Skip to main content

Exploration of Structure-Switching in the Design of Aptamer Biosensors

  • Chapter
  • First Online:
Biosensors Based on Aptamers and Enzymes

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 140))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerstein M, Krebs W (1998) A database of macromolecular motions. Nucleic Acids Res 26:4280–4290

    CAS  Google Scholar 

  2. Nahvi A, Sudarsan N, Ebert MS et al (2002) Genetic control by a metabolite binding mRNA. Chem Biol 9:1043–1049

    CAS  Google Scholar 

  3. Roth A, Breaker RR (2009) The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem 78:305–334

    CAS  Google Scholar 

  4. Tucker BJ, Breaker RR (2005) Riboswitches as versatile gene control elements. Curr Opin Struct Biol 15:342–348

    CAS  Google Scholar 

  5. Mandal M, Breaker RR (2004) Gene regulation by riboswitches. Nat Rev Mol Cell Biol 5:451–463

    CAS  Google Scholar 

  6. Topp S, Gallivan JP (2010) Emerging applications of riboswitches in chemical biology. ACS Chem Biol 5:139–148

    CAS  Google Scholar 

  7. Werstuck G, Green MR (1998) Controlling gene expression in living cells through small molecule-RNA interactions. Science 282:296–298

    CAS  Google Scholar 

  8. Thompson KM, Syrett HA, Knudsen SM, Ellington AD (2002) Group I aptazymes as genetic regulatory switches. BMC Biotechnol 2:21

    Google Scholar 

  9. Suess B, Hanson S, Berens C et al (2003) Conditional gene expression by controlling translation with tetracycline-binding aptamers. Nucleic Acids Res 31:1853–1858

    CAS  Google Scholar 

  10. Suess B, Fink B, Berens C et al (2004) A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res 32:1610–1614

    CAS  Google Scholar 

  11. Desai SK, Gallivan JP (2004) Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. J Am Chem Soc 126:13247–13254

    CAS  Google Scholar 

  12. Weigand JE, Sanchez M, Gunnesch EB et al (2008) Screening for engineered neomycin riboswitches that control translation initiation. RNA 14:89–97

    CAS  Google Scholar 

  13. Topp S, Gallivan JP (2007) Guiding bacteria with small molecules and RNA. J Am Chem Soc 129:6807–6811

    CAS  Google Scholar 

  14. Topp S, Gallivan JP (2008) Random walks to synthetic riboswitches-a high-throughput selection based on cell motility. ChemBioChem 9:210–213

    CAS  Google Scholar 

  15. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    CAS  Google Scholar 

  16. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    CAS  Google Scholar 

  17. Bunka DH, Stockley PG (2006) Aptamers come of age—at last. Nat Rev Microbiol 4:588–596

    CAS  Google Scholar 

  18. Lee JF, Hesselberth JR, Meyers LA, Ellington AD (2004) Aptamer database. Nucleic Acids Res 32:D95–100

    CAS  Google Scholar 

  19. Lau PS, Li Y (2011) Functional nucleic acids as molecular recognition elements for small organic and biological molecules. Curr Org Chem 15:557–575

    CAS  Google Scholar 

  20. Vallee-Belisle A, Plaxco KW (2010) Structure-switching biosensors: inspired by Nature. Curr Opin Struct Biol 20:518–526

    CAS  Google Scholar 

  21. Klussmann S (2006) The Aptamer handbook. Wiley, Weinheim

    Google Scholar 

  22. Nutiu R, Li Y (2003) Structure-switching signaling aptamers. J Am Chem Soc 125:4771–4778

    CAS  Google Scholar 

  23. Huizenga DE, Szostak JW (1995) A DNA aptamer that binds adenosine and ATP. Biochemistry 34:656–665

    CAS  Google Scholar 

  24. Bock LC, Griffin LC, Latham JA et al (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355:564–566

    CAS  Google Scholar 

  25. Han K, Liang Z, Zhou N (2010) Design strategies for aptamer-based biosensors. Sensors 10:4541–4557

    CAS  Google Scholar 

  26. White RJ, Rowe AA, Plaxco KW (2010) Re-engineering aptamers to support reagentless, self-reporting electrochemical sensors. Analyst 135:589–594

    CAS  Google Scholar 

  27. Nutiu R, Li Y (2005) In vitro selection of structure-switching signaling aptamers. Angew Chem Int Ed 44:1061–1065

    CAS  Google Scholar 

  28. Lin CH, Patel DJ (1997) Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP. Chem Biol 4:817–832

    CAS  Google Scholar 

  29. Wang ZD, Lee JH, Lu Y (2008) Highly sensitive “turn-on” fluorescent sensor for Hg2 + in aqueous solution based on structure-switching DNA. Chem Commun (Camb) 6005–6007

    Google Scholar 

  30. Wu DH, Zhang Q, Chu X et al (2010) Ultrasensitive electrochemical sensor for mercury (II) based on target-induced structure-switching DNA. Biosens Bioelectron 25:1025–1031

    CAS  Google Scholar 

  31. Taylor SK, Pei RJ, Moon BC et al (2009) Triggered release of an active peptide conjugate from a DNA device by an orally administrable small molecule. Angew Chem Int Ed 48:4394–4397

    CAS  Google Scholar 

  32. Liu J, Lu Y (2005) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed 45:90–94

    Google Scholar 

  33. Null EL, Lu Y (2010) Rapid determination of enantiomeric ratio using fluorescent DNA or RNA aptamers. Analyst 135:419–422

    CAS  Google Scholar 

  34. Feng KJ, Sun CH, Jiang JH, Yu RQ (2011) An aptamer-based competitive fluorescence quenching assay for IgE. Anal Lett 44:1301–1309

    CAS  Google Scholar 

  35. Zhu ZY, Schmidt T, Mahrous M et al (2011) Optimization of the structure-switching aptamer-based fluorescence polarization assay for the sensitive tyrosinamide sensing. Anal Chim Acta 707:191–196

    CAS  Google Scholar 

  36. Niu WZ, Jiang N, Hu YH (2007) Detection of proteins based on amino acid sequences by multiple aptamers against tripeptides. Anal Biochem 362:126–135

    CAS  Google Scholar 

  37. Liu DY, Zhao Y, He XW, Yin XB (2011) Electrochemical aptasensor using the tripropylamine oxidation to probe intramolecular displacement between target and complementary nucleotide for protein array. Biosens Bioelectron 26:2905–2910

    CAS  Google Scholar 

  38. Yang L, Fung CW, Cho EJ, Ellington AD (2007) Real-time rolling circle amplification for protein detection. Anal Chem 79:3320–3329

    CAS  Google Scholar 

  39. Song YJ, Zhao C, Ren JS, Qu XG (2009) Rapid and ultra-sensitive detection of AMP using a fluorescent and magnetic nano-silica sandwich complex. Chem Commun (Camb) 15:1975–1977

    Google Scholar 

  40. Levy M, Cater SF, Ellington AD (2005) Quantum-dot aptamer beacons for the detection of proteins. ChemBioChem 6:2163–2166

    CAS  Google Scholar 

  41. Liu JW, Lee JH, Lu Y (2007) Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Anal Chem 79:4120–4125

    CAS  Google Scholar 

  42. Elowe NH, Nutiu R, Allah-Hassani A et al (2006) Small-molecule screening made simple for a difficult target with a signaling nucleic acid aptamer that reports on deaminase activity. Angew Chem Int Ed 45:5648–5652

    CAS  Google Scholar 

  43. Aldrich MB, Blackburn MR, Kellems RE (2000) The importance of adenosine deaminase for lymphocyte development and function. Biochem Biophys Res Commun 272:311–315

    CAS  Google Scholar 

  44. Fowler CC, Brown ED, Li Y (2008) A FACS-based approach to engineering artificial riboswitches. ChemBioChem 9:1906–1911

    CAS  Google Scholar 

  45. Huang PJJ, Liu JW (2010) Flow cytometry-assisted detection of adenosine in serum with an immobilized aptamer sensor. Anal Chem 82:4020–4026

    CAS  Google Scholar 

  46. Zheng D, Seferos DS, Giljohann DA et al (2009) Aptamer nano-flares for molecular detection in living cells. Nano Lett 9:3258–3261

    CAS  Google Scholar 

  47. Rupcich N, Nutiu R, Li Y, Brennan JD (2005) Entrapment of fluorescent signaling DNA aptamers in sol-gel-derived silica. Anal Chem 77:4300–4307

    CAS  Google Scholar 

  48. Carrasquilla C, Li Y, Brennan JD (2011) Surface immobilization of structure-switching DNA aptamers on macroporous Sol-Gel-derived films for solid-phase biosensing applications. Anal Chem 83:957–965

    CAS  Google Scholar 

  49. El-Hamed F, Dave N, Liu J (2011) Stimuli-responsive releasing of gold nanoparticles and liposomes from aptamer-functionalized hydrogels. Nanotechnology 22:494011–494017

    Google Scholar 

  50. Su SX, Nutiu R, Filipe CDM et al (2007) Adsorption and covalent coupling of ATP-binding DNA aptamers onto cellulose. Langmuir 23:1300–1302

    CAS  Google Scholar 

  51. Radi AE, Acero Sanchez JL, Baldrich E, O’Sullivan CK (2006) Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. J Am Chem Soc 128:117–124

    CAS  Google Scholar 

  52. Luong JH, Male KB, Glennon JD (2008) Biosensor technology: technology push versus market pull. Biotechnol Adv 26:492–500

    CAS  Google Scholar 

  53. Yoshizumi J, Kumamoto S, Nakamura M, Yamana K (2008) Target-induced strand release (TISR) from aptamer-DNA duplex: A general strategy for electronic detection of biomolecules ranging from a small molecule to a large protein. Analyst 133:323–325

    CAS  Google Scholar 

  54. Zuo XL, Song SP, Zhang J et al (2007) A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J Am Chem Soc 129:1042–1043

    CAS  Google Scholar 

  55. Wang JL, Wang F, Dong SJ (2009) Methylene blue as an indicator for sensitive electrochemical detection of adenosine based on aptamer switch. J Electroanal Chem 626:1–5

    CAS  Google Scholar 

  56. Du Y, Li BL, Wang F, Dong SJ (2009) Au nanoparticles grafted sandwich platform used amplified small molecule electrochemical aptasensor. Biosens Bioelectron 24:1979–1983

    CAS  Google Scholar 

  57. Guo SJ, Du Y, Yang X et al (2011) Solid-state label-free integrated aptasensor based on graphene-mesoporous silica-gold nanoparticle hybrids and silver microspheres. Anal Chem 83:8035–8040

    CAS  Google Scholar 

  58. Zhang SS, Xia JP, Li XM (2008) Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles. Anal Chem 80:8382–8388

    CAS  Google Scholar 

  59. Li W, Nie Z, Xu XH et al (2009) A sensitive, label free electrochemical aptasensor for ATP detection. Talanta 78:954–958

    Google Scholar 

  60. Zhang XR, Zhao YQ, Li SG, Zhang SS (2010) Photoelectrochemical biosensor for detection of adenosine triphosphate in the extracts of cancer cells. Chem Commun (Camb) 46:9173–9175

    CAS  Google Scholar 

  61. Du Y, Li BL, Wei H et al (2008) Multifunctional label-free electrochemical biosensor based on an integrated aptamer. Anal Chem 80:5110–5117

    CAS  Google Scholar 

  62. Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci 102:29–45

    CAS  Google Scholar 

  63. Montagnana M, Caputo M, Giavarina D, Lippi G (2009) Overview on self-monitoring of blood glucose. Clin Chim Acta Int J Clin Chem 402:7–13

    CAS  Google Scholar 

  64. Xiang Y, Lu Y (2011) Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nature Chem 3:697–703

    CAS  Google Scholar 

  65. Liu JW, Lu Y (2006) Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew Chem Int Ed 45:90–94

    CAS  Google Scholar 

  66. Zhao WA, Chiuman W, Brook MA, Li Y (2007) Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. ChemBioChem 8:727–731

    CAS  Google Scholar 

  67. Wang J, Wang LH, Liu XF et al (2007) A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv Mater 19:3943–3946

    CAS  Google Scholar 

  68. Liu JW, Lu Y (2006) Smart nanomaterials responsive to multiple chemical stimuli with controllable cooperativity. Adv Mater 18:1667–1671

    CAS  Google Scholar 

  69. Liu JW, Mazumdar D, Lu Y (2006) A simple and sensitive “dipstick” test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew Chem Int Ed 45:7955–7959

    CAS  Google Scholar 

  70. Johansen LE, Nygaard P, Lassen C et al (2003) Definition of a second Bacillus subtilis pur regulon comprising the pur and xpt-pbuX operons plus pbuG, nupG (yxjA), and pbuE (ydhL). J Bacteriol 185:5200–5209

    CAS  Google Scholar 

  71. Mandal M, Breaker RR (2004) Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol 11:29–35

    CAS  Google Scholar 

  72. Mandal M, Boese B, Barrick JE et al (2003) Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113:577–586

    CAS  Google Scholar 

  73. Roth A, Winkler WC, Regulski EE et al (2007) A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain. Nat Struct Mol Biol 14:308–317

    CAS  Google Scholar 

  74. Meyer MM, Roth A, Chervin SM et al (2008) Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria. RNA 14:685–695

    CAS  Google Scholar 

  75. Mironov AS, Gusarov I, Rafikov R et al (2002) Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111:747–756

    CAS  Google Scholar 

  76. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS (2002) Comparative genomics of thiamin biosynthesis in procaryotes. New genes and regulatory mechanisms. J Biol Chem 277:48949–48959

    CAS  Google Scholar 

  77. Cheah MT, Wachter A, Sudarsan N, Breaker RR (2007) Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447:497–500

    CAS  Google Scholar 

  78. Wachter A, Tunc-Ozdemir M, Grove BC et al (2007) Riboswitch control of gene expression in plants by splicing and alternative 3′ end processing of mRNAs. Plant Cell 19:3437–3450

    CAS  Google Scholar 

  79. Croft MT, Moulin M, Webb ME, Smith AG (2007) Thiamine biosynthesis in algae is regulated by riboswitches. Proc Natl Acad Sci USA 104:20770–20775

    CAS  Google Scholar 

  80. Bocobza S, Adato A, Mandel T et al (2007) Riboswitch-dependent gene regulation and its evolution in the plant kingdom. Genes Dev 21:2874–2879

    CAS  Google Scholar 

  81. Winkler WC, Cohen-Chalamish S, Breaker RR (2002) An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci USA 99:15908–15913

    CAS  Google Scholar 

  82. Sudarsan N, Lee ER, Weinberg Z et al (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321:411–413

    CAS  Google Scholar 

  83. Mandal M, Lee M, Barrick JE et al (2004) A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306:275–279

    CAS  Google Scholar 

  84. Grundy FJ, Lehman SC, Henkin TM (2003) The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc Natl Acad Sci USA 100:12057–12062

    CAS  Google Scholar 

  85. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS (2003) Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? Nucleic Acids Res 31:6748–6757

    CAS  Google Scholar 

  86. Sudarsan N, Wickiser JK, Nakamura S et al (2003) An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev 17:2688–2697

    CAS  Google Scholar 

  87. Gilbert SD, Rambo RP, Van Tyne D, Batey RT (2008) Structure of the SAM-II riboswitch bound to S-adenosylmethionine. Nat Struct Mol Biol 15:177–182

    CAS  Google Scholar 

  88. Corbino KA, Barrick JE, Lim J et al (2005) Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria. Genome Biol 6:R70

    Google Scholar 

  89. Epshtein V, Mironov AS, Nudler E (2003) The riboswitch-mediated control of sulfur metabolism in bacteria. Proc Natl Acad Sci USA 100:5052–5056

    CAS  Google Scholar 

  90. Fuchs RT, Grundy FJ, Henkin TM (2006) The S(MK) box is a new SAM-binding RNA for translational regulation of SAM synthetase. Nat Struct Mol Biol 13:226–233

    CAS  Google Scholar 

  91. McDaniel BA, Grundy FJ, Artsimovitch I, Henkin TM (2003) Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA. Proc Natl Acad Sci USA 100:3083–3088

    CAS  Google Scholar 

  92. Winkler WC, Nahvi A, Sudarsan N et al (2003) An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat Struct Biol 10:701–707

    CAS  Google Scholar 

  93. Wang JX, Lee ER, Morales DR et al (2008) Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell 29:691–702

    CAS  Google Scholar 

  94. Borovok I, Gorovitz B, Schreiber R et al (2006) Coenzyme B12 controls transcription of the Streptomyces class Ia ribonucleotide reductase nrdABS operon via a riboswitch mechanism. J Bacteriol 188:2512–2520

    CAS  Google Scholar 

  95. Warner DF, Savvi S, Mizrahi V, Dawes SS (2007) A riboswitch regulates expression of the coenzyme B12-independent methionine synthase in Mycobacterium tuberculosis: implications for differential methionine synthase function in strains H37Rv and CDC1551. J Bacteriol 189:3655–3659

    CAS  Google Scholar 

  96. Winkler WC, Nahvi A, Roth A et al (2004) Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428:281–286

    CAS  Google Scholar 

  97. Cromie MJ, Shi Y, Latifi T, Groisman EA (2006) An RNA sensor for intracellular Mg(2+). Cell 125:71–84

    CAS  Google Scholar 

  98. Baker JL, Sudarsan N, Weinberg Z et al (2012) Widespread genetic switches and toxicity resistance proteins for fluoride. Science 335:233–235

    CAS  Google Scholar 

  99. Breaker RR (2011) Prospects for riboswitch discovery and analysis. Mol Cell 43:867–879

    CAS  Google Scholar 

  100. Ferre-D’Amare AR, Winkler WC (2011) The roles of metal ions in regulation by riboswitches. Met Ions Life Sci 9:141–173

    Google Scholar 

  101. Serganov A, Patel DJ (2012) Molecular recognition and function of riboswitches. Curr Opin Struct Biol 22:279–286

    CAS  Google Scholar 

  102. Wittmann A, Suess B (2012) Engineered riboswitches: Expanding researchers’ toolbox with synthetic RNA regulators. FEBS Lett 586:2076–2083

    CAS  Google Scholar 

  103. Batey RT (2012) Structure and mechanism of purine-binding riboswitches. Q Rev Biophys 45:345–381

    CAS  Google Scholar 

  104. Huang L, Serganov A, Patel DJ (2010) Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch. Mol Cell 40:774–786

    CAS  Google Scholar 

  105. Welz R, Breaker RR (2007) Ligand binding and gene control characteristics of tandem riboswitches in Bacillus anthracis. RNA 13:573–582

    CAS  Google Scholar 

  106. Jenison RD, Gill SC, Pardi A, Polisky B (1994) High-resolution molecular discrimination by RNA. Science 263:1425–1429

    CAS  Google Scholar 

  107. Fowler CC, Navani NK, Brown ED, Li Y (2008) Aptamers and their potential as recognition elements for the detection of bacteria. In: Zourob M, Elwary S, Turner A (eds) Principles of bacterial detection: biosensors, recognition receptors and microsystems, Springer, Chapter 25, pp 689–714

    Google Scholar 

  108. Cate JH, Gooding AR, Podell E et al (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273:1678–1685

    CAS  Google Scholar 

  109. Lau PS, Coombes BK, Li Y (2010) A general approach to the construction of structure-switching reporters from RNA aptamers. Angew Chem Int Ed 49:7938–7942

    CAS  Google Scholar 

  110. Scaringe SA, Wincott FE, Caruthers MH (1998) Novel RNA synthesis method using 5′-O-silyl-2′-O-orthoester protecting groups. J Am Chem Soc 120:11820–11821

    CAS  Google Scholar 

  111. Khakshoor O, Kool ET (2011) Chemistry of nucleic acids: impacts in multiple fields. Chem Commun (Camb) 47:7018–7024

    CAS  Google Scholar 

  112. Carrasquilla C, Lau PS, Li Y, Brennan JD (2012) Stabilizing structure-switching signaling RNA aptamers by entrapment in sol-gel derived materials for solid-phase assays. J Am Chem Soc 134:10998–11005

    CAS  Google Scholar 

  113. Jellinek D, Green LS, Bell C et al (1995) Potent 2′-amino-2′-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. Biochemistry 34:11363–11372

    CAS  Google Scholar 

  114. Lin Y, Qiu Q, Gill SC, Jayasena SD (1994) Modified RNA sequence pools for in vitro selection. Nucleic Acids Res 22:5229–5234

    CAS  Google Scholar 

  115. Biesecker G, Dihel L, Enney K, Bendele RA (1999) Derivation of RNA aptamer inhibitors of human complement C5. Immunopharmacology 42:219–230

    CAS  Google Scholar 

  116. Ruckman J, Green LS, Beeson J et al (1998) 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem 273:20556–20567

    CAS  Google Scholar 

  117. Green LS, Jellinek D, Bell C et al (1995) Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. Chem Biol 2:683–695

    CAS  Google Scholar 

  118. Klussmann S, Nolte A, Bald R et al (1996) Mirror-image RNA that binds D-adenosine. Nat Biotechnol 14:1112–1115

    CAS  Google Scholar 

  119. Nolte A, Klussmann S, Bald R et al (1996) Mirror-design of L-oligonucleotide ligands binding to l-arginine. Nat Biotechnol 14:1116–1119

    CAS  Google Scholar 

  120. Kumar R, Singh SK, Koshkin AA et al (1998) The first analogues of LNA (locked nucleic acids): phosphorothioate-LNA and 2′-thio-LNA. Bioorg Med Chem Lett 8:2219–2222

    CAS  Google Scholar 

  121. Petersen M, Wengel J (2003) LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol 21:74–81

    CAS  Google Scholar 

  122. Le Pecq JB, Paoletti C (1966) A new fluorometric method for RNA and DNA determination. Anal Biochem 17:100–107

    CAS  Google Scholar 

  123. Vendrely R, Alexandrov K, De Sousa Lechner MC, Coirault Y (1968) Fractionation of ribonucleic acids by ‘Sephadex’ agarose gel electrophoresis. Nature 218:293–294

    CAS  Google Scholar 

  124. Lehrach H, Diamond D, Wozney JM, Boedtker H (1977) RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry 16:4743–4751

    CAS  Google Scholar 

  125. Manchester KL (1995) Value of A260/A280 ratios for measurement of purity of nucleic acids. BioTechniques 19:208–210

    CAS  Google Scholar 

  126. Glasel JA (1995) Validity of nucleic acid purities monitored by 260 nm/280 nm absorbance ratios. BioTechniques 18:62–63

    CAS  Google Scholar 

  127. Mueller O, Hahnenberger K, Dittmann M et al (2000) A microfluidic system for high-speed reproducible DNA sizing and quantitation. Electrophoresis 21:128–134

    CAS  Google Scholar 

  128. Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

    CAS  Google Scholar 

  129. Doktycz MJ (1997) Nucleic acids: thermal stability and denaturation. Encyclopedia of Life Sciences

    Google Scholar 

  130. Li Y, Breaker RR (1999) Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2′-hydroxyl group. J Am Chem Soc 121:5364–5372

    CAS  Google Scholar 

  131. Lau PS, Lai CK, Li Y (2013) Quality control certification of RNA aptamer-based detection. ChemBioChem. doi:10.1002/cbic.201300134

    Google Scholar 

  132. Kubik MF, Stephens AW, Schneider D, Marlar RA, Tasset D (1994) High-affinity RNA ligands to human alpha-thrombin. Nucleic Acids Res 22:2619–2626

    CAS  Google Scholar 

  133. Ni X, Castanares M, Mukherjee A, Lupold SE (2011) Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem 18:4206–4214

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingfu Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lau, P.S., Li, Y. (2013). Exploration of Structure-Switching in the Design of Aptamer Biosensors. In: Gu, M., Kim, HS. (eds) Biosensors Based on Aptamers and Enzymes. Advances in Biochemical Engineering/Biotechnology, vol 140. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_223

Download citation

Publish with us

Policies and ethics