Skip to main content

Hairy Roots as a Vaccine Production and Delivery System

Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE,volume 134)

Keywords

  • Hairy roots
  • Oral immunization
  • Recombinant vaccine
  • Transgenic plant
  • Viral vector

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/10_2013_184
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-39019-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Rai M, Padh H (2001) Expression systems for production of heterologous proteins. Curr Sci 80:1121–1128

    CAS  Google Scholar 

  2. Twyman RM, Schillberg S, Fischer R (2005) Transgenic plants in the biopharmaceutical market. Expert Opin Emerg Drugs 10:185–218

    PubMed  CAS  Google Scholar 

  3. Sharma A, Sharma MK (2009) Plants as bioreactors: Recent developments and emerging opportunities. Biotechnol Adv 27:811–832

    PubMed  CAS  Google Scholar 

  4. Thomas BR, Van Deynze AE, Bradford KJ (2002) Production of therapeutic proteins in plants. Agric Biotechnol California Series, Publication 8078. http://anrcatalog.ucdavis.edu/

    Google Scholar 

  5. Faye L, Gomord V (2010) Success stories in molecular farming—a brief overview. Plant Biotechnol J Special Issue: Success Stories in Molecular Farming 8:525–528

    Google Scholar 

  6. Rigano M, Walmsley A (2005) Expression systems and developments in plant-made vaccines. Immunol Cell Biol 83:271–277

    PubMed  CAS  Google Scholar 

  7. Neutra MR, Kozlowski PA (2006) Mucosal vaccines: the promise and the challenge. Nature Rev Immunol 6:148–158

    CAS  Google Scholar 

  8. Kaul D, Ogra PL (1998) Mucosal responses to parenteral and mucosal vaccines. Dev Biol Stand 95:141–146

    PubMed  CAS  Google Scholar 

  9. Gomes E, Zoth S, Carillo E et al (2010) Developments in plant-based vaccines against diseases of concern in developing countries. The Open Infect Dis J 4:55–62

    Google Scholar 

  10. Freytag LC, Clements JD (1999) Bacterial toxins as mucosal adjuvants. Curr Topics Microbiol Immunol 236:215–236

    CAS  Google Scholar 

  11. Landridge WHR (2000) Edible vaccines. Sci Am 283:48–53

    Google Scholar 

  12. Pizza M, Guiliani M, Fontana E et al (2001) Mucosal vaccines: non-toxic derivatives of LT and CT as mucosal adjuvants. Vaccine 19:2534–2541

    PubMed  CAS  Google Scholar 

  13. Rhee JH, Lee SE, Kim SY (2012) Mucosal vaccine adjuvants update. Clin Exp Res 1:50–63

    CAS  Google Scholar 

  14. Clements JD, Hartzog NM, Lyon FL (1988) Adjuvant activity of Escherichia coli heat-labile enterotoxin and effect on the induction of oral tolerance in mice to unrelated protein antigens. Vaccine 6:269–277

    PubMed  CAS  Google Scholar 

  15. Elson CJ, Ealding W (1984) Generalised systemic and mucosal immunity in mice after mucosal stimulation with cholera toxin. J Immunol 132:2736–2741

    PubMed  CAS  Google Scholar 

  16. Lavelle EC, Grant G, Pusztai A et al (2001) The identification of plant lectins with mucosal adjuvant activity. Immunology 102:77–86

    PubMed  CAS  PubMed Central  Google Scholar 

  17. Medina-Bolivar F, Wright R, Funk V et al (2003) A non-toxic lectin for antigen delivery of plant-based mucosal vaccines. Vaccine 21:997–1005

    PubMed  CAS  Google Scholar 

  18. Streatfield S (2006) Mucosal immunization using recombinant plant-based oral vaccines. Methods 38:150–157

    PubMed  CAS  Google Scholar 

  19. Aliahmadi A, Rahmani N, Abdollahi M (2006) Plant-derived human vaccines: an overview. Int J Pharmacol 2:268–279

    CAS  Google Scholar 

  20. Mishra N, Gupta PN, Khatri K et al (2008) Edible vaccines: A new approach to oral immunization. Indian J Biotechnol 7:283–294

    CAS  Google Scholar 

  21. Ahmad P, Ashraf M, Younis M et al (2012) Role of transgenic plants in agriculture and biopharming. Biotech Advances 33:524–540

    Google Scholar 

  22. Mason HS, Hag TA, Clements JD et al (1998) Edible vaccine protects mice against Escherichia coli heat-labile enterotoxin (LT): potatoes expressing a synthetic LT-B gene. Vaccine 16:1336–1343

    PubMed  CAS  Google Scholar 

  23. Marquet-Blouin E, Bouche FB, Steinmetz A et al (2003) Neutralizing immunogeneicity of transgenic carrot (Daucus carota L.)-derived measles virus hemagglutinin. Plant Mol Biol 51:459–469

    PubMed  CAS  Google Scholar 

  24. Chowdhury K, Bagasra O (2007) An edible vaccine for malaria using transgenic tomatoes of varying sizes, shapes and colors to carry different antigens. Med Hypotheses 68:22–30

    PubMed  CAS  Google Scholar 

  25. Arakawa T, Chong KX, Merritt JL et al (1997) Expression of cholera toxin B subunit oligomers in transgenic potato plants. Transgenic Res 6:403–410

    PubMed  CAS  Google Scholar 

  26. Wigdorovitz A, Carrillo C, Dos Santos MJ (1999) Induction of a protective antibody response to foot and mouse disease virus in mice following oral or parenteral immunization with alfalfa transgenic plants expressing the viral structural protein VP1. Virology 255:347–353

    PubMed  CAS  Google Scholar 

  27. Richter L, Thanavala Y, Arntzen C et al (2000) Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nat Biotechnol 18:1167–1171

    PubMed  CAS  Google Scholar 

  28. Pniewski T, Kapusta J, Bociag P et al (2011) Low-dose oral immunization with lyophilized tissue of herbicide-resistant lettuce expressing hepatitis B surface antigen for prototype plant-derived vaccine tablet formulation. J Appl Genet 52:125–136

    PubMed  CAS  PubMed Central  Google Scholar 

  29. Kapusta J, Modelska A, Figlerowicz M et al (1999) A plant derived edible vaccine against hepatitis B virus. FASEB 13:1796–1799

    CAS  Google Scholar 

  30. Tacket CO, Pasetti MF, Edelman R (2004) Immunogenicity of recombinant LT-B delivered orally to humans in transgenic corn. Vaccine 22:4385–4389

    PubMed  CAS  Google Scholar 

  31. Thanavala Y, Mahoney M, Pal S (2005) Immunogenicity in humans of an edible vaccine for hepatitis B. Proc Natl Acad Sci USA 102:3378–3382

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Yusibov V, Hooper DC, Spitsin SV et al (2002) Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine 20:3155–3164

    PubMed  CAS  Google Scholar 

  33. Walmsley A, Arntzen C (2003) Plant cell factories and mucosal vaccines. Curr Opin Biotechnol 14:145–150

    PubMed  CAS  Google Scholar 

  34. Schillberg S, Twyman R, Fischer R (2005) Opportunities for recombinant antigen and antibody expression in transgenic plants-biotechnology assessment. Vaccine 23:1764–1769

    PubMed  CAS  Google Scholar 

  35. Guillon S, Trémeouillax-Guiller J, Pati PK et al (2006) Hairy root research: Recent scenario and exciting prospects. Curr Opin Plant Biol 9:341–346

    PubMed  CAS  Google Scholar 

  36. Ronchi VN, Martini G, Buiatti M (1975) Genotype-hormone interaction in the induction of chromosome aberrations: Effect of 2.4-dichlorophenoxyacetic acid (2,4-D) and kinetin on tissue cultures from nicotiana SPP. Mutat Res Fund Mol Mech Mut 36:67–72

    Google Scholar 

  37. Phillips R, Kaepplert S, Olhoft P (1994) Genetic instability of plant tissue cultures: breakdown of normal controls (DNA methylation/genome rearrangements/rearrangement induced premeiotically/repeat-induced point mutation/heterochromatin). Proc Natl Acad Sci USA 91:5222–5226

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Sevon N, Oksman-Caldentey K-M (2002) Agrobacterium rhizogenes mediated transformation: root cultures as a source of alkaloids. Planta Med 68:859–868

    PubMed  CAS  Google Scholar 

  39. Flores H, Vivanco J, Loyola-Vargas V (1999) “Radicle” biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226

    PubMed  Google Scholar 

  40. Shanks J, Morgan J (1999) Plant ‘hairy root’ culture. Curr Opin Biotechnol 10:151–155

    PubMed  CAS  Google Scholar 

  41. Rao SR, Ravishankar GA (2002) Plant cell cultures: Chemical factories of secondary methabolites. Biotechnol Adv 20:101–153

    PubMed  CAS  Google Scholar 

  42. Medina-Bolivar F, Condori J, Rimando AM et al (2007) Production and secretion of resveratrol in hairy root cultures of peanut. Phytochemistry 68:1992–2003

    PubMed  CAS  Google Scholar 

  43. Srivastava S, Srivastava A (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27:29–43

    PubMed  CAS  Google Scholar 

  44. Hu ZB, Du M (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48:121–127

    CAS  Google Scholar 

  45. Doran P (2002) Properties and applications of hairy root cultures. In: Oksman-Caldentey K-M, Barz WH (eds) Plant Biotechnology and Transgenic Plants. Marcel Dekker Inc, New York

    Google Scholar 

  46. Wongsamuth R, Doran P (1997) Production of monoclonal antibodies by tobacco hairy roots. Biotechnol Bioeng 54:401–415

    PubMed  CAS  Google Scholar 

  47. Cooke DE, Webb KJ (1997) Stability of 35S gus gene expression in (birds foot trefoil) hairy root cultures under different growth conditions. Plant Cell Tiss Org Cult 47:163–168

    Google Scholar 

  48. Skarjinskaia M, Karl J, Araujo A et al (2008) Production of recombinant proteins in clonal root cultures using episomal expression vectors. Biotechnol Bioeng 100:814–819

    PubMed  CAS  Google Scholar 

  49. Marconi PL, Setten LM, Calcena EN et al (2008) Changes in growth and tropane alkaloid production in long-term culture of hairy roots of Brugmansia candida. J Integr Biosci 3:38–44

    Google Scholar 

  50. Baiza AM, Quiros-Moreno A, Ruiz JA (1999) Genetic stability of hairy root cultures of Datura stramonium. Plant Cell Tiss Org Cult 59:9–17

    Google Scholar 

  51. Woods R, Geyer B, Mor T (2008) Hairy-root organ cultures for the production of human acetylcholinesterase. BMC Biotechnol 8:95–101

    PubMed  PubMed Central  Google Scholar 

  52. Sunil Kumar GB, Ganapathi TR, Srinivas L (2006) Expression of hepatitis B surface antigen in potato hairy roots. Plant Sci 170:918–925

    Google Scholar 

  53. Maldonaldo-Mendoza IE, Ayora-Talavera T, Loyola-Vargas VM (1993) Establishment of hairy root cultures of Datura stramonium. Characterization and stability of tropane alkaloid production during long period of sub-culturing. Plant Cell Tiss Org Cult 33:321–329

    Google Scholar 

  54. Palazón J, Moyano E, Cusidó RM (2003) Alkaloid production in Duboisia hybrid hairy root and plants overexpressing the h6h gene. Plant Sci 165:1289–1295

    Google Scholar 

  55. Menzel G, Harloff HJ, Jung C (2003) Expression of bacterial poly (3-hydroxybutyrate) synthesis genes in hairy roots of sugar beet (Beta vulgaris L.). Appl Microbiol Biotechnol 60:571–576

    PubMed  CAS  Google Scholar 

  56. Moyano E, Jouhikainen K, Tammela P (2003) Effect of pmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus. J Exp Bot 54:203–211

    PubMed  CAS  Google Scholar 

  57. Drake PMW, Chargelegue DM, Vine ND et al (2003) Rhizosecretion of a monoclonal antibody protein complex from transgenic tobacco roots. Plant Mol Biol 52:233–241

    PubMed  CAS  Google Scholar 

  58. Pham NG, Schafizrl H, Wink M (2012) Production and secretion of recombinant thaumatin in the hairy root cultures. Biotechnol J 7:537–545

    PubMed  CAS  Google Scholar 

  59. Giri A, Narasu ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18:1–22

    PubMed  CAS  Google Scholar 

  60. Sharp JM, Doran PM (1999) Effect of bacitracin on growth and monoclonal antibody production by tobacco hairy roots and cell suspensions. Biotechnol Bioprocess Eng 4:253–258

    CAS  Google Scholar 

  61. Terashima M, Murai Y, Kawamura M (1999) Production of functional human alpha 1-antitrypsin by plant cell culture. Appl Microbiol Biotechnol 52:516–523

    PubMed  CAS  Google Scholar 

  62. Hellwig S, Drossard J, Twyman R et al (2004) Plant cell cultures for the production of recombinant proteins. Nature Biotechnol 22:1415–1422

    CAS  Google Scholar 

  63. Martinez C, Petrucelli S, Giulietti AM et al (2005) Expression of the antibody 14D9 in Nicotiana tabacum hairy roots. Elect J Biotechn 8:170–176

    CAS  Google Scholar 

  64. Ko S, Liu J-R, Yamakawa T et al (2006) Expression of the protective antigen (SpaA) in transgenic hairy roots of tobacco. Plant Mol Biol Reporter 24:251

    Google Scholar 

  65. Woffenden BJ, Nopo LH, Cramer CL (2008) Expression of a ricin B:F1:V fusion protein in tobacco hairy roots: steps toward a novel pneumonic plaque vaccine. Elect J Integr Biosci 3:10–19

    Google Scholar 

  66. Massa S, Skarjinskaia M, Mett V et al (2009) Plant platforms for producing anti-cancer therapeutic vaccines. Plant-Based Vaccines & Antibodies Plant Expression Systems for Recombinant Pharmacologics PBVA Verona, Italy, Presented at

    Google Scholar 

  67. Demurtas O, Franconi R, Massa S (2010) Plant-derived vaccines and other therapeutics produced in contained systems. Expert Rev Vaccines 9:877–898

    PubMed  Google Scholar 

  68. Guzman G, Walmsley A, Webster D et al (2011) Hairy roots cultures from different Solanaceous species have varying capacities to produce E. coli B-subunit heat-labile toxin antigen. Biotechnol Lett 33:2495–2502

    PubMed  CAS  Google Scholar 

  69. Simpson RB, Spielmann A, Margossian L et al (1986) A disarmed binary vector from Agrobacterium tumefaciens functions in Agrobacterium rhizogenes. Plant Mol Biol 6:403–415

    CAS  PubMed  Google Scholar 

  70. Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Phys Plant Mol Biol 51:223–256

    CAS  Google Scholar 

  71. Streatfield S (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol 5:2–15

    CAS  Google Scholar 

  72. Odell J, Nagy F, Chua N (1985) Identification of DNA sequences required for activity of the cauliflower virus 35S promoter. Nature 313:810–812

    PubMed  CAS  Google Scholar 

  73. Lee L-Y, Kononov M, Bassuner B et al (2007) Novel Plant Transformation Vector Containing the Super-promoter. Plant Physiol 145:1294–1300

    PubMed  CAS  PubMed Central  Google Scholar 

  74. Jones M, Manning K, Andrews J et al (2008) The promoter from SIREO, a highly-expressed, root-specific Solanum lycopersicum gene, directs expression to cortex of mature roots. Funct Plant Biol 35:1224–1233

    CAS  Google Scholar 

  75. Dujovny G, Valli A, Calvo M et al (2009) A temperature-controlled amplicon system derived from Plum pox potyvirus. Plant Biotechnol J 7:49–58

    PubMed  CAS  Google Scholar 

  76. Maiti I, Wagner G, Hunt A (1991) Light inducible and tissue-specific expression of a chimeric mouse metallothionein cDNA gene in tobacco. Plant Sci 76:99–107

    CAS  Google Scholar 

  77. Guzman G, Walmsley A, Webster D et al (2012) Use of the wound-inducible NtQPT2 promoter from Nicotiana tabacum for production of a plant-made vaccine. Biotechnol Lett 34:1143–1150

    PubMed  CAS  Google Scholar 

  78. Mett V, Lochhead L, Reynolds P (1993) Copper-controllable gene expression system for whole plants (transcription activation/yeast metalloregulatory transcription factor/chimeric promoter). Proc Natl Acad Sci USA 90:4567–4571

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Caddick M, Greenland A, Jepson I et al (1998) An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nat Biotechnol 16:177–180

    PubMed  CAS  Google Scholar 

  80. Sweetman J, Chu C, Qu N (2002) Ethanol vapor is an efficient inducer of the alc gene expression system in model and crop plant species. Plant Physiol 129:943–948

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Schena M, Lloyd AM, Dawis RD (1991) A steroid-inducible gene expression system for plant cells. Proc Natl Acad Sci USA 88:10421–10425

    PubMed  CAS  PubMed Central  Google Scholar 

  82. De Veylder L, van Montagu M, Inze D (1997) Herbicide safener-inducible gene expression in Arabidopsis thaliana. Plant Cell Physiol 38:568–577

    PubMed  Google Scholar 

  83. Martinez A, Sparks C, Hart CA (1999) Ecdysone agonist inducible transcription in transgenic tobacco plants. Plant J 5:559–569

    Google Scholar 

  84. Padidam M, Gore M, Lu L et al (2003) Chemical-inducible, ecdysone receptor-based gene expression system for plants. Transgen Res 12:101–109

    CAS  Google Scholar 

  85. Werner S, Breus O, Symonenko Y et al (2011) High-level recombinant protein expression in transgenic plants by using a double-inducible viral vector. Proc Natl Acad Sci USA 108:14061–14066

    PubMed  CAS  PubMed Central  Google Scholar 

  86. Gallie D, Walbot V (1992) Identification of the motifs within the tobacco mosaic virus 5’ leader responsible for enhancing translation. Nucleic Acids Res 20:4631–4638

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Laguia-Becher M, Martin V, Kraemer M et al (2010) Effect of codon optimization and subcellular targeting on Toxoplasma gondii antigen SAG1 expression in tobacco leaves to use in subcutaneous and oral immunization in mice. BMC Biotechnol 10:52–65

    PubMed  PubMed Central  Google Scholar 

  88. Nuttal J, Vine N, Hadlington JL (2002) ER-resident chaperone interactions with recombinant antibodies in transgenic plants. Eur J Biochem 269:6042–6051

    Google Scholar 

  89. Gomord V, Faye L (2004) Posttranslational modification of therapeutic proteins in plants. Curr Opin Plant Biol 7:171–181

    PubMed  CAS  Google Scholar 

  90. Musiychuk KA, Goldenkova IV, Avdeev RM et al (2000) Preparation and properties of Clostridium thermocellum lichenase deletion variants and their use for construction of bifunctional hybrid proteins. Biochemistry (Mosc) 65:1397–1402

    CAS  Google Scholar 

  91. Hull R (1989) The movement of viruses in plants. Annu Rev Phytopathol 27:213–240

    Google Scholar 

  92. Dawson WO, Bubrick P, Grantham GL (1988) Modifications of the tobacco mosaic virus coat protein gene affecting replication, movement and symptomatology. Phytopathology 78:783–789

    CAS  Google Scholar 

  93. Shadwick FS, Doran P (2007) Propagation of plant viruses in hairy root cultures: a potential method for in vitro production of epitope vaccines and foreign proteins. Biotechnol Bioeng 96:570–583

    PubMed  CAS  Google Scholar 

  94. Shivprasad S, Pogue G, Lewandowski D et al (1999) Heterologous sequences greatly affect foreign gene expression in tobacco mosaic virus-based vectors. Virology 255:312–323

    PubMed  CAS  Google Scholar 

  95. Rabindran S, Dawson W (2001) Assessment of recombinants that arise from the use of a TMV-based transient expression vector. Virology 284:182–189

    PubMed  CAS  Google Scholar 

  96. Musiychuk K, Stephenson N, Bi H et al (2007) A launch vector for the production of vaccine antigens in plants. Influenza Other Respi Viruses 1:19–25

    PubMed  CAS  Google Scholar 

  97. Yusibov V, Streatfield SJ, Kushnir N et al (In Press) Hybrid viral vectors for vaccine and antibody production in plants. Curr Pharm Design

    Google Scholar 

  98. Dawson WO, Hilf ME (1992) Host-range determinants of plant viruses. Annu Rev Plant Physiol Plant Mol Biol 43:527–555

    CAS  Google Scholar 

  99. Schaad MC, Carrington JC (1996) Suppression of long-distance movement of tobacco etch virus in a nonsusceptible host. J Virol 70:2556–2561

    PubMed  CAS  PubMed Central  Google Scholar 

  100. Dohi K, Nishikiori M, Tamai A et al (2006) Inducible virus-mediated expression of a foreign protein in suspension-cultures cells. Arch Virol 151:1075–1084

    PubMed  CAS  Google Scholar 

  101. Zhang X, Mason H (2006) Bean Yellow Dwarf Virus replicons for high-level transgene expression in transgenic plants and cell cultures. Biotechnol Bioeng 93:271–279

    PubMed  CAS  Google Scholar 

  102. Sudarshana MR, Plesha MA, Uratsu SL et al (2006) A chemically inducible cucumber mosaic virus amplicon system for expression of heterologous proteins in plant tissues. Plant Biotechnol J 4:551–559

    PubMed  CAS  Google Scholar 

  103. Plesha MA, Huang T-K, Dandekar AM et al (2009) Optimization of the bioprocessing conditions for scale-up of transient production of a heterologous protein in plants using a chemically inducible viral amplicon expression system. Biotechnol Prog 25:722–734

    PubMed  CAS  Google Scholar 

  104. Huang TK, Plesha MA, Falk BW et al (2009) Bioreactor strategies for improving production yield and functionality of a recombinant human protein in transgenic tobacco cell cultures. Biotechnol Bioeng 102:508–520

    PubMed  CAS  Google Scholar 

  105. Collens JL, Lee DR, Seeman AM et al (2004) Development of auxotrophic agrobacterium tumefaciens for gene transfer in plant tissue culture. Biotechnol Prog 20:890–896

    PubMed  CAS  Google Scholar 

  106. Collens JI, Mason HS, Curtis WR (2007) Agrobacterium-mediated viral vector-amplified transient gene expression in Nicotiana glutinosa plant tissue culture. Biotechnol Prog 23:570–576

    PubMed  CAS  Google Scholar 

  107. WHO. World Hepatitis Day. 28 July 2012. www.who.int/csr/disease/hepatitis/world_hepatitis_day/en/ (accessed 17 September 2012)

  108. Mason H, Lam D, Arntzen C (1992) Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci USA 89:11745–11749

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Wood RL (1984) Swine erysipelas—a review of prevalence and research. J Am Vet Med Assoc 184:944–948

    PubMed  CAS  Google Scholar 

  110. Makino S-I, Yamamoto K, Murakami S et al (1998) Properties of repeat domain found in a novel protective antigen, SpaA, of Erysiopelothrix rhusiopathiae. Microb Pathog 723:101–109

    Google Scholar 

  111. WHO. Diarrheal Diseases (Updated February 2009) www.who.int/vaccine_research/diseases/diarrhoeal/en/index4.html (accessed 17 September 2012)

  112. Quadri F, Svennerholm A-M, Faruque ASG et al (2005) Enterotoxigenic Escherichia coli in Developing Countries: Epidemiology, Microbiology, Clinical Features, Treatment, and Prevention. Clin Microbiol Rev 18:465–483

    Google Scholar 

  113. Tsuji T, Honda T, Miwatani T et al (1985) Analysis of receptor-binding site in Escherichia coli enterotoxin. J Biol Chem 260:8552–8558

    PubMed  CAS  Google Scholar 

  114. Tiwari S, Verma P, Singh P, Tuli R (2009) Plants as bioreactors for the production of vaccine antigens. Biotechnol Adv 27:449–467

    PubMed  CAS  Google Scholar 

  115. Benner G, Andrews G, Byrne W et al (1999) Immune response to Yersinia outer proteins and other Yersinia pestis antigens after experimental plaque infection in mice. Infect Immun 67:1922–1928

    PubMed  CAS  PubMed Central  Google Scholar 

  116. Du Y, Rosquist R, Forsberg A (2002) Role of fraction 1antigen of Yersinia pestis in inhibition of phagocytosis. Infect Immun 70:1453–1460

    PubMed  CAS  PubMed Central  Google Scholar 

  117. Welkos S, Pitt ML, Martinez M (1998) Determination of the virulence of the pigmentation-deficient and pigmentation-/plasminogen activator-deficient strains of Yersinia pestis in non-human primate and mouse models of pneumonic plague. Vaccine 20:2206–2214

    Google Scholar 

  118. Heath D, Anderson G, Mauro J et al (1998) Protection against experimental bubonic and pneumonic plaque by a recombinant capsular F1-V antigen fusion protein vaccine. Vaccine 16:1131–1137

    PubMed  CAS  Google Scholar 

  119. Williamson ED, Vesey PM, Gillhespy KJ (1999) An IgG1 titer to the F1 and V antigens correlates with protection against plague in the mouse model. Clin Exp Immunol 116:107–114

    PubMed  CAS  PubMed Central  Google Scholar 

  120. Alvarez M, Pineyerd H, Crisantes J et al (2006) Plant-made subunit vaccine against pneumonic and bubonic plaques orally immunogenic in mice. Vaccine 24:2477–2490

    PubMed  CAS  Google Scholar 

  121. Ni M, Cui D, Einstein J (1995) Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes. Plant J 7:661–676

    CAS  Google Scholar 

  122. HPV Vaccine: State Legislation and Statutes (Updated 2012) www.ncsl.org/issues…/hpv-vaccine-state-legislation-and-statutes.aspx

  123. Munoz N, Bosch FX, de Sanjose S (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348:518–527

    PubMed  Google Scholar 

  124. Zheng Z-M, Baker CC (2006) Papillomavirus genome structure, expression, and post-translational regulation. Front Biosci 11:2286–2302

    PubMed  CAS  PubMed Central  Google Scholar 

  125. Yim E-K, Park J-S (2005) The Role of HPV E6 and E7 Oncoproteins in HPV-associated Cervical Carcinogenesis. Cancer Res Treat 37:319–324

    PubMed  PubMed Central  Google Scholar 

  126. Massa S, Franconi R, Brandi R et al (2007) Anti-cancer activity of plant-produced HPV16 E7 vaccine. Vaccine 25:3018–3021

    PubMed  CAS  Google Scholar 

  127. Ergonul O (2006) Crimean-Congo haemorrhagic fever. Lancet Infect Dis 6:203–214

    PubMed  Google Scholar 

  128. ECDC Meeting Report (2008) Consultation on Crimean-Congo haemorrhagic fever prevention and control. Stockholm 2008. www.ecdc.europa.eu

  129. Ghiasi SM, Salmanian AH, Chinikar S et al (2011) Mice orally immunized by a transgenic plant expressing the glycoprotein of Crimean-Congo hemorrhagic fever virus. Clin Vaccine Immunol 18:2031–2037

    PubMed  CAS  PubMed Central  Google Scholar 

  130. Whitehouse CA (2004) Crimean-Congo hemorrahagic fever. Antiviral Res 64:145–160

    PubMed  CAS  Google Scholar 

  131. Spik K, Shurtleff A, McEnlroy AK et al (2006) Immunogenicity of combination DNA vaccines for Rift Valley fever virus, tick-borne encephalitis virus, Hantaan virus, and Cimean-Congo hemorrhagic fever virus. Vaccine 24:4657–4666

    PubMed  CAS  Google Scholar 

  132. Turnbull P (1992) Anthrax vaccines: past, present and future. Vaccine 9:533–539

    Google Scholar 

  133. Aziz MA, Singh S, Kumar PA et al (2002) Expression of protective antigen in transgenic plants: a step towards edible vaccine against anthrax. Biochem Biophys Res 299:345–351

    CAS  Google Scholar 

  134. Flick-Smith H, Eyles J, Hebdon R (2002) Mucosal or parenteral administration of microsphere-associated Bacillus anthracis protective antigen protects against anthrax infection in mice. Infect Immun 70:2022–2028

    PubMed  CAS  PubMed Central  Google Scholar 

  135. Brossier F, Weber-Levy M, Mock M et al (2000) Role of Toxin Functional Domains in Anthrax Pathogenesis. Infect Immun 68:1781–1786

    PubMed  CAS  PubMed Central  Google Scholar 

  136. Chichester J, Musiychuk K, de la Rosa P et al (2007) Immunogenicity of subunit vaccine against Bacillus anthracis. Vaccine 25:3111–3114

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Margaret Shillingford for assistance with greenhouse-grown plants and Dr. Natasha Kushnir for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidadi Yusibov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skarjinskaia, M. et al. (2013). Hairy Roots as a Vaccine Production and Delivery System. In: Doran, P. (eds) Biotechnology of Hairy Root Systems. Advances in Biochemical Engineering/Biotechnology, vol 134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_184

Download citation