Skip to main content

Biomining: Metal Recovery from Ores with Microorganisms

  • Chapter
  • First Online:
Geobiotechnology I

Abstract

Biomining is an increasingly applied biotechnological procedure for processing of ores in the mining industry (biohydrometallurgy). Nowadays the production of copper from low-grade ores is the most important industrial application and a significant part of world copper production already originates from heap or dump/stockpile bioleaching. Conceptual differences exist between the industrial processes of bioleaching and biooxidation. Bioleaching is a conversion of an insoluble valuable metal into a soluble form by means of microorganisms. In biooxidation, on the other hand, gold is predominantly unlocked from refractory ores in large-scale stirred-tank biooxidation arrangements for further processing steps. In addition to copper and gold production, biomining is also used to produce cobalt, nickel, zinc, and uranium. Up to now, biomining has merely been used as a procedure in the processing of sulfide ores and uranium ore, but laboratory and pilot procedures already exist for the processing of silicate and oxide ores (e.g., laterites), for leaching of processing residues or mine waste dumps (mine tailings), as well as for the extraction of metals from industrial residues and waste (recycling). This chapter estimates the world production of copper, gold, and other metals by means of biomining and chemical leaching (bio-/hydrometallurgy) compared with metal production by pyrometallurgical procedures, and describes new developments in biomining. In addition, an overview is given about metal sulfide oxidizing microorganisms, fundamentals of biomining including bioleaching mechanisms and interface processes, as well as anaerobic bioleaching and bioleaching with heterotrophic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Autotroph

AFM:

Atomic force microscopy

BGR:

Bundesanstalt für Geowissenschaften und Rohstoffe

BRGM:

Bureau de Recherches Géologiques et Minières

DNA:

Deoxyribonucleic acid

EPS:

Extracellular polymeric substances

F:

Facultative autotroph and/or mixotroph

G+C:

Mole% guanine+cytosine content of genomic DNA

H:

Heterotroph

KPM:

Kelvin probe microscopy

na:

Data not available

References

  1. Acuña J, Rojas J, Amaro AM, Toledo H, Jerez CA (1992) Chemotaxis of Leptospirillum ferrooxidans and other acidophilic chemolithotrophs: comparison with the Escherichia coli chemosensory system. FEMS Microbiol Lett 96:37–42

    Google Scholar 

  2. Africa CJ, van Hille RP, Sand W Harrison STL (2013) Investigation and in situ visualization of interfacial interactions of thermophilic microorganisms with metal-sulphides in a simulated heap environment. Min Eng (online)

    Google Scholar 

  3. Ahmadi A, Schaffie M, Petersen J, Schippers A, Ranjbar M (2011) Conventional and electrochemical bioleaching of chalcopyrite concentrates by moderately thermophilic bacteria at high pulp density. Hydrometallurgy 106:84–92

    CAS  Google Scholar 

  4. Amaral Zettler LA, Gomez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Eukaryotic diversity in Spain’s river of fire. Nature 417:137

    CAS  Google Scholar 

  5. Ambikavedi VR, Lalithambika M (2000) Effect of organic acids on ferric iron removal from iron-stained kaolinite. Appl Clay Sci 16:133–145

    Google Scholar 

  6. Andrews GF (1988) The selective adsorption of thiobacilli to dislocation sites on pyrite surfaces. Biotechnol Bioeng 31:378–381

    CAS  Google Scholar 

  7. Bagdigian RM, Meyerson AS (1986) The adsorption of Thiobacillus ferrooxidans on coal surfaces. Biotechnol Bioeng 28:467–479

    CAS  Google Scholar 

  8. Balci N, Shanks WC III, Mayer B, Mandernack KW (2007) Oxygen and sulfur isotope systematics of sulfate produced during bacterial and abiotic oxidation of pyrite. Geochim Cosmochim Acta 71:3796–3811

    CAS  Google Scholar 

  9. Balci N, Mayer B, Shanks WC III, Mandernack KW (2012) Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur. Geochim Cosmochim Acta 77:335–351

    CAS  Google Scholar 

  10. Batty JD, Rorke GV (2006) Development and commercial demonstration of the BioCOP™ thermophile process. Hydrometallurgy 83:83–89

    CAS  Google Scholar 

  11. Bellenberg S, Vera M, Sand W (2011) Transcriptomic studies of capsular polysaccharide export systems involved in biofilm formation by Acidithiobacillus ferrooxidans. In: Guanzhou Q, Tao J, Wenqing Q, Xueduan L, Yu Y, Haidong W (eds) Biohydrometallurgy: biotech key to unlock mineral resources value, vol 1 (Proceedings of the 19th International Biohydrometallurgy Symposium, Changsha, China)

    Google Scholar 

  12. Bellenberg S, Leon-Morales CF, Sand W, Vera M (2012) Visualization of capsular polysaccharide induction of Acidithiobacillus ferrooxidans. Hydrometallurgy 129–130:82–89

    Google Scholar 

  13. Blake RC II, Shute EA, Howard GT (1994) Solubilization of minerals by bacteria: electrophoretic mobility of Thiobacillus ferrooxidans in the presence of iron, pyrite, and sulfur. Appl Environ Microbiol 60:3349–3357

    CAS  Google Scholar 

  14. Bock M, Bosecker K (1996) In: DECHEMA monographs, vol 133. VCH Verlagsgesell, Weinheim (in German)

    Google Scholar 

  15. Borg RJ, Dienes GJ (1992) The physical chemistry of solids. Academic press, Boston

    Google Scholar 

  16. Bosecker K (1986) Leaching of lateritic nickel ores with heterotrophic microorganisms. In: Salley J, McCready RGL, Wichlacz P (eds) Biohydrometallurgy International Symposium proceedings. CANMET, Ottawa

    Google Scholar 

  17. Bosecker K (1994) Mikrobielle Laugung (leaching). In: Praeve P, Faust U, Sittig W, Sukatsch DA (eds) Handbuch der Biotechnologie. R. Oldenbourg, Munich

    Google Scholar 

  18. Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol 20:591–604

    CAS  Google Scholar 

  19. Bosecker K (1999) Microbial leaching in environmental clean-up programmes In: Amils R, Ballester A (eds) Process Metallurgy 9B. Elsevier, Amsterdam

    Google Scholar 

  20. Brandl H (2001) Microbial leaching of metals. In: Rehm HJ, Reed, G (eds) Biotechnology, vol 10. Wiley, Weinheim

    Google Scholar 

  21. Brierley CL (2008) How will biomining be applied in future? Trans Nonferr Met Soc 18:1302–1310

    CAS  Google Scholar 

  22. Brierley JA (2008) A perspective on developments in biohydrometallurgy. Hydrometallurgy 94:2–7

    CAS  Google Scholar 

  23. Bridge TAM, Johnson DB (1998) Reduction of soluble iron and reductive dissolution of ferric iron minerals by moderately thermophilic iron-oxidising bacteria. Appl Environ Microbiol 64:2181–2186

    CAS  Google Scholar 

  24. Bridge TA, Johnson DB (2000) Reductive dissolution of ferric iron minerals by Acidiphilium SJH. Geomicrobiol J 17:193–206

    CAS  Google Scholar 

  25. Brock TD, Gustafson J (1976) Ferric iron reduction by sulphur- and iron-oxidizing bacteria. Appl Environ Microbiol 32:567–571

    CAS  Google Scholar 

  26. Brombacher C, Bachofen R, Brandl H (1997) Biohydrometallurgical processing of solids: a patent review. Appl Microbiol Biotechnol 18:577–587

    Google Scholar 

  27. Cameselle C, Ricert MT, Nunez MJ, Lema JM (2003) Iron removal from kaolin: comparison between “in situ” and “two-stage” processes. Hydrometallurgy 68:97–105

    CAS  Google Scholar 

  28. Clark ME, Batty JD, van Buuren CB, Dew DW, Eamon MA (2006) Biotechnology in minerals processing: technological breakthroughs creating value. Hydrometallurgy 83:3–9

    CAS  Google Scholar 

  29. Coto O, Galizia F, Hernandez I, Marrero J, Donati E (2008) Cobalt and nickel recoveries from lateritic tailings by organic and inorganic bio-acids. Hydrometallurgy 94:18–22

    CAS  Google Scholar 

  30. Coupland K, Johnson DB (2008) Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria. FEMS Microbiol Lett 279:30–35

    CAS  Google Scholar 

  31. Crundwell FK (1988) The influence of the electronic structure of solids on the anodic dissolution and leaching of semiconducting sulphide minerals. Hydrometallurgy 21:155–190

    CAS  Google Scholar 

  32. Das A, Mishra AK, Roy P (1992) Anaerobic growth on elemental sulfur using dissimilar iron reduction by autotrophic Thiobacillus ferrooxidans. FEMS Microbiol Lett 97:167–172

    CAS  Google Scholar 

  33. Deplanche K, Woods RD, Mikheenko IP, Sockett RE, Macaskie LE (2008) Manufacture of stable Pd and Au nanoparticles on native and genetically engineered flagella scaffolds. Biotechnol Bioeng 101:873–880

    Google Scholar 

  34. d’Hugues P, Foucher S, Galle’-Cavalloni P, Morin D (2002) Continuous bioleaching of chalcopyrite using a novel extremely thermophilic mixed culture. Int J Min Process 66:107–119

    Google Scholar 

  35. DiSpirito AA, Dugan PR, Tuovinen OH (1983) Sorption of Thiobacillus ferrooxidans to particulate material. Biotech Bioeng 25:1163–1168

    CAS  Google Scholar 

  36. Dold B (2008) Sustainability in metal mining: from exploration, over processing to mine waste management. Rev Environ Sci Biotechnol 7:275–285

    CAS  Google Scholar 

  37. Domic EM (2007) A review of the development and current status of copper bioleaching operations in Chile: 25 years of successful commercial implementation. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Berlin

    Google Scholar 

  38. Donati ER, Sand W (2007) Microbial processing of metal sulfides. Springer, Dordrecht

    Google Scholar 

  39. Donati E, Pogliani C, Boiardi JL (1997) Anaerobic leaching of covellite by Thiobacillus ferrooxidans. Appl Microbiol Biotechnol 47(6):636–639

    CAS  Google Scholar 

  40. Donati ER, Viera MR, Tavani EL, Giaveno MA, Lavalle TL, Chiacchiarini PA (2009) Biohydrometallurgy: a meeting point between microbial ecology, metal recovery processes and environmental remediation. In: Advanced Material Research, vol 71–73. Trans Tech Publications, Switzerland

    Google Scholar 

  41. Dopson M, Johnson DB (2012) Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms. Environ Microbiol 14:2620–2631

    CAS  Google Scholar 

  42. Druschel G, Borda M (2006) Comment on “Pyrite dissolution in acidic media” by Descostes M, Vitorge P, Beaucaire C. Geochim Cosmochim Acta 70:5246–5250

    CAS  Google Scholar 

  43. Dutrizac JE (1990) Converting jarosite residues into compact hematite products. J Met 42:36–39

    CAS  Google Scholar 

  44. Dutrizac JE, MacDonald RJC (1974) Ferric ion as a leaching medium. Min Sci Eng 6:59–100

    CAS  Google Scholar 

  45. du Plessis CA, Batty JD, Dew DW (2007) Commercial applications of thermophilic bioleaching. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Berlin

    Google Scholar 

  46. du Plessis CA, Slabbert W, Hallberg KB, Johnson DB (2011) Ferredox: a biohydrometallurgical processing concept for limonitic nickel laterites. Hydrometallurgy 109:221–229

    Google Scholar 

  47. Dziurla MA, Achouak W, Lam BT, Heulin T, Berthelin J (1998) Enzyme-linked immunofiltration assay to estimate attachment of Thiobacilli to pyrite. Appl Environ Microbiol 64:2937–2942

    CAS  Google Scholar 

  48. Edelstein DL (2011) 2009 Minerals yearbook: Copper, US geological survey. http://minerals.usgs.gov/minerals/pubs/commodity/copper/myb1-2009-coppe.pdf. Accessed July 2011

  49. Edwards KJ, Rutenberg AD (2001) Microbial response to surface microtopography: the role of metabolism in localized mineral dissolution. Chem Geol 180:19–32

    CAS  Google Scholar 

  50. Edwards KJ, Schrenk MO, Hamers R, Banfield J (1998) Microbial oxidation of pyrite: experiments using microorganisms from an extreme acidic environment. Am Miner 83:1444–1453

    CAS  Google Scholar 

  51. Edwards KJ, Goebel BM, Rodgers TM, Schrenk MO, Gihring TM, Cardona MM, McGuire MM, Hamers RJ, Pace NR, Banfield JF (1999) Geomicrobiology of pyrite (FeS2) dissolution: case study at Iron Mountain, California. Geomicrobiol J 16:155–179

    CAS  Google Scholar 

  52. Ehrlich HL (1999) Past, present and future of biohydrometallurgy. In: Amils R, Ballester A (eds) Process Metallurgy 9A. Elsevier, Amsterdam

    Google Scholar 

  53. Ehrlich HL (2000) Ocean manganese nodules: biogenesis and bioleaching possibilities. Miner Metall Process 17:121–128

    CAS  Google Scholar 

  54. Ehrlich HL (2002) Geomicrobiology. Marcel Dekker, New York

    Google Scholar 

  55. Evangelou VPB (1995) Pyrite oxidation and its control. CRC Press, Boca Raton

    Google Scholar 

  56. Florian B, Noel N, Thyssen C, Felschau I, Sand W (2011) Some quantitative data on bacterial attachment to pyrite. Miner Eng 24:1132–1138

    CAS  Google Scholar 

  57. Fuchs T, Huber H, Teiner K, Burggraf S, Stetter KO (1995) Metallosphaera prunae, sp. nov., a novel metal-mobilizing, thermoacidophilic archaeum, isolated from a uranium mine in Germany. Syst Appl Microbiol 18:560–566

    Google Scholar 

  58. Gehrke T, Telegdi J, Thierry D, Sand W (1998) Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl Environ Microbiol 64:2743–2747

    CAS  Google Scholar 

  59. Gehrke T, Hallmann R, Kinzler K, Sand W (2001) The EPS of Acidithiobacillus ferrooxidans: a model for structure-function relationships of attached bacteria and their physiology. Water Sci Technol 43:159–167

    CAS  Google Scholar 

  60. Gonzalez A, Bellenberg S, Mamani S, Ruiz L, Echeverria A, Soulere L, Doutheau A, Demergasso C. Sand W, Queneau Y, Vera M, Guiliani N (2012) AHL signaling molecules with a large acyl chain enhance biofilm formation on sulfur and metal sulfides by the bioleaching bacterium Acidithiobacillus ferrooxidans. Appl Microbiol Biotechnol. 97:3729–3737

    Google Scholar 

  61. Goodman AE, Babij T, Ritchie AIM (1983) Leaching of a sulphide ore by Thiobacillus ferrooxidans under anaerobic conditions. In: Rossi G, Torma AE (eds) Progress in biohydrometallurgy. Associazione Mineraria Sarda, Iglesia source, Italia

    Google Scholar 

  62. Groudev SN (1987) Use of heterotrophic microorganisms in mineral biotechnology. Acta Biotechnol 7: 299 – 306

    Google Scholar 

  63. Groudev SN, Georgiev PS, Spasova II, Komnitsas K (1999) In: Amils R, Ballester A (eds) Process metallurgy 9B. Elsevier, Amsterdam

    Google Scholar 

  64. Groudev S, Spasova I, Nicolova M, Georgiev P (2009) In situ bioremediation of contaminated soils in uranium deposits. Adv Mat Res 71–73:533–540

    Google Scholar 

  65. Grützner T (2001) Auswirkungen von Acidithiobacillus ferrooxidans auf die flotierbarkeit sulfidischer minerale. Diploma thesis, TU Clausthal, Clausthal-Zellerfeld, Germany

    Google Scholar 

  66. Hackl RP, Dreisinger DB, Peters E, King JA (1995) Passivation of chalcopyrite during oxidative leaching in sulfate media. Hydrometallurgy 39:25–48

    CAS  Google Scholar 

  67. Hahn M, Willscher S, Straube G (1993) Copper leaching from industrial wastes by heterotrophic microorganisms. In: Torma AE, Wey JE, Lakshmanan VI (eds) Proceedings of the international biohydrometallurgy symposium, Jackson Hole, Wyoming, USA

    Google Scholar 

  68. Hallberg KB, Johnson DB (2001) Biodiversity of acidophilic prokaryotes. Adv Appl Microbiol 49:37–84

    CAS  Google Scholar 

  69. Hallberg KB, González-Toril E, Johnson DB (2010) Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14:9–19

    CAS  Google Scholar 

  70. Hallberg KB, Hedrich S, Johnson DB (2011) Acidiferrobacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur-oxidizer of the family Ectothiorhodospiraceae. Extremophiles 15:271–279

    CAS  Google Scholar 

  71. Hallberg KB, Grail BM, du Plessis CA, Johnson DB (2011) Reductive dissolution of ferric iron minerals: a new approach for bio-processing nickel laterites. Miner Eng 24:620–624

    CAS  Google Scholar 

  72. Harneit K, Göksel A, Kock D, Klock JH, Gehrke T, Sand W (2006) Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans. Hydrometallurgy 83:245–254

    CAS  Google Scholar 

  73. Hawkes RB, Franzmann PD, O’hara G, Plumb JJ (2006) Ferroplasma cupricumulans sp. nov., a novel moderately thermophilic, acidophilic archaeon isolated from an industrial-scale chalcocite bioleach heap. Extremophiles 10:525–530

    CAS  Google Scholar 

  74. Hedrich S, Johnson DB (2012) A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters. Biores Technol 106:44–49

    CAS  Google Scholar 

  75. Hedrich S, Schlömann M, Johnson DB (2012) The iron-oxidizing proteobacteria. Microbiology 157:1551–1564

    Google Scholar 

  76. Hol A, van der Weijden RD, van Weert G, Kondos P, Buisman CJN (2012) Bio-reduction of elemental sulfur to increase the gold recovery from enargite. Hydrometallurgy 115–116:93–97

    Google Scholar 

  77. Hoque ME, Phili OJ (2011) Biotechnological recovery of heavy metals from secondary sources: an overview. Mat Sci Eng C 31:57–66

    CAS  Google Scholar 

  78. Hosseini MR, Schaffie M, Pazouki M, Schippers A, Ranjbar M (2013) A novel electrically enhanced biosynthesis of copper sulfide nanoparticles. Mat Sci Semicond Process 16:250–255

    CAS  Google Scholar 

  79. Janneck E, Arnold I, Koch T, Meyer J, Burghard D, Ehinger S (2010) Microbial synthesis of schwertmannite from lignite mine water and its utilization for removal of arsenic from mine waters and for production of iron pigments. In: Wolkersdorfer C, Freund (eds) Proceedings IMWA 2010 “Mine water and innovative thinking”, Sydney, Canada

    Google Scholar 

  80. Johnson DB (2012) Reductive dissolution of minerals and selective recovery of metals using acidophilic iron- and sulfate-reducing acidophiles. Hydrometallurgy 127–128:172–177

    Google Scholar 

  81. Johnson D, Hallberg KB (2005) Acid mine drainage: remediation options. Sci Tot Environment 338:3–14

    CAS  Google Scholar 

  82. Johnson DB, Roberto FF (1997) In: Rawlings DE (ed) Biomining: theory, microbes and industrial processes. Springer, Berlin

    Google Scholar 

  83. Johnson DB, Joulian C, d’Hugues P, Hallberg KB (2008) Sulfobacillus benefaciens sp. nov., an acidophilic facultative anaerobic Firmicute isolated from mineral bioleaching operations. Extremophiles 12:789–798

    CAS  Google Scholar 

  84. Johnson DB, Bacelar-Nicolau P, Okibe N, Thomas A, Hallberg KB (2009) Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. Int J Syst Evol Microbiol 59:1082–1089

    CAS  Google Scholar 

  85. Julin DE, Tobie RL (1974) Block caving. In: Given IE (ed) SME mining engineering handbook. Society for Mining, Metallurgy, and Exploration, Englewood

    Google Scholar 

  86. Karavaiko GI, Groudev SN (1985) Biogeotechnology of metals. GKNT International Projects, Moscow

    Google Scholar 

  87. Kinzler K, Gehrke T, Telegdi J, Sand W (2003) Bioleaching: a result of interfacial processes caused by extracellular polymeric substances (EPS). Hydrometallurgy 71:83–88

    CAS  Google Scholar 

  88. Korehi H, Blöthe M, Sitnikova MA, Dold B, Schippers A (2013) Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile. Environ Sci Technol 47:2189–2196

    CAS  Google Scholar 

  89. Kracik I (1996) Integrated acid plant design for pressure leaching plants for laterites. In: Proceedings of ALTA conference Ni/Co

    Google Scholar 

  90. Lee JC, Pandey BD (2012) Bio-processing of solid wastes and secondary resources for metal extraction: a review. Waste Manag (Oxford) 32:3–18

    CAS  Google Scholar 

  91. Lewis AE (2010) Review of metal sulphide precipitation. Hydrometallurgy 104:222–234

    CAS  Google Scholar 

  92. Little B, Ray B, Pope R, Franklin M, White DC (2000) Spatial and temporal relationships between localised corrosion and bacterial activity on iron-containing substrata. In: Sequeira CAC (ed) Microbial corrosion. European Federation of Corrosion Publications no 29, Institute of Materials, London

    Google Scholar 

  93. Logan TC, Seal T, Brierley JA (2007) Whole-ore heap biooxidation of sulfidic gold-bearing ores. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Berlin

    Google Scholar 

  94. Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction if iron or manganese. Appl Environ Microbiol 54:1472–1480

    CAS  Google Scholar 

  95. Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru AE, Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP (2011) Geobacter: the microbe electric′s physiology, ecology, and practical applications. Adv Microbiol Physiol 59:1–100

    CAS  Google Scholar 

  96. Lowson RT (1982) Aqueous oxidation of pyrite by molecular oxygen. Chem Rev 82:461–497

    CAS  Google Scholar 

  97. Luther GW III (1987) Pyrite oxidation and reduction: molecular orbital theory considerations. Geochim Cosmochim Acta 51:3193–3199

    CAS  Google Scholar 

  98. Marston C, Rodgers M (2009) Nickel recovery from lateritic ore in the presence of iron using bispicolylamine chelating resin. In: Budac JJ, Fraser R, Mihaylov I, Papangclakis VG, Robinson DJ (eds) Hydrometallurgy of Nickel and Cobalt (Proceedings of the 39th annual hydrometallurgy meeting, Sudbury, Ontario, Canada)

    Google Scholar 

  99. McCready RGI, Gould WD (1989) Bioleaching of uranium at Dennison mines. In: Biohydrometallurgy (Proceedings of the international symposium, Jackson Hole, Wyoming, USA)

    Google Scholar 

  100. McDonald RG, Whittington BI (2008) Atmospheric acid leaching of nickel laterites review (part I): sulphuric acid technologies. Hydrometallurgy 91:35–55

    Google Scholar 

  101. McGuire MM, Edwards KJ, Banfield JF, Hamers RJ (2001) Kinetics, surface chemistry, and structural evolution of microbially mediated sulfide mineral dissolution. Geochim Cosmochim Acta 65:1243–1258

    CAS  Google Scholar 

  102. Medvedev D, Stuchebrukhov AA (2001) DNA repair mechanism by photolyase: electron transfer path from the photolyase catalytic cofactor FADH to DNA thymine dimer. J Theor Biol 210:237–248

    CAS  Google Scholar 

  103. Meyer G, Schneider-Merck T, Böhme S, Sand W (2002) A simple method for investigations on the chemotaxis of A. ferrooxidans and D. vulgaris. Acta Biotechnol 22:391–399

    CAS  Google Scholar 

  104. Monhemius AJ (1977) Precipitation diagrams for metal hydroxides, sulfates, arsenates and phosphates. Trans Inst Min Metall Sec C86:C202–C206

    Google Scholar 

  105. Morin DHR, d’Hugues P (2007) Bioleaching of cobalt-containing pyrite in stirred reactors: a case study from laboratory scale to industrial application. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Berlin

    Google Scholar 

  106. Moses CO, Nordstrom DK, Herman JS, Mills AL (1987) Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim Cosmochim Acta 51:1561–1571

    CAS  Google Scholar 

  107. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface 156:1–13

    CAS  Google Scholar 

  108. Ñancucheo I, Johnson DB (2012) Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria. Microb Biotechnol 5:34–44

    Google Scholar 

  109. Nguyen HL, Willscher S, Fritsche W (1994) Mikrobielle Laugung von Schwermetallen aus Galvanikschlämmen. Chem Tech 46:201

    Google Scholar 

  110. NIST (2003) NIST critical selected stability constants of metal complexes database. In: NIST standard reference database 46, version 7.0. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  111. Noël N, Florian B, Sand W (2010) AFM and EFM study on attachment of acidophilic leaching organisms. Hydrometallurgy 104:370–375

    Google Scholar 

  112. Nordstrom DK (1982) Aqueous pyrite oxidation and the consequent formation of secondary iron minerals In: Hossner LR, Kittrick JA, Fanning DF (eds) Acid sulfate weathering, pedogeochemistry and relationship to manipulation of soil minerals. Soil Science Society of America Press, Madison

    Google Scholar 

  113. Nordstrom DK (2000) Advances in the hydrogeochemistry and microbiology of acid mine waters. Int Geol Rev 42:499–515

    Google Scholar 

  114. Norris PR (2007) Acidophilic diversity in mineral sulfide oxidation. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Berlin

    Google Scholar 

  115. Norris PR, Davis-Belmar CS, Brown CF, Calvo-Bado LA (2011) Autotrophic, sulfur-oxidizing actinobacteria in acidic environments. Extremophiles 15:155–163

    CAS  Google Scholar 

  116. Ohmura N, Kitamura K, Saiki H (1993) Selective adhesion of Thiobacillus ferrooxidans to pyrite. Appl Environ Microbiol 59:4044–4050

    CAS  Google Scholar 

  117. Ohmura N, Sasaki K, Matsumoto N, Saiki H (2002) Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. J Bacteriol 184:2081–2087

    CAS  Google Scholar 

  118. Olson GJ, Brierley JA, Brierley CL (2003) Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microb Biotechnol 63:249–257

    CAS  Google Scholar 

  119. Petersen J, Dixon DG (2007) Modeling and optimization of heap bioleach processes. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Berlin

    Google Scholar 

  120. Plumb JJ, Hawkes RB, Franzmann PD (2007) The microbiology of moderately thermophilic and transiently thermophilic ore heaps. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Berlin

    Google Scholar 

  121. Plumb JJ, Haddad CM, Gibson JAE, Franzmann PD (2007) Acidianus sulfidivorans sp. nov., an extremely acidophilic, thermophilic archaeon isolated from a solfatara on Lihir Island, Papua New Guinea, and emendation of the genus description. Int J Syst Evol Microbiol 57:1418–1423

    Google Scholar 

  122. Pronk JT, de Bruyn JC, Bos P, Kuenen JG (1992) Anaerobic growth of Thiobacillus ferrooxidans. Appl Environ Microbiol 58:2227–2230

    CAS  Google Scholar 

  123. Puhakka JA, Kaksonen AH, Riekkola-Vanhanen M (2007) Heap leaching of black schist. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Berlin

    Google Scholar 

  124. Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56:65–91

    CAS  Google Scholar 

  125. Rawlings DE, Johnson DB (2007) Biomining. Springer, Berlin

    Google Scholar 

  126. Rawlings DE, Johnson DB (2007) The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 153:315–324

    CAS  Google Scholar 

  127. Rawlings DE, Dew D, du Plessis C (2003) Biomineralization of metal-containing ores and concentrates. Trends Biotechnol 21:38–44

    CAS  Google Scholar 

  128. Remonsellez F, Galleguillos F, Moreno-Paz M, Parro V, Acosta M, Demergasso C (2009) Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low-grade copper sulfide ore monitored by real-time PCR and oligonucleotide prokaryotic acidophile microarray. Microbiol Biotechnol 2:613–624

    CAS  Google Scholar 

  129. Rimstidt JD, Vaughan DJ (2003) Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim Cosmochim Acta 67:873–880

    CAS  Google Scholar 

  130. Roden EE (2008) Microbiological controls on geochemical kinetics (2): case study on microbial oxidation of metal sulfide minerals and future prospects. In: Brantley SL, Kubicki J, White AF (eds) Kinetics of water–rock interactions, pp 417–467. Springer, New York

    Google Scholar 

  131. Rodriguez-Leiva M, Tributsch H (1988) Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on synthetic pyrite. Arch Microbiol 149:401–405

    CAS  Google Scholar 

  132. Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248

    CAS  Google Scholar 

  133. Rossi G (1990) Biohydrometallurgy. McGraw-Hill, Hamburg

    Google Scholar 

  134. Rossi G (1993) Biodepyritization of coal: achievements and problems. Fuel 72:1581–1592

    CAS  Google Scholar 

  135. Saari P, Riekkola-Vanhanen M (2011) Talvivaara bio-heap leaching process. In: Proceedings of the conference on percolation leaching: the status globally and in southern Africa, Misty Hills Conference Centre, Cradle of Humankind, Gauteng, South Africa

    Google Scholar 

  136. Sampson MI, Phillips CV, Blake RC II (2000) Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides. Min Eng 13:373–389

    CAS  Google Scholar 

  137. Sand W, Gehrke T (2006) Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Res Microbiol 127:49–56

    Google Scholar 

  138. Sand W, Gehrke T, Hallmann R, Schippers A (1995) Sulfur chemistry, biofilm, and the (in)direct attack mechanism: a critical evaluation of bacterial leaching. Appl Microbiol Biotechnol 43:961–966

    CAS  Google Scholar 

  139. Sand W, Gehrke T, Hallmann R, Schippers A (1998) Towards a novel bioleaching mechanism. Min Pro Ext Met Rev 19:97–106

    CAS  Google Scholar 

  140. Sand W, Gehrke T, Jozsa P-G, Schippers A (2001) (Bio)chemistry of bacterial leaching: direct versus indirect bioleaching. Hydrometallurgy 59:159–175

    CAS  Google Scholar 

  141. Sanhueza A, Ferrer IJ, Vargas T, Amils R, Sánchez C (1999) Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties. Hydrometallurgy 51:115–129

    CAS  Google Scholar 

  142. Schippers A (2004) Biogeochemistry of metal sulfide oxidation in mining environments, sediments and soils. In: Amend JP, Edwards KJ, Lyons TW (eds) Sulfur biogeochemistry: past and present. Special paper 379. Geological Society of America, Boulder

    Google Scholar 

  143. Schippers A (2007) Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification (Chap. 1). In: Donati ER, Sand W (eds) Microbial processing of metal sulfides. Springer, Dordrecht

    Google Scholar 

  144. Schippers A (2009) Biomining for metal extraction from ore and waste. Adv Min Solutions: AMS Online 2009(1):27–33

    Google Scholar 

  145. Schippers A, Sand W (1999) Bacterial leaching of metal sulfide proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321

    CAS  Google Scholar 

  146. Schippers A, Hallmann R, Wentzien S, Sand W (1995) Microbial diversity in uranium mine waste heaps. Appl Environ Microbiol 61:2930–2935

    CAS  Google Scholar 

  147. Schippers A, Jozsa P-G, Sand W (1996) Sulfur chemistry in bacterial leaching of pyrite. Appl Environ Microbiol 62:3424–3431

    CAS  Google Scholar 

  148. Schippers A, Rohwerder T, Sand W (1999) Intermediary sulfur compounds in pyrite oxidation: implications for bioleaching and biodepyritization of coal. Appl Microbiol Biotechnol 52:104–110

    CAS  Google Scholar 

  149. Schippers A, Bosecker K, Willscher S, Spröer C, Schumann P, Kroppenstedt RM (2002) Nocardiopsis metallicus sp. nov., a metal leaching actinomycete isolated from an alkaline slag dump. Int J Syst Evol Microbiol 52:2291–2295

    CAS  Google Scholar 

  150. Schippers A, Sand W, Glombitza F, Willscher S (2007) Biohydrometallurgy: from the single cell to the environment. In: Advanced Materials Research 20/21. Trans Tech Publications, Switzerland

    Google Scholar 

  151. Schippers A, Nagy AA, Kock D, Melcher F, Gock ED (2008) The use of FISH and real-time PCR to monitor the biooxidation and cyanidation for gold and silver recovery from a mine tailings concentrate (Ticapampa, Peru). Hydrometallurgy 94:77–81

    CAS  Google Scholar 

  152. Schippers A, Breuker A, Blazejak A, Bosecker K, Kock D, Wright DL (2010) The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria. Hydrometallurgy 104:342–350

    CAS  Google Scholar 

  153. Shrihari RK, Modak JM, Kumar R, Gandhi KS (1995) Dissolution of particles of pyrite mineral by direct attachment of Thiobacillus ferrooxidans. Hydrometallurgy 38:175–187

    CAS  Google Scholar 

  154. Sillitoe RH, Perelló J (2005) Andean Copper Provinces: tectonomagamtic settings, deposit types, metallogeny, exploration and discovery. In: Hedenquist JW, Thompson JFH, Goldfarb R (eds) Economic geology one hundredth anniversary. Society of Economic Geologists

    Google Scholar 

  155. Simate GS, Ndlovu S (2008) Bacterial leaching of nickel laterites using chemoautotrophic microorganisms: identifying influential factors using statistical design of experiments. Int J Min Proc 88:31–36

    CAS  Google Scholar 

  156. Singer PC, Stumm W (1970) Acidic mine drainage: the rate-determining step. Science 167:1121–1123

    CAS  Google Scholar 

  157. Smart RSC, Jasieniak M, Prince KE, Skinner WM (2000) SIMS studies of oxidation mechanisms and polysulfide formation in reacted sulfide surfaces. Miner Eng 13:857–870

    Google Scholar 

  158. Sobral LGS, de Oliveira DM, de Souza CEG (2011) Biohydrometallurgical processes: a practical approach. Centre for Mineral Technology (CETEM), Ministry of Science, Technology and Innovation (MCTI), Rio de Janeiro, Brazil

    Google Scholar 

  159. Solari JA, Huerta G, Escobar B, Vargas T, Badilla-Ohlbaum R, Rubio J (1992) Interfacial phenomena affecting the adhesion of Thiobacillus ferrooxidans to sulphide mineral surfaces. Colloid Surf 69:159–166

    CAS  Google Scholar 

  160. Steudel R (2000) The chemical sulfur cycle. In: Lens P, Hulshoff Pol L (eds) Environmental technologies to treat sulfur pollution: principles and engineering. International Association on Water Quality, London

    Google Scholar 

  161. Stumm W, Morgan JJ (1996) Aquatic chemistry, chemical equilibria and rates in natural waters, 3rd edn. Willey, New York

    Google Scholar 

  162. Styriakova J, Styriak I, Kraus I, Hradil D, Grygar T, Bezdicka P (2003) Biodestruction and deferritizaion of quartz sands by Bacillus species. Miner Eng 16:709–713

    CAS  Google Scholar 

  163. Sugio T, Domatsu C, Munakata O, Tano T, Imai K (1985) Role of ferric ion-reducing system in sulphur oxidation of Thiobacillus ferrooxidans. Appl Environ Microbiol 49:1401–1406

    CAS  Google Scholar 

  164. Tabak HH, Govind R (2003) Advances in biotreatment of acid mine drainage and biorecovery of metals (2): membrane bioreactor system for sulfate reduction. Biodegradation 14:437–452

    CAS  Google Scholar 

  165. Third KA, Cord-Ruwisch R, Watling HR (2002) Control of the redox potential by oxygen limitation improves bacterial leaching of chalcopyrite. Biotech Bioeng 78:433–441

    CAS  Google Scholar 

  166. Thomas JE, Jones CF, Skinner WM, Smart RSC (1998) The role of surface sulfur species in the inhibition of pyrrhotite dissolution in acid conditions. Geochim Cosmochim Acta 62:1555–1565

    CAS  Google Scholar 

  167. Thomas JE, Skinner WM, Smart RSC (2001) A mechanism to explain sudden changes in rates and products for pyrrhotite dissolution in acid solution. Geochim Cosmochim Acta 65:1–12

    CAS  Google Scholar 

  168. Thurston RS, Mandernack KW, Shanks WC III (2010) Laboratory chalcopyrite oxidation by Acidithiobacillus ferrooxidans: oxygen and sulfur isotope fractionation. Chem Geol 269:252–261

    CAS  Google Scholar 

  169. Torma A (1978) Oxidation of gallium sulfides by Thiobacillus ferrooxidans. Can J Microbiol 24:888–891

    CAS  Google Scholar 

  170. Tributsch H (2001) Direct versus indirect bioleaching. Hydrometallurgy 59:177–185

    CAS  Google Scholar 

  171. Tributsch H, Bennett JC (1981) Semiconductor-electrochemical aspects of bacterial leaching (part 1): oxidation of metal sulphides with large energy gaps. J Chem Technol Biotechnol 31:565–577

    CAS  Google Scholar 

  172. Tributsch H, Bennett JC (1981) Semiconductor-electrochemical aspects of bacterial leaching (part 2): survey of rate-controlling sulphide properties. J Chem Technol Biotechnol 31:627–635

    CAS  Google Scholar 

  173. Vandevivere P, Kirchman DL (1993) Attachment stimulates exopolysaccharide synthesis by a bacterium. Appl Environ Microbiol 59:3280–3286

    CAS  Google Scholar 

  174. Vaughan DJ, Craig JR (1978) Mineral chemistry of metal sulphides. Cambridge University Press, Cambridge

    Google Scholar 

  175. Vera M, Krok B, Bellenberg S, Sand W, Poetsch A (2013) Shotgun proteomics study of early biofilm formation process of Acidithiobacillus ferrooxidans ATCC 23270 on pyrite. Proteomics 13:1133–1144

    CAS  Google Scholar 

  176. Vilinska AK, Rao KH (2009) Surface thermodynamics and extended DLVO theory of Acidithiobacillus ferrooxidans cells adhesion on pyrite and chalcopyrite. Open Colloid Sci J 2:1–14

    CAS  Google Scholar 

  177. von Aswegen PC, van Niekerk J, Oliveri W (2007) The BIOX™ process for the treatment of refractory gold concentrates. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Berlin

    Google Scholar 

  178. von Wahl S (1990) Bergwirtschaft Band I. Verlag Glückauf, Essen

    Google Scholar 

  179. Watling HR (2006) The bioleaching of sulphide minerals with emphasis on copper sulphides: a review. Hydrometallurgy 84:81–108

    CAS  Google Scholar 

  180. Wellmer FW (2002) Leachable supergene base and precious metal deposits worldwide. Erzmetall 55:25–33

    CAS  Google Scholar 

  181. Williamson MA, Rimstidt JD (1994) The kinetics and electrochemical rate-determing step of aqueous pyrite oxidation. Geochim Cosmochim Acta 58:5443–5454

    CAS  Google Scholar 

  182. Willis B (2007) Downstream processing options for nickel laterite heap leach liquors. ALTA Conference Ni/Co, Proceedings

    Google Scholar 

  183. Willscher S, Bosecker K (2003) Studies on the leaching behaviour of heterotrophic microorganisms isolated from an alkaline slag dump. Hydrometallurgy 71:257–264

    CAS  Google Scholar 

  184. Willscher S, Clark TR, Cohen RH, Ranville JF, Smith KS, Walton-Day K (2003) Bioleach of a fluvial tailings deposit material indicates long term potential for pollution. In: Biohydrometallurgy: a sustainable technology in evolution (Proceedings of 15th International Biohydrometallurgical Symposium, 14–19 September, Athens, Greece

    Google Scholar 

  185. Willscher S, Pohle C, Sitte J, Werner P (2007) Solubilization of heavy metals from a fluvial AMD generating tailings sediment by heterotrophic microorganisms (part I): influence of pH and solid content. J Geochem Explor 92:177–185

    CAS  Google Scholar 

  186. Willscher S, Hertwig T, Frenzel M, Felix M, Starke S (2010) Results of remediation of hard coal overburden and tailing dumps after a few decades: Insights and conclusions. Hydrometallurgy 104:506–517

    CAS  Google Scholar 

  187. Willscher S, Mirgorodsky D, Jablonski L, Ollivier D, Merten D, Büchel G, Wittig J, Werner P (2013) Field scale phytoremediation experiments on a heavy metal and uranium contaminated site, and further utilization of the plant residues. Hydrometallurgy 131–132:46–53

    Google Scholar 

  188. Willscher S, Knippert D, Ihling H, Kuehn D, Starke S (2013) Underground degradation of lignite coal spoil material by a mixed microbial community under acid mine drainage conditions. In: Advanced Materials Research (submitted)

    Google Scholar 

  189. Xu Y, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconductiong minerals. Am Miner 85:543–556

    CAS  Google Scholar 

  190. Yahya A, Hallberg KB, Johnson DB (2008) Iron and carbon metabolism by a mineral-oxidizing Alicyclobacillus-like bacterium. Arch Microbiol 189:305–312

    CAS  Google Scholar 

  191. Zhu J, Li Q, Jiao W, Jiang H, Sand W, Xia J, Liu X, Qin W, Qiu G, Hu Y, Chai L (2012) Adhesion forces between cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans or Leptospirillum ferrooxidans and chalcopyrite. Colloid Surfaces B Interface 94:95–100

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Schippers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schippers, A., Hedrich, S., Vasters, J., Drobe, M., Sand, W., Willscher, S. (2013). Biomining: Metal Recovery from Ores with Microorganisms. In: Schippers, A., Glombitza, F., Sand, W. (eds) Geobiotechnology I. Advances in Biochemical Engineering/Biotechnology, vol 141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_216

Download citation

Publish with us

Policies and ethics