Skip to main content

Modeling of Biofilm Systems: A Review

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 146))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AOB:

Ammonium oxidizing bacteria

BbM:

Biomass-based model

C:

Constant in Eq. (14)

c :

Concentration (g/m3)

CA:

Cellular automata

c Fi :

Concentration of dissolved substance i at the biofilm surface (g/m3)

c Bi :

Concentration of dissolved substance i in the completely mixed liquid phase (bulk phase) (g/m3)

CBL:

Concentration boundary layer

D :

Diffusion coefficient (m2/s)

d :

Diameter (m)

IbM:

Individual-based model

j :

Mass flux (g/m2 d)

k d :

Detachment coefficient (1/d)

k d,random :

Detachment coefficient for random detachment events (1/d)

k L :

Mass transfer coefficient (m/s)

K S :

Monod constant (g/m3)

L :

Number of grid cells in height/Length (m)

L C :

Thickness of the concentration boundary layer (m)

L F :

Biofilm thickness (m)

L F,base :

Base biofilm thickness (m)

m X :

Mass of biomass (g)

N :

Number grid cells in length

NOB:

Nitrite oxidizing bacteria

Pe :

Peclet number

p :

Pressure (N/m2)

Re :

Reynolds number

RS:

High rate strategist

r :

Conversion rate (g/m3d)

Sc :

Schmidt number

Sh :

Sherwood number

t :

Time (d)

u :

Flow velocity (m/s)

u F :

Relative velocity of a particulate component in the biofilm perpendicular to the substratum (m/d)

V :

Volume (m3)

X :

Biomass concentration (g/m3)

Y :

Yield coefficient (g/g)

YS:

High yield strategist

Z f :

Position of an occupied grid cell above the substratum within the grid (N,L)

Z fmax :

Highest occupied grid cell above the substratum within the grid (N,L)

z :

Space coordinate perpendicular to the substratum

α :

Biofilm surface enlargement

ε :

Porosity

ε S :

Fraction of the solid phase in the biofilm volume

ε Fl :

Fraction of the liquid phase in the biofilm volume

κ :

Parameter in Eq. (9)

δ :

Parameter in Eq. (9)

µ :

Growth rate (1/d)

µ max :

Maximum growth rate (1/d)

Ω :

Parameter in Eq. (12)

σ :

Biofilm surface roughness

ν :

Kinematic viscosity (m2/s)

ρ :

Biofilm density (gX/m3) or

.:

Density of fluid (kg/m3)

τ :

Shear stress (N/m2)

EPS:

Extracellular polymeric substances

F :

Biofilm

i :

Component i

O2 :

Oxygen

P :

Particle

S :

Substrate

X :

Biomass

References

  1. Halan B, Buehler K, Schmid A (2012) Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol 30:453–465

    CAS  Google Scholar 

  2. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lapin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    CAS  Google Scholar 

  3. Wilderer PA, Characklis WG (1989) Structure and function of biofilms. Wiley, New York

    Google Scholar 

  4. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    CAS  Google Scholar 

  5. Dockery J, Keener J (2001) A mathematical model for quorum sensing in pseudomonas aeruginosa. Bull Math Biol 63:95–116

    CAS  Google Scholar 

  6. Kuenen JG, Jørgensen BB, Revsbech NP (1986) Oxygen microprofiles of trickling filter biofilm. Water Res 20:1589–1598

    CAS  Google Scholar 

  7. Revsbech NP, Christensen PB, Nielsen LP, Sorensen J (1989) Denitrification in a trickling filter biofilm studied by a microsensor for oxygen and nitrous oxide. Water Res 23:867–871

    CAS  Google Scholar 

  8. Lewandowski Z, Walser G, Characklis W (1991) Reaction Kinetics in Biofilms. Biotechnol Bioeng 38:877–882

    CAS  Google Scholar 

  9. Cronenberg CCH, den Heuvel JCv (1991) Determination of glucose diffusion coefficient in biofilms with microelectrodes. Biosens Bioelectron 6:255–262

    CAS  Google Scholar 

  10. Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567

    CAS  Google Scholar 

  11. Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1998) Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotechnol Bioeng 58:101–116

    CAS  Google Scholar 

  12. Muyzer G, Ramsing NB (1995) Molecular methods to study the organization of microbial communities. Water Sci Technol 32:1–10

    CAS  Google Scholar 

  13. Vogelsang C, Schramm A, Picioreanu C, Loosdrecht MCM, Ostgaard K (2002) Microbial community analysis by FISH for mathematical modelling of selective enrichment of gel-entrapped nitrifiers obtained from domestic wastewater. Hydrobiologia 469:165–178

    CAS  Google Scholar 

  14. Oehmen A, Lopez-Vazquez CM, Carvalho G, Reis MAM, van Loosdrecht MCM (2010) Modelling the population dynamics and metabolic diversity of organisms relevant in anaerobic/anoxic/aerobic enhanced biological phosphorus removal processes. Water Res 44:4473–4486

    CAS  Google Scholar 

  15. Gonenc E, Harremoes P (1985) Nitrification in rotating disc systems-1: criteria for transition from oxygen to ammonia rate limitation. Water Res 19:1119–1127

    CAS  Google Scholar 

  16. Arvin E, Harremoes P (1990) Concepts and models for biofilm reactor performance. Water Sci Technol 22:171–192

    CAS  Google Scholar 

  17. Muslu Y (1992) Developments in modelling biofilm reactors. J Biotechnol 23:183–191

    CAS  Google Scholar 

  18. Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1997) Modelling the effect of oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Water Sci Technol 36:147–156

    CAS  Google Scholar 

  19. Boltz JP, Morgenroth E, Sen D (2010) Mathematical modelling of biofilms and biofilm reactors for engineering design. Water Sci Technol 62:1821–1836

    CAS  Google Scholar 

  20. Kissel JC, McCarty PL, Street R (1984) Numerical simulation of mixed-culture biofilm. J Environ Eng 110:393–411

    CAS  Google Scholar 

  21. Wanner O, Gujer W (1984) Competition in biofilms. Water Sci Technol 17:27–44

    Google Scholar 

  22. Benefield L, Molz F (1985) Mathematical simulation of a biofilm process. Biotechnol Bioeng 27:921–931

    CAS  Google Scholar 

  23. Wanner O, Reichert P (1996) Mathematical Modeling of Mixed-Culture Biofilms. Biotechnol Bioeng 49:172–184

    CAS  Google Scholar 

  24. Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1998) A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads. Biotechnol Bioeng 57:718–731

    CAS  Google Scholar 

  25. Alpkvist E, Picioreanu C, van Loosdrecht MCM, Heyden A (2006) Three-dimensional biofilm model with individual cells and continuum eps matrix. Biotechnol Bioeng 94:961–979

    CAS  Google Scholar 

  26. Wang GTY, Bryers JD (1997) A dynamic model for receptor mediated specific adhesion of bacteria under uniform shear flow. Biofouling 11:227–252

    CAS  Google Scholar 

  27. Alpkvist E, Klapper I (2007) Description of Mechanical Response Including Detachment Using a novel Particle Model of Biofilm/Flow Interaction. Water Sci Technol 55:265–273

    CAS  Google Scholar 

  28. Böl M, Möhle RB, Haesner M, Neu TR, Horn H, Krull R (2009) 3D finite element model of biofilm detachment using real biofilm structures from CLSM data. Biotechnol Bioeng 103:177–186

    Google Scholar 

  29. Chaudhry MAS, Beg SA (1998) A Review on the mathematical modeling of biofilm processes: advances in fundamentals of biofilm modeling. Chem Eng Technol 21:701–710

    CAS  Google Scholar 

  30. Wanner O, Eberl HJ, Morgenroth E, Noguera DR, Picioreanu C, Rittmann BE, van Loosdrecht MCM (2008) Mathematical modeling of biofilms, IWA Publishing

    Google Scholar 

  31. Picioreanu C, Xavier JB, van Loosdrecht MCM (2004) Advances in mathematical modeling of biofilm structure. Biofilms 1:1–12

    Google Scholar 

  32. Klapper I, Dockery J (2010) Mathematical description of microbial biofilms. SIAM Rev 52:221–265

    Google Scholar 

  33. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the Natural environment to infectious diseases. Nat Rev Micro 2:95–108

    CAS  Google Scholar 

  34. Wanner O, Gujer W (1986) A Multispecies biofilm model. Biotechnol Bioeng 28:314–328

    CAS  Google Scholar 

  35. Chen GH, Ozaki H, Terashima Y (1989) Modelling of the simultaneous removal of organic substances and Nitrogen in a biofilm. Water Sci Technol 21:791–804

    CAS  Google Scholar 

  36. Liehr SK, Suidan MT, Eheart JW (1989) Effect of concentration boundary layer on carbon limited algal biofilms. J Environ Eng 115:320–335

    CAS  Google Scholar 

  37. Suidan MT, Flora RV, Biswas P, Sayles GD (1996) Optimization modelling of anaerobic biofilm reactors. Water Sci Technol 30:347–355

    Google Scholar 

  38. Elberling B, Damgaard LR (2001) Microscale Measurement of oxygen diffusion and consumption in subaqueous sulfide tailings. Geochim Cosmochim Acta 65:1897–1905

    CAS  Google Scholar 

  39. Lorke A, Müller B, Maerki M, Wüest A (2003) Breathing sediments: the control of diffusive transport across the sediment–waterinterface by periodic boundary-layer turbulence. Limnol Oceanogr 48:2077–2085

    Google Scholar 

  40. Bungay HR, Whalen WJ, Sanders WM (1969) Microprobe techniques for determining diffusivities and respiration rates in microbial slime systems. Biotechnologie and Bioengineering XI:765–772

    Google Scholar 

  41. Zhang TC, Bishop PL (1994) Experimental determination of the dissolved oxygen boundary layer and mass transfer resistance near the fluid-biofilm interface. Water Sci Technol 30:47–58

    Google Scholar 

  42. Kühl M, Cohen YDT, Jørgensen BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Prog Ser 117:159–172

    Google Scholar 

  43. Wäsche S, Horn H, Hempel DC (2000) Mass transfer phenomena in biofilm systems. Water Sci Technol 41:357–360

    Google Scholar 

  44. Beyenal H, Lewandowski Z (2000) Combined effect of substrate concentration and flow velocity on effective diffusity in biofilms. Water Res 34:528–538

    CAS  Google Scholar 

  45. Horn H (2003) Modellierung von Stoffumsatz und Stofftransport in Biofilmsystemen. FIT-Verlag, Paderbron

    Google Scholar 

  46. Gantzer CJ, Rittman BE, Herricks EE (1988) Mass transfer to streambed biofilms. Water Res 22:709–722

    CAS  Google Scholar 

  47. Brauer H (1971) Stoffaustausch einschließlich chemischer Reaktoren, Verlag Sauerländer Aarau

    Google Scholar 

  48. Hooijmans CM (1990) Diffusion coupled with bioconversion in immobilized systems: use of an oxygen microsensor, Promotionsschrift an der Uni Delft

    Google Scholar 

  49. Debus O (1993) Aerober Abbau von flüchtigen Abwasserinhaltsstoffen in Reaktoren mit membrangebundenem Biofilm. GFEU an der TUHH, Hamburg

    Google Scholar 

  50. Li S, Chen GH (1994) Modelling the organic removal and oxygen consumption by biofilms in an open-channel flow. Water Sci Technol 30:53–61

    CAS  Google Scholar 

  51. Christiansen P, Hollesen L, Harremoes P (1995) Liquid film diffusion on reaction rate in submerged biofilters. Water Res 29:947–952

    CAS  Google Scholar 

  52. Horn H, Hempel DC (1995) Mass transfer coefficients for an autotrophic and a heterotrophic biofilm system. Water Sci Technol 32:199–204

    Google Scholar 

  53. Wäsche S, Horn H, Hempel DC (2002) Influence of growth conditions on biofilm development and mass transfer at the bulk/biofilm interface. lf. Water Res 36:4775–4784

    Google Scholar 

  54. Picioreanu C, van Loosdrecht MCM, Heijnen JJ (2000) A theoretical study on the effect of surface roughness on mass transport and transformation in biofilms. Biotechnol Bioeng 68:355–369

    CAS  Google Scholar 

  55. Williamson K, McCarty PL (1976) A Model of substrate utilization by Bacterial Films. J Water Pollut Control 48:9–24

    CAS  Google Scholar 

  56. LaMotta EJ (1976) Internal diffusion and reaction in biological films. Environ Sci Technol 10:765–769

    CAS  Google Scholar 

  57. Harremoes P (1976) The significance of pore diffusion to filter denitrification. J Water Pollut Control Fed 48:377–388

    Google Scholar 

  58. Harris NP, Hansford GS (1976) A study of substrate removal in a microbial film reactor. Water Res 10:935–943

    CAS  Google Scholar 

  59. Timmermans P, Van Haute A (1984) Influence of the type of organisms on the biomass hold-up in a fluidized-bed reactor. Appl Microbiol Biotechnol 19:36–43

    CAS  Google Scholar 

  60. van Loosdrecht MCM, Eikelboom D, Gjaltema A, Mulder A, Tijhuis L, Heijnen JJ (1995) Biofilm structures. Water Sci Technol 32:35–44

    Google Scholar 

  61. Stoodley P, Dodds I, Boyle JD, Lappin-Scott HM (1999) Influence of hydrodynamics and nurients on biofilm structur. J Appl Microbiol Symp Suppl 85:19S–28S

    Google Scholar 

  62. Gujer W, Wanner O (1989) Modeling mixed population biofilms, In: Characklis WG, Marshall KC (eds) Biofilms, John Wiley & Sons, New York pp 397–445

    Google Scholar 

  63. Sanderson SS, Stewart PS (1997) Evidence of bacterial adaption to Monochloramine in Pseudomonas aeruginose biofilms and evaluation of biocide action model. Biotechnol Bioeng 56:201–209

    CAS  Google Scholar 

  64. Rittmann BE, Stilwell D, Ohashi A (2002) The transient-state, multiple-species biofilm model for biofiltration processes. Water Res 36:2342–2356

    CAS  Google Scholar 

  65. Hao X, Heijnena JJ, Van Loosdrecht MCM (2002) Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process. Biotechnol Bioeng 77:266–277

    CAS  Google Scholar 

  66. Wichern M, Lindenblatt C, Lübken M, Horn H (2008) Experimental results and mathematical modelling of an autotrophic and heterotrophic biofilm in a sand filter treating landfill leachate and municipal wastewater. Water Res 42:3899–3909

    CAS  Google Scholar 

  67. Fruhen M, Christan E, Gujer W, Wanner O (1991) Significance of Spatial Distribution of Microbial Species in Mixed Culture Biofilms. Water Sci Technol 23:1365–1374

    CAS  Google Scholar 

  68. Horn H, Hempel DC (1997) Growth and decay in an auto-/heterotrophic biofilm. Water Res 31:2243–2252

    CAS  Google Scholar 

  69. Matsumoto S, Terada A, Tsuneda S (2007) Modeling of membrane-aerated biofilm: Effects of C/N ratio, biofilm thickness and surface loading of oxygen on feasibility of simultaneous nitrification and denitrification. Biochem Eng J 37:98–107

    CAS  Google Scholar 

  70. Lackner S, Smets BF (2012) Effect of the kinetics of ammonium and nitrite oxidation on nitritation success or failure for different biofilm reactor geometries. Biochem Eng J 69:2123–2129

    Google Scholar 

  71. Lackner S, Terada A, Horn H, Henze M, Smets BF (2010) Nitritation performance in membrane-aerated biofilm reactors differs from conventional biofilm systems. Water Res 44:6073–6084

    CAS  Google Scholar 

  72. Henze M, Gujer W, Mino T, van Loosdrecht M (2000) Activated sludge models ASM1, ASM2, ASM2d and ASM3, IWA Publishing, London

    Google Scholar 

  73. Siegrist H, Gujer W (1985) Mass transfer mechanisms in a heterotrophic biofilm. Water Res 19:1369–1378

    CAS  Google Scholar 

  74. Fan LS, Leyva-Ramos R, Wisecarver KD, Zehner BJ (1990) Diffusion of phenol through a biofilm grown on activated carbon particles in a draft-tube three-phase fluidized-bed bioreactor. Biotechnol Bioeng 35:279–286

    CAS  Google Scholar 

  75. Horn H, Morgenroth E (2006) Transport of oxygen, sodium chloride, and sodium nitrate in biofilms. Chem Sci Eng 61:1347–1356

    CAS  Google Scholar 

  76. Reichert P (1994) AQUASIM—Computer program for simulation and data analysis of aquatic systems. Schriftenreihe der EAWAG, Dübendorf

    Google Scholar 

  77. Bernet N, Sanchez O, Cesbron D, Steyer JP, Delgenès JP (2005) Modeling and control of nitrite accumulation in a nitrifying biofilm reactor. Biochem Eng J 24:173–183

    CAS  Google Scholar 

  78. Julio Pérez J, Costa E, Kreft JU (2009) Conditions for partial nitrification in biofilm reactors and a kinetic explanation. Biotechnol Bioeng 103:282–295

    Google Scholar 

  79. Rauch W, Vanhooren H, Vanrolleghem P (1999) A simplified mixed-culture biofilm model. Wat Res 33:2148–2162

    CAS  Google Scholar 

  80. Ni BJ, Chen YP, Liu SY, Fang F, Xie WM, Yu HQ (2009) Modeling a Granule-Based Anaerobic Ammonium Oxidizing (ANAMMOX) Process. Biotechnol Bioeng 103:490–499

    CAS  Google Scholar 

  81. Brockmann D, Rosenwinkel K-H, Morgenroth E (2006) Modelling deammonification in biofilm systems: Sensitivity and identifiability analysis as a basis for the design of experiments for parameter estimation. In: Marquardt W, Pantelides C, (eds) Computer Aided Chemical Engineering, Elsevier pp 221–226

    Google Scholar 

  82. Horn H, Neu TR, Wulkow M (2001) Modelling the structure and function of extracellularpolymeric substances in biofilms with new numerical techniques. Water Sci Technol 43:121–127

    CAS  Google Scholar 

  83. Laspidou C, Rittmann BE (2002) A Unified Theory for Extracellular polymeric Substances, Soluble Microbial Products, and Active and Inert Biomass. Wat. Res. 36:2711–2720

    CAS  Google Scholar 

  84. Wolf G, Picioreanu C, van Loosdrecht MCM (2007) Kinetic model of phototrophic biofilms—the PHOBIA model. Biotechnol Bioeng 97:1064–1079

    CAS  Google Scholar 

  85. Flora JRV, Suidan MT, Biswas P, Sayles GD (1995) Modeling algal biofilms: role of carbon, light, cell surface charge, and ionic species. Water Environ Res 67:87–94

    CAS  Google Scholar 

  86. Rauch W, Vanrolleghem PA (1998) Modelling benthic activity in shallow eutrophic rivers. Water Sci Technol 37:129–137

    CAS  Google Scholar 

  87. Rinas U, El-Enshasy H, Emmler M, Hille A, Hempel DC, Horn H (2005) Model-based prediction of substrate conversion and protein synthesis and excretion in recombinant Aspergillus niger biopellets. Chem Sci Eng 60:2729–2739

    CAS  Google Scholar 

  88. Sakurai A, Imai H, Sakakibara M (1999) Citric acid production using biofilm of aspergillus niger.lf. Recent Res Dev Biotechnol Bioeng 2:1–13

    CAS  Google Scholar 

  89. Tekerlekopoulou AG, Tsiflikiotou M, Akritidou L, Viennas A, Tsiamis G, Pavlou S, Bourtzis K, Vayenas DV (2013) Modelling of biological Cr(VI) removal in draw-fill reactors using microorganisms in suspended and attached growth systems. Water Res 47:623–636

    CAS  Google Scholar 

  90. Morgenroth E, Wilderer PA (2000) Influence of detachment mechanisms on competition in biofilms. Water Res 34:417–426

    CAS  Google Scholar 

  91. Horn H, Reiff H, Morgenroth E (2003) Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions. Biotechnol Bioeng 81:607–617

    CAS  Google Scholar 

  92. Stewart PS, McFeters GA, Huang CT (2000) Biofilm formation and persistence. In: Bryers JD, (ed) Biofilms II: process analysis and application, Wiley-Liss, Inc

    Google Scholar 

  93. Kreft JU, Wimpenny JWT (2001) Effect of EPS on biofilm structure and function as revealed by an individual-based model of biofilm growth. Water Sci Technol 43:135–141

    CAS  Google Scholar 

  94. Eberl HJ, Picioreanu C, Heijnen JJ, van Loosdrecht MCM (2000) A three-dimensional numerical study on the correlation of spatial structure, hydrodynamic conditions, and mass transfer and conversion in bioflms. Chem Eng Sci 55:6209–6222

    CAS  Google Scholar 

  95. Bryers JD (1984) Biofilm formation and chemostat dynamics: Pure and mixed culture considerations. Biotechnol Bioeng 26:948–958

    CAS  Google Scholar 

  96. Chang HT, Rittmann BE (1987) Mathematical modeling of biofilm on activated carbon. Environ Sci Technol 21:273–280

    CAS  Google Scholar 

  97. Kreikenbohm R, Stephan W (1985) Application of a two-compartment model to the wall growth of Pelobacter acidigallici under continuous culture conditions. Biotechnol Bioeng 27:296–301

    CAS  Google Scholar 

  98. Trulear MG, Characklis WG (1982) Dynamics of biofilm processes. J WPCF 54:1288–1301

    CAS  Google Scholar 

  99. Bakke R, Trulear MG, Robinson JA, Characklis WG (1984) Activity of pseudomonas aeruginosa in biofilms: steady stat. Biotechnol Bioeng 26:1418–1424

    CAS  Google Scholar 

  100. Rittman BE (1982) The effect of shear stress on biofilm loss rate. Biotechnol Bioeng 24:501–506

    CAS  Google Scholar 

  101. Peyton BM, Characklis WG (1993) A Statistical-analysis of the effect of substrate utilization and shear-stress on the kinetics of biofilm detachment. Biotechnol Bioeng 41:728–735

    CAS  Google Scholar 

  102. Morgenroth E, Wilderer PA (1999) Controlled biomass removal—the key parameter to achieve enhanced biological phosphorus removal in biofilm systems. Water Sci Technol 39:33–40

    CAS  Google Scholar 

  103. Speitel GE, DiGiano FA (1987) Biofilm shearing under dynamic conditions. J Environ Eng—ASCE 113:464–475

    CAS  Google Scholar 

  104. Rittmann BE (1989) Detachment from Biofilms, In: Characklis WG, Marshall KC (eds) Biofilms, John Wiley & Sons, New York pp 49–58

    Google Scholar 

  105. Peyton BM, Characklis WG (1992) Kinetics of biofilm detachment. Water Sci Technol 26:1995–1998

    CAS  Google Scholar 

  106. Robinson JA, Trulear MG, Characklis WG (1984) Cellular reproduction and extracellular polymer formation by pseudomonas aeruginosa in continuous culture. Biotechnol Bioeng 26:1409–1417

    CAS  Google Scholar 

  107. Stewart PS (1993) A model of biofilm detachment. Biotechnol Bioeng 41:111–117

    CAS  Google Scholar 

  108. Morgenroth E, Wilderer PA (1998) Modeling the enhanced biological phosphorus removal in a sequenzing batch biofilm reactor. Water Sci Technol 37:583–587

    CAS  Google Scholar 

  109. Nicolella C, Di Felice R, Rovatti M (1996) An experimental model of biofilm detachment in liquid fluidized bed biological reactors. Biotechnol Bioeng 51:713–719

    CAS  Google Scholar 

  110. Abbas F, Sudarsan R, Eberl HJ (2012) Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates. Math Biosci Eng 9:215–239

    Google Scholar 

  111. Wimpenny JWT, Colasanti R (1997) A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microbiol Ecol 22:1–16

    CAS  Google Scholar 

  112. Hermanowicz SW (1999) Two-dimensional simulations of biofilm development: effects of external environmental conditions. Water Sci Technol 39:107–114

    CAS  Google Scholar 

  113. Picioreanu C, van Loosdrecht MCM, Heijnen JJ (1999) Discret-differential modelling of biofilm structure. Water Sci Technol 39:115–123

    CAS  Google Scholar 

  114. Picioreanu C, van Loosdrecht MCM, Heijnen JJ (2000) Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study. Biotechnol Bioeng 69:504–515

    CAS  Google Scholar 

  115. Dockery J, Klapper I (2001) Finger formation in biofilm layers. Siam J Appl Math 62:853–869

    Google Scholar 

  116. Eberl H, Parker D, van Loosdrecht M (2001) A new deterministic spatio- temporal continuum model for biofilm development. Journal of Theoretical Medicine 3:161–175

    Google Scholar 

  117. Picioreanu C, van Loosdrecht MCM, Heijnen JJ (2001) Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng 72:205–218

    CAS  Google Scholar 

  118. Chambless JD, Stewart PS (2007) A three-dimensional computer model analysis of three hypothetical biofilm detachment mechanisms. Biotechnol Bioeng 97:1573–1584

    CAS  Google Scholar 

  119. Kreft J-U, Picioreanu C, Wimpenny JWT, van Loosdrecht MCM (2001) Individual-based modelling of biofilms. Microbiology 147:2897–2912

    CAS  Google Scholar 

  120. Kreft JU (2004) Biofilms promote altruism. Microbiology 150:2751–2760

    CAS  Google Scholar 

  121. Picioreanu C, Kreft JU, van Loosdrecht MCM (2004) Particle-Based multidimensional multispecies biofilm model.lf. Appl Environ Microbiol 70:3024–3040

    CAS  Google Scholar 

  122. Xavier JB, Picioreanu C, Van Loosdrecht MCM (2005) A framework for multidimensional modelling of activity and structure of multispecies biofilms. Environ Microbiol 7:1085–1103

    CAS  Google Scholar 

  123. Xavier JB, Picioreanu C, van Loosdrecht MCM (2005) A general description of detachment for multidimensional modelling of biofilms. Biotechnol Bioeng 6:651–669

    Google Scholar 

  124. Picioreanu C, Head IM, Katuri KP, van Loosdrecht MCM, Scott K (2007) A computational model for biofilm-based microbial fuel cells. Water Res 41:2921–2940

    CAS  Google Scholar 

  125. von der Schulenburg DAG, Pintelon TRR, Picioreanu C, Van Loosdrecht MCM, Johns ML (2009) Three-dimensional simulations of biofilm growth in porous media. AICHE J 55:494–504

    Google Scholar 

  126. Radu AI, Picioreanu C, Vrouwenvelder JS, van Loosdrecht MCM (2010) Modeling the effect of biofilm formation on reverse osmosis performance: flux, feed channel pressure drop and solute passage. J Membr Sci 365:1–15

    CAS  Google Scholar 

  127. Lardon LA, Merkey BV, Martins S, Dötsch A, Picioreanu C, Kreft J-U, Smets BF (2011) iDynoMiCS: next-generation individual-based modelling of biofilms. Environ Microbiol 13:2416–2434

    CAS  Google Scholar 

  128. Möhle R (2008) An Analytic-synthetic approach combining mathematical modeling and experiments—towards an understanding of biofilm systems. Institute of Biochemical Engineering Technische Universität Braunschweig, Braunschweig

    Google Scholar 

  129. Böl M, Ehret AE, Albero AB, Hellriegel J, Rainer Krull R (2013) Recent advances in mechanical characterisation of biofilm and their significance for material modelling. Crit Rev Biotechnol 33:145–171

    Google Scholar 

  130. Guelon T, Mathias JD, Stoodley P (2011) Advances in Biofilm Mechanics. Springer, Berlin

    Google Scholar 

  131. Klapper I, Dockery J (2006) Role of cohesion in the material description of biofilms. Phys Rev E 74:031902

    CAS  Google Scholar 

  132. Cogan NG (2008) Two-fluid model of biofilm disinfection. Bull Math Biol 70:800–819

    CAS  Google Scholar 

  133. Taherzadeh D (2011) Mechanics and Substrate Transport of Moving Biofilm Structures. Technische Universität München, Munich, Institute of Water Quality Control

    Google Scholar 

  134. Duddu R, Chopp DL, Moran B (2009) A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment. Biotechnol Bioeng 103:92–104

    CAS  Google Scholar 

  135. Limbert G, Bryan R, Cotton R, Young P, Hall-Stoodley L, Kathju S, Stoodley P (2013) On the mechanics of bacterial biofilms on non-dissolvable surgical sutures: a laser scanning confocal microscopy-based finite element study. Acta Biomater 9:6641–6652

    CAS  Google Scholar 

  136. Taherzadeh D, Picioreanu C, Küttler U, Simone A, Wall WA, Horn H (2010) Computational study of the drag and oscillatory movement of biofilm streamers in fast flows. Biotechnol Bioeng 105:600–610

    CAS  Google Scholar 

  137. Taherzadeh D, Picioreanu C, Horn H (2012) Mass transfer enhancement in moving biofilm structures. Biophys J 102:1483–1492

    CAS  Google Scholar 

  138. Morgenroth E, van Loosdrecht MCM, Wanner O (2000) Biofilm models for the practitioner. Water Sci Technol 41:509–512

    CAS  Google Scholar 

  139. Brockmann D, Horn H, Alex J, Beier M, Morgenroth E, Ochmann C, Sörensen K, Wanner O, Wichern M (2008) Simulation of Nitrification in a Full-scale Biofilter—Comparison of Different Approaches. IWA Biofilm Technologies, pp 229–231, IWA, Singapore

    Google Scholar 

  140. Boltz JP, Morgenroth E, Brockmann D, Bott C, Gellner WJ, Vanrolleghem PA (2011) Systematic evaluation of biofilm models for engineering practice: components and critical assumptions. Water Sci Technol 64:930–944

    CAS  Google Scholar 

  141. Picioreanu C, Vrouwenvelder JS, Kruithof JC, van Loosdrecht MCM (2010) Biofouling in spiral wound membrane systems: Three-dimensional CFD model based evaluation of experimental data. J Membr Sci 346:71–85

    Google Scholar 

Download references

Acknowledgment

Many thanks to Roland Möhle and Danial Taherzadeh. Both did their PhDs on modeling of biofilm systems and thereby contributed significantly to the understanding of structure and function of mixed culture biofilm systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Horn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horn, H., Lackner, S. (2014). Modeling of Biofilm Systems: A Review. In: Muffler, K., Ulber, R. (eds) Productive Biofilms. Advances in Biochemical Engineering/Biotechnology, vol 146. Springer, Cham. https://doi.org/10.1007/10_2014_275

Download citation

Publish with us

Policies and ethics