Skip to main content

New Bioproduction Systems: From Molecular Circuits to Novel Reactor Concepts in Cell-Free Biotechnology

  • Chapter
  • First Online:
Fundamentals and Application of New Bioproduction Systems

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 137))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  CAS  Google Scholar 

  2. Tang WL, Zhao H (2009) Industrial biotechnology: tools and applications. Biotechnol J 4:1725–1739

    Article  CAS  Google Scholar 

  3. Wohlgemuth R (2009) The locks and keys to industrial biotechnology. N Biotechnol 25:204–213

    Article  CAS  Google Scholar 

  4. Sauer M, Marx H, Mattanovich D (2008) Microbial production of 1,3-propanediol. Recent Pat Biotechnol 2:191–197

    Article  CAS  Google Scholar 

  5. Zaks A (2001) Indstrial biocatalysis. Curr Opin Chem Biol 5:130–136

    Article  CAS  Google Scholar 

  6. Gassen HG (2006) High-tech bioactives and novel enzymes from BRAIN, a European pioneer in white biotechnology. Biotechnol J 1:752–755

    Article  Google Scholar 

  7. Panke S, Wubbolts M (2005) Advances in biocatalytic synthesis of pharmaceutical intermediates. Curr Opin Chem Biol 9:188–194

    Article  CAS  Google Scholar 

  8. Taylor MJ, Richardson T (1979) Applications of microbial enzymes in food systems and in biotechnology. Adv Appl Microbiol 25:7–35

    Article  CAS  Google Scholar 

  9. Chandel AK, Chandrasekhar G, Silva MB, da Silva SS (2012) The realm of cellulases in biorefinery development. Crit Rev Biotechnol 32:187–202

    Google Scholar 

  10. Bujara M, Schumperli M, Billerbeck S, Heinemann M, Panke S (2010) Exploiting cell-free systems: implementation and debugging of a system of biotransformations. Biotechnol Bioeng 106:376–389

    CAS  Google Scholar 

  11. Bujara M, Schumperli M, Pellaux R, Heinemann M, Panke S (2011) Optimization of a blueprint for in vitro glycolysis by metabolic real-time analysis. Nat Chem Biol 7:271–277

    Article  CAS  Google Scholar 

  12. Zhang YH, Evans BR, Mielenz JR, Hopkins RC, Adams MW (2007) High-yield hydrogen production from starch and water by a synthetic enzymatic pathway. PLoS One 2:e456

    Article  Google Scholar 

  13. Zhang YH, Huang WD (2012) Constructing the electricity-carbohydrate-hydrogen cycle for a sustainability revolution. Trends Biotechnol 30(6):301–306

    Article  CAS  Google Scholar 

  14. Zhang YH, Sun J, Zhong JJ (2010) Biofuel production by in vitro synthetic enzymatic pathway biotransformation. Curr Opin Biotechnol 21:663–669

    Article  CAS  Google Scholar 

  15. Mullaney JA, Rehm BH (2010) Design of a single-chain multi-enzyme fusion protein establishing the polyhydroxybutyrate biosynthesis pathway. J Biotechnol 147:31–36

    Article  CAS  Google Scholar 

  16. Wang HH, Huang PY, Xu G, Haas W, Marblestone A, Li J, Gygi S, Forster AC, Jewett MC, Church GM (2012) Multiplexed in vivo His-tagging of enzyme pathways for in vitro single-pot multi-enzyme catalysis. ACS Synth Biol 1:43–52

    Article  Google Scholar 

  17. Baranov VI, Morozov I, Ortlepp SA, Spirin AS (1989) Gene expression in a cell-free system on the preparative scale. Gene 84:463–466

    Article  CAS  Google Scholar 

  18. Stech M, Brodel AK, Quast RB, Sachse R, Kubick S (2013) Cell-free systems: functional modules for synthetic and chemical biology. Adv Biochem Eng Biotechnol 8(1):e53134 [E-Pub ahead of print]

    Google Scholar 

  19. Swartz JR (2009) Universal cell-free protein synthesis. Nat Biotechnol 27:731–732

    Article  CAS  Google Scholar 

  20. Ohashi H, Kanamori T, Shimizu Y, Ueda T (2010) A highly controllable reconstituted cell-free system—a breakthrough in protein synthesis research. Curr Pharm Biotechnol 11:267–271

    Article  CAS  Google Scholar 

  21. Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751–755

    Article  CAS  Google Scholar 

  22. Yang WC, Patel KG, Wong HE, Swartz JR (2012) Simplifying and streamlining Escherichia coli-based cell-free protein synthesis. Biotechnol Prog 28:413–420

    Article  CAS  Google Scholar 

  23. Zawada JF, Yin G, Steiner AR, Yang J, Naresh A, Roy SM, Gold DS, Heinsohn HG, Murray CJ (2011) Microscale to manufacturing scale-up of cell-free cytokine production—a new approach for shortening protein production development timelines. Biotechnol Bioeng 108:1570–1578

    Article  CAS  Google Scholar 

  24. Brodel AK, Raymond JA, Duman JG, Bier FF, Kubick S (2013) Functional evaluation of candidate ice structuring proteins using cell-free expression systems. J Biotechnol 163:301–310

    Article  CAS  Google Scholar 

  25. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    Article  CAS  Google Scholar 

  26. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M et al (1996) Life with 6000 genes. Science 274(546):563–567

    Google Scholar 

  27. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  Google Scholar 

  28. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  Google Scholar 

  29. Khatri P, Sirota M, Butte AJ (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 8:e1002375

    Article  CAS  Google Scholar 

  30. Martchenko M, Levitin A, Hogues H, Nantel A, Whiteway M (2007) Transcriptional rewiring of fungal galactose-metabolism circuitry. Curr Biol 17:1007–1013

    Article  CAS  Google Scholar 

  31. Scannell DR, Wolfe K (2004) Rewiring the transcriptional regulatory circuits of cells. Genome Biol 5:206

    Article  Google Scholar 

  32. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65

    Article  Google Scholar 

  33. Voigt CA, Keasling JD (2005) Programming cellular function. Nat Chem Biol 1:304–307

    Article  CAS  Google Scholar 

  34. Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266:1021–1024

    Article  CAS  Google Scholar 

  35. Qian L, Winfree E (2011) A simple DNA gate motif for synthesizing large-scale circuits. J R Soc Interface 8:1281–1297

    Article  CAS  Google Scholar 

  36. Qian L, Winfree E (2011) Scaling up digital circuit computation with DNA strand displacement cascades. Science 332:1196–1201

    Article  CAS  Google Scholar 

  37. Zhang DY, Seelig G (2011) Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem 3:103–113

    Article  CAS  Google Scholar 

  38. Kim J, White KS, Winfree E (2006) Construction of an in vitro bistable circuit from synthetic transcriptional switches. Mol Syst Biol 2:68

    Google Scholar 

  39. Shin J, Noireaux V (2012) An E. coli cell-free expression toolbox: application to synthetic gene circuits and artificial cells. ACS Synth Biol 1:29–41

    Article  CAS  Google Scholar 

  40. Maciag A, Peano C, Pietrelli A, Egli T, De Bellis G, Landini P (2011) In vitro transcription profiling of the σS subunit of bacterial RNA polymerase: re-definition of the σS regulon and identification of σS-specific promoter sequence elements. Nucleic Acids Res 39:5338–5355

    Article  CAS  Google Scholar 

  41. Shin J, Noireaux V (2010) Efficient cell-free expression with the endogenous E. coli RNA polymerase and sigma factor 70. J Biol Eng 4:8

    Article  Google Scholar 

  42. Kim DM, Swartz JR (2000) Prolonging cell-free protein synthesis by selective reagent additions. Biotechnol Prog 16:385–390

    Article  CAS  Google Scholar 

  43. Nakano H, Shinbata T, Okumura R, Sekiguchi S, Fujishiro M, Yamane T (1999) Efficient coupled transcription/translation from PCR template by a hollow-fiber membrane bioreactor. Biotechnol Bioeng 64:194–199

    Article  CAS  Google Scholar 

  44. Spirin AS (2004) High-throughput cell-free systems for synthesis of functionally active proteins. Trends Biotechnol 22:538–545

    Article  CAS  Google Scholar 

  45. Kim DM, Choi CY (1996) A semi continuous prokaryotic coupled transcription/translation system using a dialysis membrane. Biotechnol Prog 12:645–649

    Article  CAS  Google Scholar 

  46. Martemyanov KA, Shirokov VA, Kurnasov OV, Gudkov AT, Spirin AS (2001) Cell-free production of biologically active polypeptides: application to the synthesis of antibacterial peptide cecropin. Protein Expr Purif 21:456–461

    Article  CAS  Google Scholar 

  47. Kigawa T, Yokoyama S (1991) A continuous cell-free protein synthesis system for coupled transcription-translation. J Biochem 110:166–168

    CAS  Google Scholar 

  48. Spirin AS, Baranov VI, Ryabova LA, Ovodov SY, Alakhov YB (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242:1162–1164

    Article  CAS  Google Scholar 

  49. Calhoun KA, Swartz JR (2007) Energy systems for ATP regeneration in cell-free protein synthesis reactions. Methods Mol Biol 375:3–17

    CAS  Google Scholar 

  50. Jewett MC, Calhoun KA, Voloshin A, Wuu JJ, Swartz JR (2008) An integrated cell-free metabolic platform for protein production and synthetic biology. Mol Syst Biol 4:220

    Google Scholar 

  51. Jewett MC, Swartz JR (2004) Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Biotechnol Bioeng 86:19–26

    Article  CAS  Google Scholar 

  52. Wang Y, Zhang YH (2009) Cell-free protein synthesis energized by slowly-metabolized maltodextrin. BMC Biotechnol 9:58

    Article  Google Scholar 

  53. Etzold C, Deckers-Hebestreit G, Altendorf K (1997) Turnover number of Escherichia coli F0F1 ATP synthase for ATP synthesis in membrane vesicles. Eur J Biochem 243:336–343

    Article  CAS  Google Scholar 

  54. Weckbecker A, Groger H, Hummel W (2010) Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. Adv Biochem Eng Biotechnol 120:195–242

    CAS  Google Scholar 

  55. Neuhauser W, Steininger M, Haltrich D, Kulbe KD, Nidetzky B (1998) A pH-controlled fed-batch process can overcome inhibition by formate in NADH-dependent enzymatic reductions using formate dehydrogenase-catalyzed coenzyme regeneration. Biotechnol Bioeng 60:277–282

    Article  CAS  Google Scholar 

  56. Walcarius A, Nasraoui R, Wang Z, Qu F, Urbanova V, Etienne M, Gollu M, Demir AS, Gajdzik J, Hempelmann R (2011) Factors affecting the electrochemical regeneration of NADH by (2,2’-bipyridyl) (pentamethylcyclopentadienyl)-rhodium complexes: impact on their immobilization onto electrode surfaces. Bioelectrochemistry 82:46–54

    Article  CAS  Google Scholar 

  57. Lee HJ, Lee SH, Park CB, Won K (2011) Coenzyme analogs: excellent substitutes (not poor imitations) for electrochemical regeneration. Chem Commun (Camb) 47:12538–12540

    Article  CAS  Google Scholar 

  58. Freisleben HJ, Zwicker K, Jezek P, John G, Bettin-Bogutzki A, Ring K, Nawroth T (1995) Reconstitution of bacteriorhodopsin and ATP synthase from micrococcus luteus into liposomes of the purified main tetraether lipid from thermoplasma acidophilum: proton conductance and light-driven ATP synthesis. Chem Phys Lipids 78:137–147

    Article  CAS  Google Scholar 

  59. Lee KA, Jung KH (2011) ATP regeneration system using E. coli ATP synthase and Gloeobacter rhodopsin and its stability. J Nanosci Nanotechnol 11:4261–4264

    Article  CAS  Google Scholar 

  60. Pitard B, Richard P, Dunach M, Girault G, Rigaud JL (1996) ATP synthesis by the F0F1 ATP synthase from thermophilic Bacillus PS3 reconstituted into liposomes with bacteriorhodopsin. 1. Factors defining the optimal reconstitution of ATP synthases with bacteriorhodopsin. Eur J Biochem 235:769–778

    Article  CAS  Google Scholar 

  61. Pitard B, Richard P, Dunach M, Rigaud JL (1996) ATP synthesis by the F0F1 ATP synthase from thermophilic Bacillus PS3 reconstituted into liposomes with bacteriorhodopsin. 2. Relationships between proton motive force and ATP synthesis. Eur J Biochem 235:779–788

    Article  CAS  Google Scholar 

  62. Racker E, Stoeckenius W (1974) Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation. J Biol Chem 249:662–663

    CAS  Google Scholar 

  63. Wagner N, Gutweiler M, Pabst R, Dose K (1987) Coreconstitution of bacterial ATP synthase with monomeric bacteriorhodopsin into liposomes. A comparison between the efficiency of monomeric bacteriorhodopsin and purple membrane patches in coreconstitution experiments. Eur J Biochem 165:177–183

    Article  CAS  Google Scholar 

  64. Hara KY, Suzuki R, Suzuki T, Yoshida M, Kino K (2011) ATP photosynthetic vesicles for light-driven bioprocesses. Biotechnol Lett 33:1133–1138

    Article  CAS  Google Scholar 

  65. Suzuki T, Ueno H, Mitome N, Suzuki J, Yoshida M (2002) F(0) of ATP synthase is a rotary proton channel. Obligatory coupling of proton translocation with rotation of c-subunit ring. J Biol Chem 277:13281–13285

    Article  CAS  Google Scholar 

  66. Luo TJ, Soong R, Lan E, Dunn B, Montemagno C (2005) Photo-induced proton gradients and ATP biosynthesis produced by vesicles encapsulated in a silica matrix. Nat Mater 4:220–224

    Article  CAS  Google Scholar 

  67. Oliynyk V, Mille C, Ng JB, von Ballmoos C, Corkery RW, Bergstrom L (2013) Selective and ATP-driven transport of ions across supported membranes into nanoporous carriers using gramicidin A and ATP synthase. Phys Chem Chem Phys 15:2733–2740

    Article  CAS  Google Scholar 

  68. Nordlund G, Sing Ng JB, Bergstrom L, Brzezinski P (2009) A membrane-reconstituted multisubunit functional proton pump on mesoporous silica particles. ACS Nano 3:2639–2646

    Article  CAS  Google Scholar 

  69. Tutus M, Rossetti FF, Schneck E, Fragneto G, Forster F, Richter R, Nawroth T, Tanaka M (2008) Orientation-selective incorporation of transmembrane F0F1 ATP synthase complex from micrococcus luteus in polymer-supported membranes. Macromol Biosci 8:1034–1043

    Article  CAS  Google Scholar 

  70. Kumar M, Habel JE, Shen YX, Meier WP, Walz T (2012) High-density reconstitution of functional water channels into vesicular and planar block copolymer membranes. J Am Chem Soc 134:18631–18637

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is made possible through grants from the BMBF (zellfreie Bioproduktion) and Fraunhofer Gesellschaft (Die Industriezelle). The experiments for light-driven ATP-synthesis were performed by Marcus Thein and Anne Hartenhauer.

The author has declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Rupp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rupp, S. (2013). New Bioproduction Systems: From Molecular Circuits to Novel Reactor Concepts in Cell-Free Biotechnology. In: Zeng, AP. (eds) Fundamentals and Application of New Bioproduction Systems. Advances in Biochemical Engineering/Biotechnology, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_227

Download citation

Publish with us

Policies and ethics