Skip to main content

Biosensors Based on Enzyme Inhibition

  • Chapter
  • First Online:
Biosensors Based on Aptamers and Enzymes

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 140))

Abstract

The present chapter describes the use of biosensors based on enzyme inhibition as analytical tools. The parameters that affect biosensor sensitivity, such as the amount of immobilized enzyme, incubation time, and immobilization type, were critically evaluated, highlighting how the knowledge of enzymatic kinetics can help researchers optimize the biosensor in an easy and fast manner. The applications of these biosensors demonstrating their wide application have been reported. The objective of this survey is to give a critical description of biosensors based on enzyme inhibition, of their assembly, and their application in the environmental, food, and pharmaceutical fields.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thévenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16(1–2):121–131

    Article  Google Scholar 

  2. Luque De Castro MD, Herrera MC (2003) Enzyme inhibition-based biosensor and biosensing systems: questionable analytical devices. Biosens Bioelectron 18:279–294

    Article  CAS  Google Scholar 

  3. Amine A, Mohammadi H, Bourais I, Palleschi G (2006) Enzyme inhibition-based biosensor for food safety and environmental monitoring. Biosens Bioelectron 21(8):1405–1423

    Article  CAS  Google Scholar 

  4. Arduini F, Amine A, Moscone D, Palleschi G (2009) Reversible enzyme inhibition based biosensors: applications and analytical improvement through diagnostic inhibition. Anal Lett 42:1258–1293

    Article  CAS  Google Scholar 

  5. Trojanowicz M, Trojanowicz M (2002) Determination of pesticides using electrochemical enzymatic. Biosens Electroanal 14(19-20):1311–1328

    Article  CAS  Google Scholar 

  6. Turdean GL (2011) Design and development of biosensors for the detection of heavy metal toxicity. Int J Electrochem, Article ID 343125, p 15. doi:10.4061/2011/343125

  7. Andreescu S, Marty JL (2006) Twenty years research in cholinesterase biosensors: from basic research to practical applications. Biomol Eng 23:1–15

    Article  CAS  Google Scholar 

  8. Pohanka M, Jun D, Kalasz H, Kuca K (2009) Cholinesterase biosensor construction-A review. Protein Pept Lett 15:795–798

    Article  Google Scholar 

  9. Pohanka M, Musilek K, Kuca K (2009) Progress of biosensors based on cholinesterases inhibition. Curr Med Chem 16:1790–1798

    Article  CAS  Google Scholar 

  10. Pohanka M (2009) Cholinesterase based amperometric biosensors for assay of anticholinergic compounds. Interdisc Toxicol 2:52–54

    Article  Google Scholar 

  11. Manco G, Nucci R, Febbraio F (2009) Use of esterase for the detection of chemical neurotoxic agents. Protein Pept Lett 16:1225–1243

    Article  CAS  Google Scholar 

  12. Periasamy AP, Umasankar Y, Chen SM (2009) Nanomaterials acetylcholinesterase enzyme matrices for organophosphorus pesticides electrochemical sensors: a review. Sensors 9:4034–4055

    Article  CAS  Google Scholar 

  13. Arduini F, Amine A, Moscone D, Palleschi G (2010) Biosensors based on cholinesterase inhibition for pesticides, nerve agents and aflatoxin B1 detection (review). Microchim Acta 170:193–214

    Article  CAS  Google Scholar 

  14. Sun X, Zhai C, Wang X (2012) Recent advances in amperometric acetylcholinesterase biosensor. Sens Transducers J 137:199

    CAS  Google Scholar 

  15. Lineawever H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 6:658–666

    Article  Google Scholar 

  16. Dixon M (1953) The determination of the enzyme inhibitor constants. Biochem J 55:170–171

    CAS  Google Scholar 

  17. Cornish-Bowden A (1974) A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem. J 137:143–144

    CAS  Google Scholar 

  18. Segel IH (1975) Enzyme kinetics. Wiley-Interscience, New York

    Google Scholar 

  19. Evtugyn GA, Ivanov AN, Gogol EV, Marty JL, Budnikov HC (1999) Amperometric flow-through biosensor for the determination of cholinesterase inhibitors. Anal Chim Acta 385:13–21

    Article  CAS  Google Scholar 

  20. Jaganathan L, Boopathy R (2000) Distinct effect of benzalkonium chloride on the esterase and aryl acylamidase activities of butyrylcholinesterase. Bioorg Chem 28:242–251

    Article  CAS  Google Scholar 

  21. Kucherenko IS, Soldatkin OO, Arkhypova VM, Dzyadevych SV, Soldatkin AP (2012) A novel biosensor method for surfactant determination based on acetylcholinesterase inhibition. Meas Sci Technol 23:065801

    Article  Google Scholar 

  22. Arduini F, Ricci F, Tuta CS, Moscone D, Amine A, Palleschi G (2006) Detection of carbammic and organophosphorus pesticides in water samples using cholinesterase biosensor based on Prussian Blue modified screen printed electrode. Anal Chim Acta 580:155–162

    Article  CAS  Google Scholar 

  23. Pohanka M, Jun D, Kuca K (2008) Amperometric biosensors for real time assays of organophosphate. Sensors 8:5303–5312

    Article  CAS  Google Scholar 

  24. Alonso GA, Istamboulie G, Noguer T, Marty JL, Munoz R (2012) Rapid determination of pesticide mixtures using disposable biosensors based on genetically modified enzymes and artificial neural networks. Sens Actuators B 164:22–28

    Article  CAS  Google Scholar 

  25. Bonnet C, Andreescu S, Marty JL (2003) Adsorption: an easy and efficient immobilisation of acetylcholinesterase on screen-printed electrodes. Anal Chim Acta 481:209–211

    Article  CAS  Google Scholar 

  26. Joshi KA, Tang J, Haddon R, Wang J, Chen W, Mulchandani A (2005) A disposable biosensor for organophosphorus nerve agents based on carbon nanotubes modified thick film strip electrode. Electroanal 17:54–58

    Article  CAS  Google Scholar 

  27. Scognamiglio V, Pezzotti I, Pezzotti G, Cano J, Manfredonia I, Buonasera K, Arduini F, Moscone D, Palleschi G, Giardi MT (2012) Towards an integrated biosensor array for simultaneous and rapid multi-analysis of endocrine disrupting chemicals. Anal Chim Acta 751:161–170

    Article  CAS  Google Scholar 

  28. Liu G, Lin Y (2006) Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Anal Chem 78:835–843

    Article  CAS  Google Scholar 

  29. Arduini F, Ricci F, Amine A, Moscone D, Palleschi G (2007) Fast, sensitive and cost-effective detection of nerve agents in the gas phase using a portable instrument and an electrochemical biosensor. Anal Bioanal Chem 388:1049–1057

    Article  CAS  Google Scholar 

  30. Shan D, Wanga Y, Zhua M, Xuea H, Cosnierb S, Wanga C (2009) Development of a high analytical performance-xanthine biosensor based olayered double hydroxides modified-electrode and investigation of the inhibitory effect by allopurinol. Biosens Bioelectron 24:1171–1176

    Article  CAS  Google Scholar 

  31. Arduini F, Guidone S, Amine A, Palleschi G, Moscone D (2013) Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection. Sens Actuators B 179:201−208

    Google Scholar 

  32. Shan D, Li QB, Ding SN, Xu JQ, Cosnier S, Xue HG (2010) Reagentless biosensor for hydrogen peroxide based on self-assembled films of horseradish peroxidase/laponite/chitosan and the primary investigation on the inhibitory effect by sulfide. Biosens Bioelectron 26:536–541

    Article  CAS  Google Scholar 

  33. Savizi ISP, Kariminia HR, Ghadiri M, Roosta-Azad R (2010) Amperometric sulfide detection using Coprinus cinereus peroxidase immobilized on screen printed electrode in an enzyme inhibition based biosensor. Biosens Bioelectron 35:297–301

    Article  Google Scholar 

  34. Harceaga Sima V, Patris S, Aydogmus Z, Sarakbi A, Sandulescu R, Kauffmann JM (2011) Tyrosinase immobilized magnetic nanobeads for the amperometric assay of enzyme inhibitors: application to the skin whitening agents. Talanta 83:980–987

    Article  Google Scholar 

  35. Narh I, Kiralp S, Toppare L (2006) Preventing inhibition of tyrosinase with modified electrodes. Anal Chim Acta 572:25–31

    Article  Google Scholar 

  36. Vidal JC, Esteban S, Gil J, Castillo JR (2006) A comparative study of immobilization methods of a tyrosinase enzyme on electrodes and their application to the detection of dichlorvos organophosphorus insecticide. Talanta 68:791–799

    Article  CAS  Google Scholar 

  37. Zhang S, Zhao H, John R (2001) Development of a quantitative relationship between inhibition percentage and both incubation time and inhibitor concentration for inhibition biosensors-theoretical and practical consideration. Biosens Bioelectron 16:1119–1126

    Article  CAS  Google Scholar 

  38. Kok FN, Hasirci V (2004) Determination of binary pesticides mixture by an acetylcholinesterase-choline oxidase biosensor. Biosens Bioelectron 19:661–665

    Article  CAS  Google Scholar 

  39. Cosnier S, Mousty C, Cui X, Yang X, Dong S (2006) Specific determination of As(V) by an acid phosphatase−polyphenol oxidase biosensor. Anal Chem 78:4985–4989

    Google Scholar 

  40. Du D, Huang X, Cai J, Zhang A (2007) Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube–chitosan matrix. Sens Actuators B 127:531–535

    Article  CAS  Google Scholar 

  41. Du D, Chena S, Cai J, Zhang A (2007) Immobilization of acetylcholinesterase on gold nanoparticles embedded in sol–gel film for amperometric detection of organophosphorous insecticide. Biosens Bioelectron 23:130–134

    Article  CAS  Google Scholar 

  42. Liu G, Riechers SL, Maria Consuelo Mellen MC, Lin Y (2005) Sensitive electrochemical detection of enzymatically generated thiocholine at carbon nanotube modified glassy carbon electrode. Electrochem Comm 7:1163–1169

    Article  CAS  Google Scholar 

  43. Arduini F, Majorani C, Amine A, Moscone D, Palleschi G (2011) Hg2+ detection by measuring thiol groups with a highly sensitive screen-printed electrode modified with a nanostructured carbon black film. Electrochim Acta 56:4209–4215

    Article  CAS  Google Scholar 

  44. Shan D, Li Q, Huaiguo H, Cosnier S (2008) A highly reversible and sensitive tyrosinase inhibition based amperometric biosensor for benzoic acid monitoring. Sens Actuators B 134:1016–1021

    Article  CAS  Google Scholar 

  45. Benilova IV, Arkhypova VN, Dzyadevych SV, Jaffrezic-Renault N, Martelet C, Soldtkin AP (2006) Kinetics of human and horse sera cholinesterass inhibition with solanaceous glycoalkaloids: Study by potentiometric biosensor. Pestic Biochem Physiol 86:203–210

    Article  CAS  Google Scholar 

  46. Gibson TD (1999) Biosensors: the stability problem. Analusis 27:633–638

    Article  Google Scholar 

  47. Arduini F, Palleschi G (2012) Disposable electrochemical biosensor based on cholinesterase inhibition with improved shelf-life and working stability for nerve agent detection. In: NATO science for peace and security series a: chemistry and biology portable chemical sensors weapons against bioterrorism, p 261−278

    Google Scholar 

  48. Arduini F, Neagu D, Dall’Oglio S, Moscone D, Palleschi G (2012) Towards a portable prototype based on electrochemical cholinesterase biosensor to be assembled to soldier overall for nerve agent detection. Electroanal 24:581–590

    Article  CAS  Google Scholar 

  49. Suprun E, Evtugyn G, Budnikov H, Ricci F, Moscone D, Palleschi G (2005) Acetylcholinesterase sensor based on Screen-Printed carbon electrode modified with Prussian Blue. Anal Bioanal Chem 377:624–631

    Google Scholar 

  50. Okazaki S, Nakagawa H, Fukuda K, Asakura S, Kiuchi H, Shigemori T, Takahashi S (2000) Re-activation of an amperometric organophosphate pesticide biosensor by 2-pyridinealdoxime methochloride. Sens Actuators B 66:131–134

    Article  CAS  Google Scholar 

  51. Gulla KC, Gouda MD, Thakur MS, Karanth NG (2002) Reactivation of immobilized acetylcholinesterase in an amperometric biosensor for organophosphorus pesticide. Biochim Biophys Acta 1597:133–139

    Article  CAS  Google Scholar 

  52. Du D, Wang J, Smith JN, Timchalk C, Lin Y (2009) Biomonotoring of organophosphorus agent exposure by reactivation of cholinesterase enzyme based on carbon nanotubes-enhanced flow-injection amperometric detection. Anal Chem 81:9314–9320

    Article  CAS  Google Scholar 

  53. Del Carlo M, Pepe A, Sergi M, Mascini M, Tarentini A, Compagnone D (2010) Detection of coumaphos in honey using a screening method based on an electrochemical acetylcholinesterase bioassay. Talanta 81:76–81

    Article  Google Scholar 

  54. Campanella L, Lelo D, Martini E, Martini (2007) Organophosphorus and carbamate pesticide analysis using an inhibition tyrosinase organic phase enzyme sensor; comparison by butyrylcholinesterase + choline oxidase opee and application to natural waters. Anal Chim Acta 587:22–32

    Article  CAS  Google Scholar 

  55. Hart JP, Hartley IC (1994) Voltammetric and amperometric studies of thiocholine at a screen-printed carbon electrode chemically modified with cobalt phthalocyanine: studies towards a pesticide sensor. Analyst 119:259–263

    Article  CAS  Google Scholar 

  56. Ricci F, Arduini F, Amine A, Moscone D, Palleschi P (2004) Characterisation of Prussian Blue modified screen printed electrodes for thiol detection. J Electroanal Chem 563:229–237

    Article  CAS  Google Scholar 

  57. Hernandez S, Palchetti I, Mascini M (2000) Determination of anticholinesterase activity for pesticides monitoring using a thiocholine sensor. Int J Environ Anal Chem 78:263–278

    Article  CAS  Google Scholar 

  58. Arduini F, Cassisi A, Amine A, Ricci F, Moscone D, Palleschi G (2009) Electrocatalytic oxidation of thiocholine at chemically modified cobalthexacyanoferrate screen-printed electrodes. J Electroanal Chem 626:66–74

    Article  CAS  Google Scholar 

  59. Neufeld T, Eshkenazi I, Cohen E, Rishpon J (2000) A micro flow injection electrochemical biosensor for organophosphorus pesticides. Biosens Bioelectron 15:323–329

    Article  CAS  Google Scholar 

  60. Wang J, Timchalk Lin Y (2008) Carbon nanotube-based electrochemical sensor for assay of salivary cholinesterase enzyme activity: an exposure biomarker of organophosphate pesticides and nerve agents. Environ Sci Technol 42:2688–2693

    Article  CAS  Google Scholar 

  61. Ivanov AN, Younusova RR, Evtugyn GA, Arduini F, Moscone D, Palleschi G (2011) Acetylcholinesterase biosensor based on single-walled carbon nanotubes–Co phtalocyanine for organophosphorus pesticides detection. Talanta 56:4209–4215

    Google Scholar 

  62. Bouyahia N, Hamlaoui ML, Hnaien M, Lagarde F, Nicole Jaffrezic-Renault N (2011) Impedance spectroscopy and conductometric biosensing for probing catalase reaction with cyanide as ligand and inhibitor. Bioelectrochemistry 80:155–161

    Article  CAS  Google Scholar 

  63. Oliveira GC, Moccelini SK, Castilho M, Terezo AJ, Possavatz J, Magalhães MRL, Dores EFGC (2012) Biosensor based on atemoya peroxidase immobilised on modified nanoclay for glyphosate biomonitoring. Talanta 98:130–136

    Article  CAS  Google Scholar 

  64. Pohanka M, Karasova JZ, Kuca K, Pikulac J, Holas O, Korabecny J, Cabal J (2010) Colorimetric dipstick for assay of organophosphate pesticides and nerve agents represented by paraoxon, sarin and VX. Talanta 81:621–624

    Article  CAS  Google Scholar 

  65. Zheng Z, Zhou Y, Li X, Liu S, Tang Z (2011) Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots. Biosens Bioelectron 26:3081–3085

    Article  CAS  Google Scholar 

  66. Huang X, Tu H, Zhu D, Zhang A (2009) A gold nanoparticles labelling strategy for the sensitive kinetic assay of the carbamate-acetylcholinesterase interaction by surface plasmon resonance. Talanta 78:1036–1042

    Article  CAS  Google Scholar 

  67. Lin TJ, Huang KT, Liu CY (2006) Determination of organophoshorous pesticides by a novel biosensor based on localised surface plasmon resonance. Biosens Bioelectron 22:513–518

    Article  CAS  Google Scholar 

  68. Puiu M, Istrate O, Rotariu L, Bala C (2012) Kinetic approach of aflatoxin B1–acetylcholinesterase interaction: a tool for developing surface plasmon resonance biosensors. Anaytical biochem 421:587–594

    Article  CAS  Google Scholar 

  69. Zeng H, Jiang Y, Xie G, Yu J (2007) Novel piezoelectric DDVP sensor based on self-assembly method. Anal Lett 40:67–76

    Article  CAS  Google Scholar 

  70. Halamek J, Teller C, Zeravik J, Fournier D, Makower A, Scheller FW (2006) Characterization of binding of cholinesterases to surface immobilized ligands. Anal Lett 39:1491–1502

    Article  CAS  Google Scholar 

  71. Kim H, Park IS, Kim DK (2007) High-sensitivity detection for model organophosphorus and carbamate pesticides with quartz crystal microbalance-precipation sensor. Biosens Bioelectron 22:1593–1599

    Article  CAS  Google Scholar 

  72. Schulze H, Scherbaum E, Anastassiades M, Vorlovà S, Schmid RD, Bachmann TT (2002) Development, validation, and application for an acetylcholinesterase-biosensor test for the direct detection of insecticide residues in infant food. Biosens Bioelectron 17:1095–1105

    Article  CAS  Google Scholar 

  73. Caetano J, Machado SAS (2008) Determination of carbaryl in tomato ‘‘in natura’’ using an amperometric biosensor based on the inhibition of acetylcholinesterase activity. Sens Actuators B 129:40–46

    Article  CAS  Google Scholar 

  74. Lee HS, Kim YA, Cho YA, Lee YT (2002) Oxidation of organophosphorus pesticides for the sensitive detection by a cholinesterase-based biosensor. Chemosph 46:571–576

    Article  CAS  Google Scholar 

  75. Zappa E, Brondani D, Vieiraa IC, Scheeren CW, Dupont J, Barbosa AMJ, Ferreira VS (2011) Biomonitoring of methomyl pesticide by laccase inhibition on sensor containing platinum nanoparticles in ionic liquid phase supported in montmorillonite. Sens Actuators B 155:331–339

    Article  Google Scholar 

  76. Anh TM, Dzyadevych SV, Prieur N, Duc CN, Pham TD, Jaffrezic Renault N, Chovelon Jean-Marc (2006) Detection of toxic compounds in real water samples using a conductometric tyrosinase biosensor. Mater Sci Eng, C 26:453–456

    Article  CAS  Google Scholar 

  77. Vidal JC, Esteban S, Gil J, Castillo JR (2006) A comparative study of immobilization methods of a tyrosinase enzyme on electrodes and their application to the detection of dichlorvos organophosphorus insecticide. Talanta 68(3):791–799

    Article  CAS  Google Scholar 

  78. Cosnier S, Mousty C, Guelorget A, Sanchez-Paniagua Lopez M, Shan D (2011) A fast and direct amperometric determination of Hg2+ by a bienzyme electrode based on the competitive activities of glucose oxidase and laccase. Electroanal 23(8):1776–1779

    Article  CAS  Google Scholar 

  79. Sanllorente-Méndez S, Sanllorente-Méndez S, Sanllorente-Méndez S, Domínguez-Renedo O, Domínguez-Renedo O, Arcos-Martínez MJ, Arcos-Martínez MJ (2010) Immobilization of acetylcholinesterase on screen-printed electrodes. application to the determination of arsenic(III). Sensors 10(3):2119–2128

    Article  Google Scholar 

  80. Sanllorente-Mendez S, Dominguez-Renedo O, Arcos-Martinez MJ (2012) Development of acid phosphatase based amperometric biosensors for the inhibitive determination of As(V). Talanta 93:301–306

    Article  CAS  Google Scholar 

  81. Ghica ME, Brett CMA (2008) Glucose oxidase inhibition in poly(neutral red) mediated enzyme biosensors for heavy metal determination. Microchim Acta 163(3–4):185–193

    Article  CAS  Google Scholar 

  82. Guascito MR, Malitesta C, Mazzotta E, Turco A (2009) Screen-printed glucose oxidase-based biosensor for inhibitive detection of heavy metal ions in a flow injection system. Sens Lett 7(2):153–159

    Article  CAS  Google Scholar 

  83. Campas M, Marty JL (2007) Enzyme sensor for the electrochemical detection of the marine toxin okadaic acid. Anal Chim Acta 605:87–93

    Article  CAS  Google Scholar 

  84. Campas M, Szydłowska D, Trojanowicz M, Marty JL (2007) Enzyme inhibition-based biosensor for the electrochemical detection of microcystins in natural blooms of cyanobacteria. Talanta 72:179–186

    Article  CAS  Google Scholar 

  85. Arduini F, Errico I, Amine A, Micheli L, Palleschi G, Moscone D (2007) Enzymatic spectrophotometric method for aflatoxin B detection based on acetylcholinesterase inhibition. Anal Chem 79:3409–3415

    Article  CAS  Google Scholar 

  86. Ben Rejeb I, Arduini F, Arvinte A, Amine A, Gargouri M, Micheli L, Bala C, Moscone D, Palleschi G (2009) Development of a bio-electrochemical assay for AFB1 detection in olive oil. Biosens Bioelectron 24:1962–1968

    Article  CAS  Google Scholar 

  87. Hansmann T, Sanson B, Stojan J, Weik M, Marty JL, Fournier D (2009) Kinetic insight into the mechanism of cholinesterasterase inhibition by aflatoxin B1 to develop biosensors. Biosens Bioelectron 24(7):2119–2124

    Article  CAS  Google Scholar 

  88. Pohanka M, Kuca K, Jun D (2008) Aflatoxin assay using an amperometric sensor strip and acetylcholinesterase as recognition element. Sens Lett. 6:450–453

    Article  CAS  Google Scholar 

  89. Yazgan I, Aydin T, Odaci D, Timur S (2008) Use of pyranose oxidase enzyme in inhibitor biosensing. Anal Lett 41(11):2088–2096

    Article  CAS  Google Scholar 

  90. Timur S, Anik U (2007) Glucosidase based bismuth film electrode for inhibitor detection. Anal Chim Acta 598:143–146

    Article  CAS  Google Scholar 

  91. Lijun L, Fengna X, Yiming Z, Zhichun C, Xianfu L (2009) Selective analysis of reduced thiols with a novel bionanomultilayer biosensor based on the inhibition principle. Sens Actuator B Chem B135(2):642–649

    Google Scholar 

  92. Yu DY, Blankert B, Kauffmann JM (2007) Development of amperometric horseradish peroxidase based biosensors for clozapine and for the screening of thiol compounds. Biosens Bioelectron 22(11):2707–2711

    Article  CAS  Google Scholar 

  93. Pohanka M, Dobes P, Dritinova L, Kuca K (2009) Nerve Agents assay using cholinesterase based biosensor. Electroanal 21:1177–1182

    Article  CAS  Google Scholar 

  94. Bouyahia N, Larbi Hamlaoui M, Hnaien M, Lagarde F, Jaffrezic-Renault N (2011) Impedance spectroscopy and conductometric biosensing for probing catalase reaction with cyanide as ligand and inhibitor. Bioelectrochemistry 80(2):155–161

    Article  CAS  Google Scholar 

  95. Asav E, Yorganci E, Akyilmaz E (2009) An inhibition type amperometric biosensor based on tyrosinase enzyme for fluoride determination. Talanta 78:553–556

    Article  CAS  Google Scholar 

  96. Shahidi Pour Savizi I, Kariminia HR, Ghadiri M, Roosta-Azad R (2012) Amperometric sulfide detection using Coprinus cinereus peroxidase immobilized on screen printed electrode in an enzyme inhibition based biosensor. Biosens Bioelectron 35:297–301

    Article  Google Scholar 

  97. Kochana J, Kozak J, Skrobisz A, Woźniakiewicz M (2012) Tyrosinase biosensor for benzoic acid inhibition-based determination with the use of a flow-batch monosegmented sequential injection system. Talanta 96:147–152

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiana Arduini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arduini, F., Amine, A. (2013). Biosensors Based on Enzyme Inhibition. In: Gu, M., Kim, HS. (eds) Biosensors Based on Aptamers and Enzymes. Advances in Biochemical Engineering/Biotechnology, vol 140. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_224

Download citation

Publish with us

Policies and ethics