin D signaling system. Biochim Biophys Acta 1814(1):186–199

    CAS  Google Scholar 

  103. Sasaki J, Miyazaki A, Saito M, Adachi T, Mizoue K, Hanada K, Omura S (1992) Transformation of vitamin D3 to 1α,25-dihydroxyvitamin D3 via 25-hydroxyvitamin D3 using Amycolata sp. strains. Appl Microbiol Biotechnol 38(2):152–157

    CAS  Google Scholar 

  104. Fujii Y, Kabumoto H, Nishimura K, Fujii T, Yanai S, Takeda K, Tamura N, Arisawa A, Tamura T (2009) Purification, characterization, and directed evolution study of a vitamin D3 hydroxylase from Pseudonocardia autotrophica. Biochem Biophys Res Commun 385(2):170–175

    CAS  Google Scholar 

  105. Sakaki T, Sugimoto H, Hayashi K, Yasuda K, Munetsuna E, Kamakura M, Ikushiro S, Shiro Y (2011) Bioconversion of vitamin D to its active form by bacterial or mammalian cytochrome P450. Biochim Biophys Acta 1814(1):249–256

    CAS  Google Scholar 

  106. Yasutake Y, Nishioka T, Imoto N, Tamura T (2013) A single mutation at the ferredoxin binding site of P450 Vdh enables efficient biocatalytic production of 25-hydroxyvitamin D(3). Chembiochem 14(17):2284–2291

    CAS  Google Scholar 

  107. Sugimoto H, Shinkyo R, Hayashi K, Yoneda S, Yamada M, Kamakura M, Ikushiro S, Shiro Y, Sakaki T (2008) Crystal structure of CYP105A1 (P450SU-1) in complex with 1alpha,25-dihydroxyvitamin D3. Biochemistry. 47(13):4017–4027

    CAS  Google Scholar 

  108. Hawkes DB, Adams GW, Burlingame AL, de Montellano PRO, De Voss JJ (2002) Cytochrome P450(cin) (CYP176A), isolation, expression, and characterization. J Biol Chem 277(31):27725–27732

    CAS  Google Scholar 

  109. Hayashi K, Yasuda K, Sugimoto H, Ikushiro S, Kamakura M, Kittaka A, Horst RL, Chen TC, Ohta M, Shiro Y, Sakaki T (2010) Three-step hydroxylation of vitamin D3 by a genetically engineered CYP105A1: enzymes and catalysis. FEBS J 277(19):3999–4009

    CAS  Google Scholar 

  110. Julsing MK, Cornelissen S, Bühler B, Schmid A (2008) Heme-iron oxygenases: powerful industrial biocatalysts? Curr Opin Chem Biol 12(2):177–186

    Google Scholar 

  111. Cornelissen S, Julsing MK, Volmer J, Riechert O, Schmid A, Bühler B (2013) Whole-cell-based CYP153A6-catalyzed (S)-limonene hydroxylation efficiency depends on host background and profits from monoterpene uptake via AlkL. Biotechnol Bioeng 110(5):1282–1292

    CAS  Google Scholar 

  112. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943

    CAS  Google Scholar 

  113. Chang MC, Eachus RA, Trieu W, Ro DK, Keasling JD (2007) Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat Chem Biol 3(5):274–277

    CAS  Google Scholar 

  114. Dietrich JA, Yoshikuni Y, Fisher KJ, Woolard FX, Ockey D, McPhee DJ, Renninger NS, Chang MC, Baker D, Keasling JD (2009) A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450(BM3). ACS Chem Biol 4(4):261–267

    CAS  Google Scholar 

  115. Omura T (2013) Contribution of cytochrome P450 to the diversification of eukaryotic organisms. Biotechnol Appl Biochem 60(1):4–8

    CAS  Google Scholar 

  116. Jung ST, Lauchli R, Arnold FH (2011) Cytochrome P450: taming a wild type enzyme. Curr Opin Biotechnol 22(6):809–817

    CAS  Google Scholar 

  117. Zhang Z, Sibbesen O, Johnson RA, de Montellano PRO (1998) The substrate specificity of cytochrome P450cam. Bioorg Med Chem 6(9):1501–1508

    CAS  Google Scholar 

  118. Warman AJ, Roitel O, Neeli R, Girvan HM, Seward HE, Murray SA, McLean KJ, Joyce MG, Toogood H, Holt RA, Leys D, Scrutton NS, Munro AW (2005) Flavocytochrome P450 BM3: an update on structure and mechanism of a biotechnologically important enzyme. Biochem Soc Trans 33(Pt 4):747–753

    CAS  Google Scholar 

  119. Whitehouse CJ, Bell SG, Tufton HG, Kenny RJ, Ogilvie LC, Wong LL (2008) Evolved CYP102A1 (P450BM3) variants oxidise a range of non-natural substrates and offer new selectivity options. Chem Commun (Camb) 8:966–968

    Google Scholar 

  120. Whitehouse CJ, Bell SG, Wong LL (2012) P450(BM3) (CYP102A1): connecting the dots. Chem Soc Rev 41(3):1218–1260

    CAS  Google Scholar 

  121. Fujii Y, Hirosue S, Fujii T, Matsumoto N, Agematu H, Arisawa A (2006) Hydroxylation of oleanolic acid to queretaroic acid by cytochrome P450 from Nonomuraea recticatena. Biosci Biotechnol Biochem 70(9):2299–2302

    CAS  Google Scholar 

  122. Kawauchi H, Sasaki J, Adachi T, Hanada K, Beppu T, Horinouchi S (1994) Cloning and nucleotide sequence of a bacterial cytochrome P-450VD25 gene encoding vitamin D-3 25-hydroxylase. Biochim Biophys Acta 1219(1):179–183

    CAS  Google Scholar 

  123. Watanabe I, Nara F, Serizawa N (1995) Cloning, characterization and expression of the gene encoding cytochrome P-450sca-2 from Streptomyces carbophilus involved in production of pravastatin, a specific HMG-CoA reductase inhibitor. Gene 163(1):81–85

    CAS  Google Scholar 

  124. Yasutake Y, Fujii Y, Nishioka T, Cheon WK, Arisawa A, Tamura T (2010) Structural evidence for enhancement of sequential vitamin D3 hydroxylation activities by directed evolution of cytochrome P450 vitamin D3 hydroxylase. J Biol Chem 285(41):31193–31201

    CAS  Google Scholar 

  125. Ban JG, Kim HB, Lee MJ, Anbu P, Kim ES (2014) Identification of a vitamin D3-specific hydroxylase genes through actinomycetes genome mining. J Ind Microbiol Biotechnol 41(2):265–273

    CAS  Google Scholar 

  126. Peterson JA, Lu JY, Geisselsoder J, Graham-Lorence S, Carmona C, Witney F, Lorence MC (1992) Cytochrome P-450terp. Isolation and purification of the protein and cloning and sequencing of its operon. J Biol Chem 267(20):14193–14203

    CAS  Google Scholar 

  127. Agger SA, Lopez-Gallego F, Hoye TR, Schmidt-Dannert C (2008) Identification of sesquiterpene synthases from Nostoc punctiforme PCC 73102 and Nostoc sp. strain PCC 7120. J Bacteriol 190(18):6084–6096

    CAS  Google Scholar 

  128. Harada H, Shindo K, Iki K, Teraoka A, Okamoto S, Yu F, Hattan J-I, Utsumi R, Misawa N (2011) Efficient functional analysis system for cyanobacterial or plant cytochromes P450 involved in sesquiterpene biosynthesis. Appl Microbiol Biotechnol 90(2):467–476

    CAS  Google Scholar 

  129. Ropp JD, Gunsalus IC, Sligar SG (1993) Cloning and expression of a member of a new cytochrome P-450 family: cytochrome P-450lin (CYP111) from Pseudomonas incognita. J Bacteriol 175(18):6028–6037

    CAS  Google Scholar 

  130. Kühnel K, Ke N, Cryle MJ, Sligar SG, Schuler MA, Schlichting I (2008) Crystal structures of substrate-free and retinoic acid-bound cyanobacterial cytochrome P450 CYP120A1. Biochemistry 47(25):6552–6559

    Google Scholar 

  131. Takamatsu S, Lin X, Nara A, Komatsu M, Cane DE, Ikeda H (2011) Characterization of a silent sesquiterpenoid biosynthetic pathway in Streptomyces avermitilis controlling epi-isozizaene albaflavenone biosynthesis and isolation of a new oxidized epi-isozizaene metabolite. Microb Biotechnol. 4(2):184–191

    CAS  Google Scholar 

  132. Zhao B, Lin X, Lei L, Lamb DC, Kelly SL, Waterman MR, Cane DE (2008) Biosynthesis of the sesquiterpene antibiotic albaflavenone in Streptomyces coelicolor A3(2). J Biol Chem 283(13):8183–8189

    CAS  Google Scholar 

  133. Blasco F, Kauffmann I, Schmid RD (2004) CYP175A1 from Thermus thermophilus HB27, the first beta-carotene hydroxylase of the P450 superfamily. Appl Microbiol Biotechnol 64(5):671–674

    CAS  Google Scholar 

  134. Liu W, Rosazza JP (1993) A soluble Bacillus cereus cytochrome P-450cin system catalyzes 1,4-cineole hydroxylations. Appl Environ Microbiol 59(11):3889–3893

    CAS  Google Scholar 

  135. Bell SG, French L, Rees NH, Cheng SS, Preston G, Wong LL (2013) A phthalate family oxygenase reductase supports terpene alcohol oxidation by CYP238A1 from Pseudomonas putida KT2440. Biotechnol Appl Biochem 60(1):9–17

    CAS  Google Scholar 

  136. Grogan G, Roberts GA, Parsons S, Turner NJ, Flitsch SL (2002) P450(camr), a cytochrome P450 catalysing the stereospecific 6- endo-hydroxylation of (1 R)-(+)-camphor. Appl Microbiol Biotechnol 59(4–5):449–454

    CAS  Google Scholar 

  137. Kim SY, Zhao P, Igarashi M, Sawa R, Tomita T, Nishiyama M, Kuzuyama T (2009) Cloning and heterologous expression of the cyclooctatin biosynthetic gene cluster afford a diterpene cyclase and two p450 hydroxylases. Chem Biol 16(7):736–743

    Google Scholar 

Download references

Acknowledgments:

The work is supported by a grant of the Deutsche Forschungsgemeinschaft to R.B. (Be 1343/23-1). S.J. is supported by the INTERREG program of the European Union, and D.S. by a grant from the Saarland Ministry of Economics and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Bernhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Janocha, S., Schmitz, D., Bernhardt, R. (2015). Terpene Hydroxylation with Microbial Cytochrome P450 Monooxygenases. In: Schrader, J., Bohlmann, J. (eds) Biotechnology of Isoprenoids. Advances in Biochemical Engineering/Biotechnology, vol 148. Springer, Cham. https://doi.org/10.1007/10_2014_296

Download citation

Publish with us

Policies and ethics