Skip to main content

Equipment for Large-Scale Mammalian Cell Culture

  • Chapter

Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE,volume 139)

Keywords

  • Bioreactor
  • Cell culture
  • Cell retention
  • Disposable
  • Monoclonal antibody
  • Perfusion
  • Preculture
  • Scale-up
  • Seed train
  • Single use

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/10_2013_259
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   349.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-54050-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   449.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Notes

  1. 1.

    All the volumes indicated here are working volumes unless specified. The total bioreactor volume needs to be at least 20 % higher than the working volume; that is, a bioreactor with 20,000 L working volume has a 25,000 L total volume.

Abbreviations

CHO:

Chinese Hamster Ovary

BHK:

Baby Hamster Kidney

cGMP:

Current Good Manufacturing Practices

DO:

Dissolved Oxygen

WFI:

Water for Injection

HVAC:

Heating, Ventilation, and Air Conditioning

QC:

Quality Control

RTD:

Resistance Temperature Detector

References

  1. Ozturk SS, Hu Wei-Shou (2006) Cell culture technology for pharmaceutical and cell-based therapies. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  2. Kelley B (2009) Industrialization of mAb production technology: the bioprocess industry at a crossroads. mAbs 1:443–452

    CrossRef  Google Scholar 

  3. Shukla AA, Thömmes J (2012) Recent advances in large-scale production of monoclonal antibodies and related proteins. Trends Biotechnol 28(5):253–261

    CrossRef  Google Scholar 

  4. Werner A (2010) Biopharmaceutical manufacturing trends for maximizing antibody yields. In: European Association of Pharma Biotechnology (EAPB), Vienna. Accessed 24–25 February 2010

    Google Scholar 

  5. Ransohoff TC, Ecker DM, Levine HL, Miller J (2008) Cell culture manufacturing capacity: trends and outlook through 2013. PharmSource Information Services, Springfield, VA

    Google Scholar 

  6. Nelson K (2006) Facility design. In: Ozturk SS, Hu W-S (eds) Cell culture technology for pharmaceutical and cell-based therapies. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  7. Jayapal KP, Wlaschin KF, Hu W-S, Yap MGS (2007) Recombinant protein therapeutics from CHO cells-20 years and counting. Chem Eng Prog 103:40–47

    CAS  Google Scholar 

  8. Farid SS (2007) Process economics of industrial monoclonal antibody manufacture. J Chromatogr B 848:8–18

    CAS  CrossRef  Google Scholar 

  9. Birch JR, Racher JR (2006) Antibody production. Adv Drug Delivery Rev 58:671–685

    CAS  CrossRef  Google Scholar 

  10. Li F, Vijayasankaran N, Shen A, Kiss R, Amanullah A (2010) Cell culture processes for monoclonal antibody production. mAbs 2(5):466–477.

    Google Scholar 

  11. Seth G, Hamilton RW, Stapp TR, Zheng L, Meier A, Petty K, Leung S, Chary S (2013) Development of a new bioprocess scheme using frozen seed train intermediates to initiate CHO cell culture manufacturing campaigns. Biotechnol Bioeng 110:1376–1385

    CAS  CrossRef  Google Scholar 

  12. Freshney RI (2010) Culture of animal cells, 6th edn. Wiley, Hoboken

    Google Scholar 

  13. Eibl D, Peuker T, Eibl R (2010) Single-use equipment in biopharmaceutical manufacture: a brief introduction. In: Eibl R, Eibl D (eds) Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken, pp 145–148

    Google Scholar 

  14. Fenge C, Lüllau E (2006) Cell culture bioreactors. In: Ozturk SS, Hu WS (eds) Cell culture technology for pharmaceutical and cell-based therapies. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  15. Bonham-Carter J, Shevitz J (2011) A brief history of perfusion biomanufacturing: how high-concentration cultures will characterize the factory of the future. BioProcess Int 9(9):24–31

    Google Scholar 

  16. Ozturk SS (2008) Towards more modular, compact, and cost effective manufacturing facilities: combining the latest advances in process development with bioreactor technology development. In: IBC’s BioProcess international conference & exhibition, Anaheim, CA. Accessed 23–26 Sept 2008

    Google Scholar 

  17. Andersen DC, Reilly DE (2004) Production technologies for monoclonal antibodies and their fragments. Curr Opin Biotechnol 15:456–462

    CAS  CrossRef  Google Scholar 

  18. Ozturk SS, Kompala D (2006) Optimization of high cell density perfusion Cultures. In: Ozturk SS, Hu W-S (eds) Cell culture technology for pharmaceutical and cell-based therapies. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  19. Ozturk SS (1996) Engineering challenges in high density cell culture bioreactors. Cytotechnology 22:3–16

    CAS  CrossRef  Google Scholar 

  20. Nienow AW (2010) Impeller selection for animal cell culture. Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, New York

    Google Scholar 

  21. Ozturk SS, Palsson BO (1990) Effects of dissolved oxygen on hybridoma cell growth, metabolism and antibody production kinetics in continuous cultures. Biotechnol Prog 6:437–446

    CAS  CrossRef  Google Scholar 

  22. Jorjani P, Ozturk SS (1999) Effects of cell density and temperature on oxygen consumption rate for different mammalian cell lines. Biotechnol Bioeng 64(3):349–356 (Aug 5)

    Google Scholar 

  23. Godoy-Silva R, Berdugo C, Chalmers JJ (2010) Aeration, mixing, and hydrodynamics, animal cell bioreactors. In: Flickinger MC (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, Hoboken

    Google Scholar 

  24. Ma N, Chalmers JJ, Aunins JG, Zhou W, Xie L (2004) Quantitative studies of cell-bubble interactions and cell damage at different pluronic F-68 and cell concentrations. Biotechnol Prog 20(4):1183–1191

    CAS  CrossRef  Google Scholar 

  25. Ozturk SS (2006) Design and implementation of large scale stirred-tank bioreactors. In: BioProduction international conference, Dublin, Republic of Ireland

    Google Scholar 

  26. Eibl R, Kaiser S, Lombriser R, Eibl D (2010) Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology. Appl Microbiol Biotechnol 86(1):41–49

    Google Scholar 

  27. Shukla AA, Gottschalk U (2012) Single-use disposable technologies for biopharmaceutical manufacturing. Trends Biotechnol 31(3):147–154

    CrossRef  Google Scholar 

Download references

Acknowledgments

I would like to thank Dr. Mark Leney and Dr. Roger Anderson for the review of the chapter and for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadettin S. Ozturk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ozturk, S.S. (2013). Equipment for Large-Scale Mammalian Cell Culture. In: Zhou, W., Kantardjieff, A. (eds) Mammalian Cell Cultures for Biologics Manufacturing. Advances in Biochemical Engineering/Biotechnology, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_259

Download citation