Microalgae Biotechnology pp 1-35

Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 153) | Cite as

Biology and Industrial Applications of Chlorella: Advances and Prospects

Chapter

Abstract

Chlorella represents a group of eukaryotic green microalgae that has been receiving increasing scientific and commercial interest. It possesses high photosynthetic ability and is capable of growing robustly under mixotrophic and heterotrophic conditions as well. Chlorella has long been considered as a source of protein and is now industrially produced for human food and animal feed. Chlorella is also rich in oil, an ideal feedstock for biofuels. The exploration of biofuel production by Chlorella is underway. Chlorella has the ability to fix carbon dioxide efficiently and to remove nutrients of nitrogen and phosphorous, making it a good candidate for greenhouse gas biomitigation and wastewater bioremediation. In addition, Chlorella shows potential as an alternative expression host for recombinant protein production, though challenges remain to be addressed. Currently, omics analyses of certain Chlorella strains are being performed, which will help to unravel the biological implications of Chlorella and facilitate the future exploration of industrial applications.

Graphical Abstract

Keywords

Biofuels Bioremediation CO2 biomitigation Carotenoids Chlorella Mass cultivation Nutritional food 

References

  1. 1.
    Bar E, Rise M, Vishkautsan M, Arad S (1995) Pigments and structural changes in Chlorella zofingiensis upon light and nitrogen stress. J Plant Physiol 146:527–534CrossRefGoogle Scholar
  2. 2.
    Gerken H, Donohoe B, Knoshaug E (2013) Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta 237:239–253CrossRefGoogle Scholar
  3. 3.
    Goncalves E, Johnson J, Rathinasabapathi B (2013) Conversion of membrane lipid acyl groups to triacylglycerol and formation of lipid bodies upon nitrogen starvation in biofuel green algae Chlorella UTEX29. Planta 238:895–906CrossRefGoogle Scholar
  4. 4.
    Ikeda T, Takeda H (1995) Species-specific differences of pyrenoids in Chlorella (Chlorophyta). J Phycol 31:813–818CrossRefGoogle Scholar
  5. 5.
    Yamada T, Sakaguchi K (1982) Comparative studies on Chlorella cell walls: induction of protoplast formation. Arch Microbiol 132:10–13CrossRefGoogle Scholar
  6. 6.
    Kessler E (1976) Comparative physiology, biochemistry, and the taxonomy of Chlorella (Chlorophyceae). Plant Syst Evol 125:129–138CrossRefGoogle Scholar
  7. 7.
    Kessler E, Huss VAR (1992) Comparative physiology and biochemistry and taxonomic assignment of the Chlorella (Chlorophyceae) strains of the culture collection of the University of Texas at Austin. J Phycol 28:550–553CrossRefGoogle Scholar
  8. 8.
    Takeda H (1991) Sugar composition of the cell wall and the taxonomy of chlorella (Chlorophyceae). J Phycol 27:224–232CrossRefGoogle Scholar
  9. 9.
    Takeda H (1993) Chemical-composition of cell-walls as a taxonomical marker. J Plant Res 106:195–200CrossRefGoogle Scholar
  10. 10.
    Huss VAR, Frank C, Hartmann EC, Hirmer M, Kloboucek A, Seidel BM, Wenzeler P, Kessler E (1999) Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J Phycol 35:587–598CrossRefGoogle Scholar
  11. 11.
    Krienitz L, Hegewald EH, Hepperle D, Huss VAR, Rohr T, Wolf M (2004) Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia 43:529–542CrossRefGoogle Scholar
  12. 12.
    Lloyd NDH, Canvin DT, Culver DA (1977) Photosynthesis and photorespiration in algae. Plant Physiol 59:936–940CrossRefGoogle Scholar
  13. 13.
    Winokur M (1948) Photosynthesis relationships of Chlorella species. Am J Bot 35:207–214CrossRefGoogle Scholar
  14. 14.
    Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280CrossRefGoogle Scholar
  15. 15.
    Wassink EC, Kok B, van Oorschot P (1964) The efficiency of light-energy conversion in Chlorella cultures as compared with higher plants. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution of Washington Publication, Washinton, D.C., pp 55–62Google Scholar
  16. 16.
    Shelp BJ, Canvin DT (1980) Utilization of exogenous inorganic carbon species in photosynthesis by Chlorella pyrenoidosa. Plant Physiol 65:774–779CrossRefGoogle Scholar
  17. 17.
    Hsieh C-H, Wu W-T (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100:3921–3926CrossRefGoogle Scholar
  18. 18.
    Ong S-C, Kao C-Y, Chiu S-Y, Tsai M-T, Lin C-S (2010) Characterization of the thermal-tolerant mutants of Chlorella sp. with high growth rate and application in outdoor photobioreactor cultivation. Bioresour Technol 101:2880–2883CrossRefGoogle Scholar
  19. 19.
    Chiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, Lin CS (2008) Reduction of CO2 by a high-density culture of Chlorella sp in a semicontinuous photobioreactor. Bioresour Technol 99:3389–3396CrossRefGoogle Scholar
  20. 20.
    Fulke AB, Mudliar SN, Yadav R, Shekh A, Srinivasan N, Ramanan R, Krishnamurthi K, Devi SS, Chakrabarti T (2010) Bio-mitigation of CO2, calcite formation and simultaneous biodiesel precursors production using Chlorella sp. Bioresour Technol 101:8473–8476CrossRefGoogle Scholar
  21. 21.
    Papazi A, Makridis P, Divanach P, Kotzabasis K (2008) Bioenergetic changes in the microalgal photosynthetic apparatus by extremely high CO2 concentrations induce an intense biomass production. Physiol Plantarum 132:338–349CrossRefGoogle Scholar
  22. 22.
    Sakai N, Sakamoto Y, Kishimoto N, Chihara M, Karube I (1995) Chlorella strains from hot springs tolerant to high temperature and high CO2. Energy Convers Manage 36:693–696CrossRefGoogle Scholar
  23. 23.
    Davis EA, Dedrick J, French CS, Milner HW, Myers J, Smith JHC, Spoehr HA (1964) Laboratory experiments on Chlorella culture at the Carnegie Institution of Washington department of plant biology. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution of Washington Publication, Washington, D.C., pp 105–153Google Scholar
  24. 24.
    Shi X-M, Zhang X-W, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Tech 27:312–318CrossRefGoogle Scholar
  25. 25.
    Goldman JC, Brewer PG (1980) Effect of nitrogen source and growth rate on phytoplankton-mediated changes in alkalinity. Limnol Oceanogr 25:352–357CrossRefGoogle Scholar
  26. 26.
    Shen Y, Yuan W, Pei Z, Mao E (2010) Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production. Appl Biochem Biotechnol 160:1674–1684CrossRefGoogle Scholar
  27. 27.
    Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Tech 27:631–635CrossRefGoogle Scholar
  28. 28.
    Ördög V, Stirk W, Bálint P, van Staden J, Lovász C (2012) Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. J Appl Phycol 24:907–914CrossRefGoogle Scholar
  29. 29.
    Ramazanov A, Ramazanov Z (2006) Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycol Res 54:255–259CrossRefGoogle Scholar
  30. 30.
    Liu J, Huang J, Fan KW, Jiang Y, Zhong Y, Sun Z, Chen F (2010) Production potential of Chlorella zofingienesis as a feedstock for biodiesel. Bioresour Technol 101:8658–8663CrossRefGoogle Scholar
  31. 31.
    Liu J, Huang J, Jiang Y, Chen F (2012) Molasses-based growth and production of oil and astaxanthin by Chlorella zofingiensis. Bioresour Technol 107:393–398CrossRefGoogle Scholar
  32. 32.
    Liu J, Sun Z, Zhong Y, Gerken H, Huang J, Chen F (2013) Utilization of cane molasses towards cost-saving astaxanthin production by a Chlorella zofingiensis mutant. J Appl Phycol 25:1447–1456Google Scholar
  33. 33.
    Ip PF, Chen F (2005) Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem 40:733–738CrossRefGoogle Scholar
  34. 34.
    Cheng Y, Zhou W, Gao C, Lan K, Gao Y, Wu Q (2009) Biodiesel production from Jerusalem artichoke (Helianthus Tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. J Chem Technol Biotechnol 84:777–781CrossRefGoogle Scholar
  35. 35.
    Gao C, Zhai Y, Ding Y, Wu Q (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy 87:756–761CrossRefGoogle Scholar
  36. 36.
    Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049CrossRefGoogle Scholar
  37. 37.
    Kotzabasis K, Hatziathanasiou A, Bengoa-Ruigomez MV, Kentouri M, Divanach P (1999) Methanol as alternative carbon source for quicker efficient production of the microalgae Chlorella minutissima: role of the concentration and frequence of administration. J Biotechnol 70:357–362CrossRefGoogle Scholar
  38. 38.
    Burlew JS (1964) Algal culture: from laboratory to pilot plant, 4th edn. Carnegie Institution of Washington Publication, Washington, D.C.Google Scholar
  39. 39.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefGoogle Scholar
  40. 40.
    Lin L-P (2005) Chlorella: its ecology, structure, cultivation, bioprocess and application. Yi Hsien Publishing, Taipei, TaiwanGoogle Scholar
  41. 41.
    Masojidek J, Kopecky J, Giannelli L, Torzillo G (2011) Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thin-layer cascades. J Ind Microbiol Biotechnol 38:307–317CrossRefGoogle Scholar
  42. 42.
    Moheimani N (2013) Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp (Chlorophyta) grown outdoors in bag photobioreactors. J Appl Phycol 25:387–398CrossRefGoogle Scholar
  43. 43.
    Doucha J, Lívanský K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a Middle and Southern European climate. J Appl Phycol 18:811–826CrossRefGoogle Scholar
  44. 44.
    Douskova I, Doucha J, Livansky K, Machat J, Novak P, Umysova D, Zachleder V, Vitova M (2009) Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl Microbiol Biotechnol 82:179–185CrossRefGoogle Scholar
  45. 45.
    Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321CrossRefGoogle Scholar
  46. 46.
    Lee Y-K, Ding S-Y, Low C-S, Chang Y-C, Forday W, Chew P-C (1995) Design and performance of an α-type tubular photobioreactor for mass cultivation of microalgae. J Appl Phycol 7:47–51CrossRefGoogle Scholar
  47. 47.
    Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1:20–43CrossRefGoogle Scholar
  48. 48.
    Hu Q, Kurano N, Kawachi M, Iwasaki I, Miyachi S (1998) Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl Microbiol Biotechnol 49:655–662CrossRefGoogle Scholar
  49. 49.
    Liu J, Sommerfeld M, Hu Q (2013) Screening and characterization of Isochrysis strains and optimization of culture conditions for docosahexaenoic acid production. Appl Microbiol Biotechnol 97:4785–4798Google Scholar
  50. 50.
    Zemke P, Sommerfeld M, Hu Q (2013) Assessment of key biological and engineering design parameters for production of Chlorella zofingiensis (Chlorophyceae) in outdoor photobioreactors. Appl Microbiol Biotechnol 97:5645–5655CrossRefGoogle Scholar
  51. 51.
    Zhang CW, Richmond A (2003) Sustainable, high-yielding outdoor mass cultures of Chaetoceros muelleri var. subsalsum and Isochrysis galban in vertical plate reactors. Mar Biotechnol 5:302–310CrossRefGoogle Scholar
  52. 52.
    Lee Y-K (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315CrossRefGoogle Scholar
  53. 53.
    Lee Y-K (1997) Commercial production of microalgae in the Asia-Pacific rim. J Appl Phycol 9:403–411CrossRefGoogle Scholar
  54. 54.
    Lee Y-K, Ding S-Y, Hoe C-H, Low C-S (1996) Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. J Appl Phycol 8:163–169CrossRefGoogle Scholar
  55. 55.
    Ip PF, Wong KH, Chen F (2004) Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochem 39:1761–1766CrossRefGoogle Scholar
  56. 56.
    De la Hoz Siegler H, Ben-Zvi A, Burrell RE, McCaffrey WC (2011) The dynamics of heterotrophic algal cultures. Bioresour Technol 102:5764–5774CrossRefGoogle Scholar
  57. 57.
    Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78:29–36CrossRefGoogle Scholar
  58. 58.
    Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771CrossRefGoogle Scholar
  59. 59.
    Chen F (1996) High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol 14:421–426CrossRefGoogle Scholar
  60. 60.
    Chen Y-H, Walker TH (2012) Fed-batch fermentation and supercritical fluid extraction of heterotrophic microalgal Chlorella protothecoides lipids. Bioresour Technol 114:512–517CrossRefGoogle Scholar
  61. 61.
    Yan D, Lu Y, Chen Y-F, Wu Q (2011) Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour Technol 102:6487–6493CrossRefGoogle Scholar
  62. 62.
    Cheng FC, Lin A, Feng JJ, Mizoguchi T, Takekoshi H, Kubota H, Kato Y, Naoki Y (2004) Effects of chlorella on activities of protein tyrosine phosphatases, matrix metalloproteinases, caspases, cytokine release, B and T cell proliferations, and phorbol ester receptor binding. J Med Food 7:146–152CrossRefGoogle Scholar
  63. 63.
    Suárez ER, Kralovec JA, Noseda MD, Ewart HS, Barrow CJ, Lumsden MD, Grindley TB (2005) Isolation, characterization and structural determination of a unique type of arabinogalactan from an immunostimulatory extract of Chlorella pyrenoidosa. Carbohydrate Res 340:1489–1498CrossRefGoogle Scholar
  64. 64.
    Morimoto T, Nagatsu A, Murakami N, Sakakibara J, Tokuda H, Nishino H, Iwashima A (1995) Anti-tumour-promoting glyceroglycolipids from the green alga, Chlorella vulgaris. Phytochem 40:1433–1437CrossRefGoogle Scholar
  65. 65.
    Sheng J, Yu F, Xin Z, Zhao L, Zhu X, Hu Q (2007) Preparation, identification and their antitumor activities in vitro of polysaccharides from Chlorella pyrenoidosa. Food Chem 105:533–539CrossRefGoogle Scholar
  66. 66.
    Cherng J-Y, Shih M-F (2005) Potential hypoglycemic effects of Chlorella in streptozotocin-induced diabetic mice. Life Sci 77:980–990CrossRefGoogle Scholar
  67. 67.
    Cherng J-Y, Shih M-F (2006) Improving glycogenesis in Streptozocin (STZ) diabetic mice after administration of green algae Chlorella. Life Sci 78:1181–1186CrossRefGoogle Scholar
  68. 68.
    Nakashima Y, Ohsawa I, Konishi F, Hasegawa T, Kumamoto S, Suzuki Y, Ohta S (2009) Preventive effects of Chlorella on cognitive decline in age-dependent dementia model mice. Neurosci Lett 464:193–198CrossRefGoogle Scholar
  69. 69.
    Merchant RE, Andre CA (2001) A review of recent clinical trials of the nutritional supplement Chlorella pyrenoidosa in the treatment of fibromyalgia, hypertension, and ulcerative colitis. Altern Ther Health Med 7:79–91Google Scholar
  70. 70.
    Gouveia L, Batista AP, Miranda A, Empis J, Raymundo A (2007) Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innov Food Sci Emerg 8:433–436CrossRefGoogle Scholar
  71. 71.
    Gouveia L, Raymundo A, Batista A, Sousa I, Empis J (2006) Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. Euro Food Res Technol 222:362–367CrossRefGoogle Scholar
  72. 72.
    Hirayama K, Nakamura K (1976) Fundamental studies on the physiology of rotifers in mass culture—V. Dry Chlorella powder as a food for rotifers. Aquaculture 8:301–307CrossRefGoogle Scholar
  73. 73.
    Işik O, Sarihan E, Kuşvuran E, Gül Ö, Erbatur O (1999) Comparison of the fatty acid composition of the freshwater fish larvae Tilapia zillii, the rotifer Brachionus calyciflorus, and the microalgae Scenedesmus abundans, Monoraphidium minitum and Chlorella vulgaris in the algae-rotifer-fish larvae food chains. Aquaculture 174:299–311CrossRefGoogle Scholar
  74. 74.
    Gouveia L, Choubert G, Pereira N, Santinha J, Empis J, Gomes E (2002) Pigmentation of gilthead seabream, Sparus aurata (L. 1875), using Chlorella vulgaris (Chlorophyta, Volvocales) microalga. Aquac Res 33:987–993CrossRefGoogle Scholar
  75. 75.
    Gouveia L, Gomes E, Empis J (1996) Potential use of a microalga (Chlorella vulgaris) in the pigmentation of rainbow trout (Oncorhynchus mykiss) muscle. Z Lebensm Unters For A 202:75–79CrossRefGoogle Scholar
  76. 76.
    Gouveia L, Rema P, Pereira O, Empis J (2003) Colouring ornamental fish (Cyprinus carpio and Carassius auratus) with microalgal biomass. Aquacult Nutr 9:123–129CrossRefGoogle Scholar
  77. 77.
    Gouveia L, Veloso V, Reis A, Fernandes H, Novais J, Empis J (1996) Chlorella vulgaris used to colour egg yolk. J Sci Food Agri 70:167–172CrossRefGoogle Scholar
  78. 78.
    Janczyk P, Franke H, Souffrant WB (2007) Nutritional value of Chlorella vulgaris: effects of ultrasonication and electroporation on digestibility in rats. Anim Feed Sci Tech 132:163–169CrossRefGoogle Scholar
  79. 79.
    Komaki H, Yamashita M, Niwa Y, Tanaka Y, Kamiya N, Ando Y, Furuse M (1998) The effect of processing of Chlorella vulgaris: K-5 on in vitro and in vivo digestibility in rats. Anim Feed Sci Tech 70:363–366CrossRefGoogle Scholar
  80. 80.
    Liu J, Sun Z, Gerken H, Huang J, Jiang Y, Chen F (2014) Genetic engineering of the green alga Chlorella zofingiensis: a modified norflurazon-resistant phytoene desaturase gene as a dominant selectable marker. Appl Microbiol Biotechnol 98:5069–5079Google Scholar
  81. 81.
    Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265CrossRefGoogle Scholar
  82. 82.
    Shi XM, Chen F (1999) Production and rapid extraction of lutein and the other lipid-soluble pigments from Chlorella protothecoides grown under heterotrophic and mixotrophic conditions. Food Nahrung 43:109–113CrossRefGoogle Scholar
  83. 83.
    Shi X-M, Chen F, Yuan J-P, Chen H (1997) Heterotrophic production of lutein by selected Chlorella strains. J Appl Phycol 9:445–450CrossRefGoogle Scholar
  84. 84.
    Shi X-M, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 18:723–727CrossRefGoogle Scholar
  85. 85.
    Del Campo JA, Moreno J, Rodriguez H, Vargas MA, Rivas J, Guerrero MG (2000) Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol 76:51–59CrossRefGoogle Scholar
  86. 86.
    Del Campo JA, Rodriguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2004) Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 64:848–854CrossRefGoogle Scholar
  87. 87.
    Orosa M, Valero JF, Herrero C, Abalde J (2001) Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions. Biotechnol Lett 23:1079–1085CrossRefGoogle Scholar
  88. 88.
    Sun N, Wang Y, Li Y-T, Huang J-C, Chen F (2008) Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochem 43:1288–1292CrossRefGoogle Scholar
  89. 89.
    Liu J, Zhong Y, Sun Z, Huang J, Sandmann G, Chen F (2010) One amino acid substitution in phytoene desaturase makes Chlorella zofingiensis resistant to norflurazon and enhances the biosynthesis of astaxanthin. Planta 232:61–67CrossRefGoogle Scholar
  90. 90.
    Linden H (1999) Carotenoid hydroxylase from Haematococcus pluvialis: cDNA sequence, regulation and functional complementation. Biochim Biophys Acta 1446:203–212CrossRefGoogle Scholar
  91. 91.
    Huang J, Zhong Y, Sandmann G, Liu J, Chen F (2012) Cloning and selection of carotenoid ketolase genes for the engineering of high-yield astaxanthin in plants. Planta 236:691–699CrossRefGoogle Scholar
  92. 92.
    Borkenstein CG, Knoblechner J, Fruhwirth H, Schagerl M (2011) Cultivation of Chlorella emersonii with flue gas derived from a cement plant. J Appl Phycol 23:131–135CrossRefGoogle Scholar
  93. 93.
    de Morais M, Costa J (2007) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus, Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett 29:1349–1352CrossRefGoogle Scholar
  94. 94.
    Yewalkar S, Li B, Posarac D, Duff S (2011) Potential for CO2 fixation by Chlorella pyrenoidosa grown in oil sands tailings water. Energy Fuel 25:1900–1905CrossRefGoogle Scholar
  95. 95.
    Wang B, Li Y, Wu N, Lan C (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718CrossRefGoogle Scholar
  96. 96.
    Michiki H (1995) Biological CO2 fixation and utilization project. Energy Convers Manage 36:701–705CrossRefGoogle Scholar
  97. 97.
    Murakami M, Ikenouchi M (1997) The biological CO2 fixation and utilization project by rite (2) - Screening and breeding of microalgae with high capability in fixing CO2. Energy Convers Manage 38(Supplement):S493–S497CrossRefGoogle Scholar
  98. 98.
    Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae Chlorella sp. in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412CrossRefGoogle Scholar
  99. 99.
    Negoro M, Shioji N, Miyamoto K, Micira Y (1991) Growth of microalgae in high CO2 gas and effects of SOx and NOx. Appl Biochem Biotechnol 28–29:877–886CrossRefGoogle Scholar
  100. 100.
    Doucha J, Lívanský K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21:111–117CrossRefGoogle Scholar
  101. 101.
    Cheng J, Huang Y, Feng J, Sun J, Zhou J, Cen K (2013) Mutate Chlorella sp. by nuclear irradiation to fix high concentrations of CO2. Bioresour Technol 136:496–501CrossRefGoogle Scholar
  102. 102.
    He L, Subramanian VR, Tang YJ (2012) Experimental analysis and model-based optimization of microalgae growth in photo-bioreactors using flue gas. Biomass Bioenerg 41:131–138CrossRefGoogle Scholar
  103. 103.
    Kumar K, Banerjee D, Das D (2014) Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana. Bioresour Technol 152:225–233CrossRefGoogle Scholar
  104. 104.
    Cheng J, Huang Y, Feng J, Sun J, Zhou J, Cen K (2013) Improving CO2 fixation efficiency by optimizing Chlorella PY-ZU1 culture conditions in sequential bioreactors. Bioresour Technol 144:321–327CrossRefGoogle Scholar
  105. 105.
    Fallowfield HJ, Garrett MK (1985) The photosynthetic treatment of pig slurry in temperate climatic conditions: a pilot-plant study. Agr Wastes 12:111–136CrossRefGoogle Scholar
  106. 106.
    Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19:417–423CrossRefGoogle Scholar
  107. 107.
    Tam NFY, Wong YS (1989) Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp. Environ Pollut 58:19–34CrossRefGoogle Scholar
  108. 108.
    Yun Y-S, Lee SB, Park JM, Lee C-I, Yang J-W (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biotechnol 69:451–455CrossRefGoogle Scholar
  109. 109.
    Wang L, Min M, Li YC, Chen P, Chen YF, Liu YH, Wang YK, Ruan R (2010) Cultivation of breen algae Chlorella sp in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162:1174–1186CrossRefGoogle Scholar
  110. 110.
    Aziz MA, Ng WJ (1992) Feasibility of wastewater treatment using the activated-algae process. Bioresour Technol 40:205–208CrossRefGoogle Scholar
  111. 111.
    Ji M-K, Kim H-C, Sapireddy V, Yun H-S, Abou-Shanab RI, Choi J, Lee W, Timmes T, Jeon Inamuddin B-H (2013) Simultaneous nutrient removal and lipid production from pretreated piggery wastewater by Chlorella vulgaris YSW-04. Appl Microbiol Biotechnol 97:2701–2710CrossRefGoogle Scholar
  112. 112.
    Li Y, Chen Y-F, Chen P, Min M, Zhou W, Martinez B, Zhu J, Ruan R (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102:5138–5144CrossRefGoogle Scholar
  113. 113.
    Tarlan E, Dilek FB, Yetis U (2002) Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater. Bioresour Technol 84:1–5CrossRefGoogle Scholar
  114. 114.
    Yang J, Rasa E, Tantayotai P, Scow KM, Yuan H, Hristova KR (2011) Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. Bioresour Technol 102:3077–3082CrossRefGoogle Scholar
  115. 115.
    Mallick N, Rai LC (1994) Removal of inorganic ions from wastewaters by immobilized microalgae. W J Microbiol Biotechnol 10:439–443CrossRefGoogle Scholar
  116. 116.
    Megharaj M, Pearson HW, Venkateswarlu K (1992) Removal of nitrogen and phosphorus by immobilized cells of Chlorella vulgaris and Scenedesmus bijugatus isolated from soil. Enzyme Microb Technol 14:656–658CrossRefGoogle Scholar
  117. 117.
    Tam NFY, Lau PS, Wong YS (1994) Wastewater inorganic N and P removal by immobilized Chlorella vulgaris. Water Sci Technol 30:369–374Google Scholar
  118. 118.
    Mallick N, Rai LC (1993) Influence of culture density, pH, organic acids and divalent cations on the removal of nutrients and metals by immobilized Anabaena doliolum and Chlorella vulgaris. W J Microbiol Biotechnol 9:196–201CrossRefGoogle Scholar
  119. 119.
    Jin J, Yang LH, Chan SMN, Luan TG, Li Y, Tam NFY (2011) Effect of nutrients on the biodegradation of tributyltin (TBT) by alginate immobilized microalga, Chlorella vulgaris, in natural river water. J Hazard Mater 185:1582–1586CrossRefGoogle Scholar
  120. 120.
    Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152CrossRefGoogle Scholar
  121. 121.
    Chong AMY, Wong YS, Tam NFY (2000) Performance of different microalgal species in removing nickel and zinc from industrial wastewater. Chemosphere 41:251–257CrossRefGoogle Scholar
  122. 122.
    Kalin M, Wheeler WN, Meinrath G (2004) The removal of uranium from mining waste water using algal/microbial biomass. J Environ Radioact 78:151–177CrossRefGoogle Scholar
  123. 123.
    Lau PS, Lee HY, Tsang CCK, Tam NFY, Wong YS (1999) Effect of metal interference, pH and temperature on Cu and Ni biosorption by Chlorella vulgaris and Chlorella miniata. Environ Technol 20:953–961CrossRefGoogle Scholar
  124. 124.
    Mehta SK, Gaur JP (2001) Removal of Ni and Cu from single and binary metalsolutions by free and immobilized Chlorella vulgaris. Euro J Protistol 37:261–271CrossRefGoogle Scholar
  125. 125.
    Sandau E, Sandau P, Pulz O (1996) Heavy metal sorption by microalgae. Acta Biotechnol 16:227–235CrossRefGoogle Scholar
  126. 126.
    Mutanda T, Karthikeyan S, Bux F (2011) The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions. Appl Biochem Biotechnol 164:1126–1138CrossRefGoogle Scholar
  127. 127.
    Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131CrossRefGoogle Scholar
  128. 128.
    Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639CrossRefGoogle Scholar
  129. 129.
    Liu J, Huang J, Chen F (2011a) Microalgae as feedstocks for biodiesel production. Biodiesel—Feedstocks and processing technologies. InTech, Available from http://www.intechopen.com/articles/show/title/microalgae-as-feedstocks-for-biodiesel-production
  130. 130.
    Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070CrossRefGoogle Scholar
  131. 131.
    Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuel 22:1358–1364CrossRefGoogle Scholar
  132. 132.
    Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2:759–766CrossRefGoogle Scholar
  133. 133.
    Cerón-García MC, Macías-Sánchez MD, Sánchez-Mirón A, García-Camacho F, Molina-Grima E (2013) A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source. Appl Energy 103:341–349CrossRefGoogle Scholar
  134. 134.
    Espinosa-Gonzalez I, Parashar A, Bressler DC (2014) Heterotrophic growth and lipid accumulation of Chlorella protothecoides in whey permeate, a dairy by-product stream, for biofuel production. Bioresour Technol 155:170–176CrossRefGoogle Scholar
  135. 135.
    O’Grady J, Morgan JA (2011) Heterotrophic growth and lipid production of Chlorella protothecoides on glycerol. Bioprocess Biosyst Eng 34:121–125CrossRefGoogle Scholar
  136. 136.
    Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507CrossRefGoogle Scholar
  137. 137.
    Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416CrossRefGoogle Scholar
  138. 138.
    Gerpen JV (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107CrossRefGoogle Scholar
  139. 139.
    Ranganathan SV, Narasimhan SL, Muthukumar K (2008) An overview of enzymatic production of biodiesel. Bioresour Technol 99:3975–3981CrossRefGoogle Scholar
  140. 140.
    Bala Amutha K, Murugesan AG (2011) Biological hydrogen production by the algal biomass Chlorella vulgaris MSU 01 strain isolated from pond sediment. Bioresour Technol 102:194–199CrossRefGoogle Scholar
  141. 141.
    Duan P, Jin B, Xu Y, Yang Y, Bai X, Wang F, Zhang L, Miao J (2013) Thermo-chemical conversion of Chlorella pyrenoidosa to liquid biofuels. Bioresour Technol 133:197–205CrossRefGoogle Scholar
  142. 142.
    Hirano A, Ueda R, Hirayama S, Ogushi Y (1997) CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22:137–142CrossRefGoogle Scholar
  143. 143.
    Ras M, Lardon L, Bruno S, Bernet N, Steyer J-P (2011) Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour Technol 102:200–206CrossRefGoogle Scholar
  144. 144.
    Wang HY, Fan XL, Zhang YT, Yang DW, Guo RB (2011) Sustained photo-hydrogen production by Chlorella pyrenoidosa without sulfur depletion. Biotechnol Lett 33:1345–1350CrossRefGoogle Scholar
  145. 145.
    Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748CrossRefGoogle Scholar
  146. 146.
    Rashid N, Lee K, Mahmood Q (2011) Bio-hydrogen production by Chlorella vulgaris under diverse photoperiods. Bioresour Technol 102:2101–2104CrossRefGoogle Scholar
  147. 147.
    Cheng Y-S, Zheng Y, Labavitch JM, Vander Gheynst JS (2013) Virus infection of Chlorella variabilis and enzymatic saccharification of algal biomass for bioethanol production. Bioresour Technol 137:326–331CrossRefGoogle Scholar
  148. 148.
    Zhou N, Zhang Y, Wu X, Gong X, Wang Q (2011) Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and MgCl2. Bioresour Technol 102:10158–10161CrossRefGoogle Scholar
  149. 149.
    Zhang J, Chen W-T, Zhang P, Luo Z, Zhang Y (2013) Hydrothermal liquefaction of Chlorella pyrenoidosa in sub- and supercritical ethanol with heterogeneous catalysts. Bioresour Technol 133:389–397CrossRefGoogle Scholar
  150. 150.
    Jarvis EE, Brown LM (1991) Transient expression of firefly luciferase in protoplasts of the green alga Chlorella ellipsoidea. Curr Genet 19:317–321CrossRefGoogle Scholar
  151. 151.
    Maruyama M, Horakova I, Honda H, Xing XH, Shiragami N, Unno H (1994) Introduction of foreign DNA into Chlorella saccharophila by electroporation. Biotechnol Tech 8:821–826CrossRefGoogle Scholar
  152. 152.
    Chen Y, Li W, Bai Q, Sun Y (1998) Study on transient expression of gus gene in Chlorelia ellipsoidea (Chlorophyta) by using biolistic particle delivery system. Chin J Oceanol Limn 16:47–49CrossRefGoogle Scholar
  153. 153.
    Wang P, Sun YR, Li X, Zhang LM, Li WB, Wang YQ (2004) Rapid isolation and functional analysis of promoter sequences of the nitrate reductase gene from Chlorella ellipsoidea. J Appl Phycol 16:11–16CrossRefGoogle Scholar
  154. 154.
    Wang C, Wang Y, Su Q, Gao X (2007) Transient expression of the GUS gene in a unicellular marine green alga Chlorella sp. MACC/C95, via electroporation. Biotechnol Bioprocess Eng 12:180–183CrossRefGoogle Scholar
  155. 155.
    Hawkins RL, Nakamura M (1999) Expression of human growth hormone by the eukaryotic alga, Chlorella. Curr Microbiol 38:335–341CrossRefGoogle Scholar
  156. 156.
    Dawson HN, Burlingame R, Cannons AC (1997) Stable transformation of Chlorella: rescue of nitrate reductase-deficient mutants with the nitrate reductase gene. Curr Microbiol 35:356–362CrossRefGoogle Scholar
  157. 157.
    Wang YQ, Chen Y, Zhang XY, Wang P, Geng DG, Zhao SM, Zhang LM, Sun YR (2005) Isolation and characterization of a nitrate reductase deficient mutant of Chlorella ellipsoidea (Chlorophyta). J Appl Phycol 17:281–286CrossRefGoogle Scholar
  158. 158.
    Huang JC, Liu J, Li YT, Chen F (2008) Isolation and characterization of the phytoene desaturase gene as a potential selective marker for genetic engineering of the astaxanthin-producing green alga Chlorella zofingiensis (Chlorophyta). J Phycol 44:684–690CrossRefGoogle Scholar
  159. 159.
    Chen Y, Wang YQ, Sun YR, Zhang LM, Li WB (2001) Highly efficient expression of rabbit neutrophil peptide-1 gene in Chlorella ellipsoidea cells. Curr Genet 39:365–370CrossRefGoogle Scholar
  160. 160.
    Han XM, Li YG, Sun XZ, Wei XD, Sun YR, Wang YQ (2005) Studies on the heterotrophic cultivation of transgenic Chlorella containing the rabbit defensin gene. Process Biochem 40:3055–3060CrossRefGoogle Scholar
  161. 161.
    Wang Y, Chen Y, Bai Q, Zhao S, Li W, Sun Y (2001) Using transgenic Chlorella ellipsoidea as bio-reactor to produce rabbit defensin. High Technol Lett 9:1–5Google Scholar
  162. 162.
    Kim DH, Kim YT, Cho JJ, Bae JH, Hur SB, Hwang I, Choi TJ (2002) Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Mar Biotechnol 4:63–73CrossRefGoogle Scholar
  163. 163.
    Huang CC, Chen MW, Hsieh JL, Lin WH, Chen PC, Chien LF (2006) Expression of mercuric reductase from Bacillus megaterium MB1 in eukaryotic microalga Chlorella sp DT: an approach for mercury phytoremediation. Appl Microbiol Biotechnol 72:197–205CrossRefGoogle Scholar
  164. 164.
    Borovsky D (2003) Trypsin-modulating oostatic factor: a potential new larvicide for mosquito control. J Exp Biol 206:3869–3875CrossRefGoogle Scholar
  165. 165.
    Avery SV, Codd GA, Gadd GM (1992) Replacement of cellular potassium by caesium in Chlorella emersonii: differential sensitivity of photoautotrophic and chemoheterotrophic growth. J Gen Microbiol 138:69–76CrossRefGoogle Scholar
  166. 166.
    Oh SH, Kwon MC, Choi WY, Seo YC, Kim GB, Kang DH, Lee SY, Lee HY (2010) Long-term outdoor cultivation by perfusing spent medium for biodiesel production from Chlorella minutissima. J Biosci Bioeng 110:194–200CrossRefGoogle Scholar
  167. 167.
    Yang J, Li X, Hu H, Zhang X, Yu Y, Chen Y (2011) Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents. Appl Energy 88:3295–3299CrossRefGoogle Scholar
  168. 168.
    Li T, Zheng Y, Yu L, Chen S (2013) High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresour Technol 131:60–67CrossRefGoogle Scholar
  169. 169.
    Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97:841–846CrossRefGoogle Scholar
  170. 170.
    Ruiz NJ, García MDCC, Mirón AS, Haftalaui EHB, Camacho FG, Grima EM (2009) Lipids accumulation in Chlorella protothecoides through mixotrophic and heterotrophic cultures for biodiesel production. New Biotechnol 25:S266–S266CrossRefGoogle Scholar
  171. 171.
    Rai MP, Nigam S, Sharma R (2013) Response of growth and fatty acid compositions of Chlorella pyrenoidosa under mixotrophic cultivation with acetate and glycerol for bioenergy application. Biomass Bioenergy 58:251–257CrossRefGoogle Scholar
  172. 172.
    Running J, Huss R, Olson P (1994) Heterotrophic production of ascorbic acid by microalgae. J Appl Phycol 6:99–104CrossRefGoogle Scholar
  173. 173.
    Endo H, Sansawa H, Nakajima K (1977) Studies on Chlorella regularis, heterotrophic fast-growing strain II. Mixotrophic growth in relation to light intensity and acetate concentration. Plant Cell Physiol 18:199–205Google Scholar
  174. 174.
    Sansawa H, Endo H (2004) Production of intracellular phytochemicals in Chlorella under heterotrophic conditions. J Biosci Bioenergy 98:437–444CrossRefGoogle Scholar
  175. 175.
    Herrera-Valencia V, Contreras-Pool P, López-Adrián S, Peraza-Echeverría S, Barahona-Pérez L (2011) The green microalga Chlorella saccharophila as a suitable source of oil for biodiesel production. Curr Microbiol 63:151–157CrossRefGoogle Scholar
  176. 176.
    Tan C, Johns M (1991) Fatty acid production by heterotrophic Chlorella saccharophila. Hydrobiologia 215:13–19CrossRefGoogle Scholar
  177. 177.
    Chen F, Johns M (1991) Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. J Appl Phycol 3:203–209CrossRefGoogle Scholar
  178. 178.
    Heredia-Arroyo T, Wei W, Ruan R, Hu B (2011) Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy 35:2245–2253CrossRefGoogle Scholar
  179. 179.
    Zhang K, Sun B, She X, Zhao F, Cao Y, Ren D, Lu J (2014) Lipid production and composition of fatty acids in Chlorella vulgaris cultured using different methods: photoautotrophic, heterotrophic, and pure and mixed conditions. Ann Microbiol 64:1239–1246Google Scholar
  180. 180.
    Ramos Tercero EA, Sforza E, Morandini M, Bertucco A (2014) Cultivation of Chlorella protothecoides with urban wastewater in continuous photobioreactor: Biomass productivity and nutrient removal. Appl Biochem Biotechnol 172:1470–1485Google Scholar
  181. 181.
    Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan RR (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour Technol 101:2623–2628CrossRefGoogle Scholar
  182. 182.
    Kobayashi N, Noel EA, Barnes A, Watson A, Rosenberg JN, Erickson G, Oyler GA (2013) Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresour Technol 150:377–386CrossRefGoogle Scholar
  183. 183.
    Bertoldi FC, Sant’Anna E, da Costa Braga MV, Oliveira JLB (2006) Lipids, fatty acids composition and carotenoids of Chlorella vulgaris cultivated in hydroponic wastewater. Grasas Y Aceites 57:270–274Google Scholar
  184. 184.
    Chu W-L, See Y-C, Phang S-M (2009) Use of immobilised Chlorella vulgaris for the removal of colour from textile dyes. J Appl Phycol 21:641–648CrossRefGoogle Scholar
  185. 185.
    Lim S-L, Chu W-L, Phang S-M (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour Technol 101:7314–7322CrossRefGoogle Scholar
  186. 186.
    Abou-Shanab RAI, Hwang J-H, Cho Y, Min B, Jeon B-H (2011) Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production. Appl Energy 88:3300–3306CrossRefGoogle Scholar
  187. 187.
    Cao J, Yuan H, Li B, Yang J (2014) Significance evaluation of the effects of environmental factors on the lipid accumulation of Chlorella minutissima UTEX 2341 under low-nutrition heterotrophic condition. Bioresour Technol 152:177–184CrossRefGoogle Scholar
  188. 188.
    Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151CrossRefGoogle Scholar
  189. 189.
    Feng P, Deng Z, Hu Z, Fan L (2011) Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors. Bioresour Technol 102:10577–10584CrossRefGoogle Scholar
  190. 190.
    Liu Z-Y, Wang G-C, Zhou B-C (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722CrossRefGoogle Scholar
  191. 191.
    Pruvost J, Van Vooren G, Le Gouic B, Couzinet-Mossion A, Legrand J (2011) Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresour Technol 102:150–158CrossRefGoogle Scholar
  192. 192.
    Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioenergy 102:100–112CrossRefGoogle Scholar
  193. 193.
    Scarsella M, Parisi MP, D’Urso A, De Filippis P, Opoka J, Bravi M (2009) Achievements and perspectives in hetero- and mixotrophic culturing of microalgae. In: Pierucci S (ed) Icheap-9: 9th International Conference on Chemical and Process Engineering, Pts 1-3, vol 17., Chemical Engineering TransactionsAidic Servizi Srl, Milano, pp 1065–1070Google Scholar
  194. 194.
    Widjaja A, Chien C-C, Ju Y-H (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem E 40:13–20CrossRefGoogle Scholar
  195. 195.
    Yeh KL, Chang JS, Chen WM (2010) Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Eng Life Sci 10:201–208CrossRefGoogle Scholar
  196. 196.
    Wang Y, Rischer H, Eriksen NT, Wiebe MG (2013) Mixotrophic continuous flow cultivation of Chlorella protothecoides for lipids. Bioresour Technol 144:608–614CrossRefGoogle Scholar
  197. 197.
    D’Oca MGM, Viêgas CV, Lemões JS, Miyasaki EK, Morón-Villarreyes JA, Primel EG, Abreu PC (2011) Production of FAMEs from several microalgal lipidic extracts and direct transesterification of the Chlorella pyrenoidosa. Biomass Bioenerg 35:1533–1538CrossRefGoogle Scholar
  198. 198.
    Shekh AY, Shrivastava P, Krishnamurthi K, Mudliar SN, Devi SS, Kanade GS, Lokhande SK, Chakrabarti T (2013) Stress-induced lipids are unsuitable as a direct biodiesel feedstock: a case study with Chlorella pyrenoidosa. Bioresour Technol 138:382–386CrossRefGoogle Scholar
  199. 199.
    Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105CrossRefGoogle Scholar
  200. 200.
    Li Y, Yuan Z, Mu J, Chen D, Feng B (2013) Proteomic analysis of lipid accumulation in Chlorella protothecoides cells by heterotrophic N deprivation coupling cultivation. Energy Fuel 27:4031–4040CrossRefGoogle Scholar
  201. 201.
    Zheng Y, Li T, Yu X, Bates PD, Dong T, Chen S (2013) High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production. Appl Energy 108:281–287CrossRefGoogle Scholar
  202. 202.
    Matsumoto M, Sugiyama H, Maeda Y, Sato R, Tanaka T, Matsunaga T (2010) Marine diatom, Navicula sp. strain JPCC DA0580 and marine green alga, Chlorella sp. strain NKG400014 as potential sources for biodiesel production. Appl Biochem Biotechnol 161:483–490CrossRefGoogle Scholar
  203. 203.
    Moazami N, Ranjbar R, Ashori A, Tangestani M, Nejad AS (2011) Biomass and lipid productivities of marine microalgae isolated from the Persian Gulf and the Qeshm Island. Biomass Bioenerg 35:1935–1939CrossRefGoogle Scholar
  204. 204.
    Phukan MM, Chutia RS, Konwar BK, Kataki R (2011) Microalgae Chlorella as a potential bio-energy feedstock. Appl Energy 88:3307–3312CrossRefGoogle Scholar
  205. 205.
    Yeesang C, Cheirsilp B (2011) Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour Technol 102:3034–3040CrossRefGoogle Scholar
  206. 206.
    Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol 102:106–110CrossRefGoogle Scholar
  207. 207.
    Feng Y, Li C, Zhang D (2011) Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol 102:101–105CrossRefGoogle Scholar
  208. 208.
    Yoo C, Jun S-Y, Lee J-Y, Ahn C-Y, Oh H-M (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101:S71–S74CrossRefGoogle Scholar
  209. 209.
    Liang G, Mo Y, Zhou Q (2013) Optimization of digested chicken manure filtrate supplementation for lipid overproduction in heterotrophic culture Chlorella protothecoides. Fuel 108:159–165CrossRefGoogle Scholar
  210. 210.
    Liu L, Wang Y, Zhang Y, Chen X, Zhang P, Ma S (2013) Development of a new method for genetic transformation of the green alga Chlorella ellipsoidea. Mol Biotechnol 54:211–219CrossRefGoogle Scholar
  211. 211.
    El-sheekh MM (1999) Stable transformation of the intact cells of Chlorella kessleri with high velocity microprojectiles. Biol Plantarum 42:209–216CrossRefGoogle Scholar
  212. 212.
    Chow KC, Tung WL (1999) Electrotransformation of Chlorella vulgaris. Plant Cell Rep 18:778–780CrossRefGoogle Scholar
  213. 213.
    Niu Y, Zhang M, Xie W, Li J, Gao Y, Yang W, Liu J, Li H (2011) A new inducible expression system in a transformed green alga, Chlorella vulgaris. Genet Mol Res 10:3427–3434CrossRefGoogle Scholar
  214. 214.
    Cha T, Yee W, Aziz A (2012) Assessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green alga, Chlorella vulgaris. World J Microbiol Biotechnol 28:1771–1779CrossRefGoogle Scholar
  215. 215.
    Talebi A, Tohidfar M, Tabatabaei M, Bagheri A, Mohsenpor M, Mohtashami S (2013) Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a feedstock for biodiesel production. Mol Biol Rep 40:4421–4428CrossRefGoogle Scholar
  216. 216.
    Xiong W, Gao C, Yan D, Wu C, Wu Q (2010) Double CO2 fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production. Bioresour Technol 101:2287–2293CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute for Food and Bioresource EngineeringCollege of Engineering, Peking UniversityBeijingChina
  2. 2.Institute of Marine and Environmental TechnologyUniversity of Maryland Center for Environmental ScienceBaltimoreUSA
  3. 3.Singapore-Peking University Research Centre for a Sustainable Low-Carbon FutureCREATE TowerSingaporeSingapore

Personalised recommendations