Skip to main content

Perspectives of the Metabolic Engineering of Terpenoid Indole Alkaloids in Catharanthus roseus Hairy Roots

Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE,volume 134)

Abstract

This review looks back on how the terpenoid indole alkaloid pathway and the regulatory factors in Catharanthus roseus were identified and characterized, and how metabolic engineering, including genetic engineering and metabolic profiling, was conducted based on the gained knowledge. In addition, further examination of the terpenoid indole alkaloid pathway is proposed.

Keywords

  • Catharanthus roseus
  • Genetic engineering
  • Metabolic engineering
  • Metabolic profiling
  • Terpenoid indole alkaloids

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/10_2013_182
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-39019-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

16OMT:

16-Hydroxytabersonine-O-methyltransferase

AACT:

Acetyl-CoA C-acetyltransferase

ADH:

Acyclic monoterpene primary alcohol dehydrogenase

AS:

Anthranilate synthase

CaMV:

Cauliflower mosaic virus

C. roseus :

Catharanthus roseus

CMK:

4-Diphosphocytidyl-2-C-methyl-D-erythritol kinase

CMS:

4-Diphosphocytidyl-2-C-methyl-D-erythritol synthase

CPR:

Cytochrome P450 reductase

CrBPF:

C. roseus box P-binding factor

D4H:

Desacetoxyvindoline 4-hydroxylase

DAT:

Deacetylvindoline 4-O-acetyltransferase

DL7H:

7-Deoxyloganin 7-hydroxylase

DXR:

1-Deoxy-D-xylulose 5-phosphate reductoisomerase

DXS:

1-Deoxy-D-xylulose 5-phosphate synthase

E4P:

Erythrose 4-phosphate

E. coli :

Escherichia coli

ESI–MS-MS:

Electrospray ionization tandem mass spectrometer

ET:

Ethylene

G10H:

Geraniol 10-hydroxylase

GA:

Gibberellic acid

GBF:

G-box binding factors

GES:

Geraniol synthase

GPPS:

Geranyl diphosphate synthase

HDR:

1-Hydroxy-2-methyl-2-butenyl 4-diphosphate reductase

HDS:

1-Hydroxy-2-methyl-2-butenyl 4-diphosphate synthase

HMGR:

3-Hydroxy-3-methylglutaryl CoA reductase

HMGS:

3-Hydroxy-3-methylglutaryl CoA synthase

HPLC:

High-performance liquid chromatography

IDI:

Isopentenyl diphosphate isomerase

IPP:

Isopentenyl diphosphate

JA:

Jasmonic acid

LAMT:

Loganic acid methyl transferase

MALDI-TOF:

Matrix assisted laser desorption with time-of-flight detector

MAT:

Minovincinine 19-hydroxy-O-acetyltransferase

MC:

Monoterpene cyclase

MECS:

2-C-Methyl-D-erythritol 2,4-cyclodiphosphate synthase

MeJA:

Methyl jasmonic acid

MEP:

2-C-Methyl-D-erythritol 4-phosphate

MFA:

Metabolic flux analysis

MIAs:

Monoterpenoid indole alkaloids

MVA:

Mevalonic acid

MVD:

Mevalonate 5-diphosphate decarboxylase

MVK:

Mevalonate kinase

NMR:

Nuclear magnetic resonance

NMT:

N-methyltransferase

ORCAs:

Octadecanoid-responsive Catharanthus AP2/ERF domain

PDA:

Photo diode array

PEP:

Phosphoenolpyruvate

PMK:

5-Phosphomevalonate kinase

PRX1:

Peroxidase 1

SA:

Salicylic acid

SGD:

Strictosidine β-D-glucosidase

SLS:

Secologanin synthase

STR:

Strictosidine synthase

T16H:

Tabersonine 16-hydroxylase

T6,7E:

Tabersonine 6,7-epoxidase

TDC:

Tryptophan decarboxylase

TIAs:

Terpenoid indole alkaloids

TSP-MS:

Thermospray mass spectrometry

ZCT:

Zinc finger Catharanthus transcription factor

References

  1. Luijendijk TJC, van der Meijden E, Verpoorte R (1996) Involvement of strictosidine as a defensive chemical in Catharanthus roseus. J Chem Ecol 22(8):1355–1366. doi:10.1007/bf02027718

    CrossRef  CAS  Google Scholar 

  2. Waterman P (1998) Chemical taxonomy of alkaloids. In: Roberts MF, Wink M (eds) Alkaloids: biochemistry, ecology, and medicinal applications. Plenum Press, New York, pp 87–107

    Google Scholar 

  3. Cordell G (1999) The monoterpene alkaloids. In: Cordell G (ed) The alkaloids: chemistry and physiology. Academic Press, San Diego, pp 261–376

    Google Scholar 

  4. van der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11(5):607–628

    CrossRef  Google Scholar 

  5. Schmidt B, Kutney J, Mayer L (1998) Anhydrovinblastine for the treatment of cervical and lung cancer. Patent EP0969839 A1, filed Mar 4, 1998, issued Jan 12, 2000. http://www.google.com/patents/EP0969839A1?cl=en

  6. Vantellingen O, Sips JHM, Beijnen JH, Bult A, Nooijen WJ (1992) Pharmacology, bioanalysis and pharmacokinetics of the vinca alkaloids and semisynthetic derivatives. Anticancer Res 12(5):1699–1715

    CAS  Google Scholar 

  7. Noble RL (1990) The discovery of the vinca alkaloids—chemotherapeutic agents against cancer. Biochem Cell Biol 68(12):1344–1351

    PubMed  CrossRef  CAS  Google Scholar 

  8. Carew DP (1966) Growth of callus tissue of Catharanthus roseus in suspension culture. J Pharm Sci 55(10):1153–1154. doi:10.1002/jps.2600551041

    CrossRef  CAS  Google Scholar 

  9. Endo T, Goodbody A, Vukovic J, Misawa M (1988) Enzymes from Catharanthus roseus cell suspension cultures that couple vindoline and catharanthine to form 3’,4’-anhydrovinblastine. Phytochemistry 27(7):2147–2149

    CrossRef  CAS  Google Scholar 

  10. Goodbody A, Endo T, Vukovic J, Misawa M (1988) The coupling of catharanthine and vindoline to form 3’,4’-anhydrovinblastine by haemoproteins and haemin. Planta Med 54(3):210–214. doi:10.1055/s-2006-962406

    PubMed  CrossRef  CAS  Google Scholar 

  11. Fujita Y, Hara Y, Morimoto T, Misawa M (1990) Semisynthetic production of vinblastine involving cell cultures of Catharanthus roseus and chemical reaction. In: Nijkamp HJJ, van der Plas LHW, van Aartrijk J (eds) Progress in plant cellular and molecular biology : proceedings of the VIIth International Congress on Plant Tissue and Cell Culture. Kluwer Academic Publishers, Amsterdam, pp 738–743

    Google Scholar 

  12. Bede J, Dicosmo F (1992) Enzymatic synthesis of alpha-3’,4’-anhydrovinblastine: optimization and immobilization. Planta Med 58(7 SUPPL. 1):A576

    Google Scholar 

  13. Flores HE, Hoy MW, Pickard JJ (1987) Secondary metabolites from root cultures. Trends Biotechnol 5(3):64–69. doi:10.1016/s0167-7799(87)80013-6

    CrossRef  CAS  Google Scholar 

  14. Hamill JD, Parr AJ, Rhodes MJC, Robins RJ, Walton NJ (1987) New routes to plant secondary products. Nat Biotechnol 5(8):800–804. doi:10.1038/nbt0887-800

    CrossRef  CAS  Google Scholar 

  15. Jung G, Tepfer D (1987) Use of genetic transformation by the Ri T-DNA of Agrobacterium rhizogenes to stimulate biomass and tropane alkaloid production in Atropa belladonna and Calystegia sepium roots grown in vitro. Plant Sci 50(2):145–151. doi:10.1016/0168-9452(87)90151-8

    CrossRef  CAS  Google Scholar 

  16. Contin A, van der Heijden R, Lefeber AWM, Verpoorte R (1998) The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture. FEBS Lett 434(3):413–416. doi:10.1016/s0014-5793(98)01022-9

    PubMed  CrossRef  CAS  Google Scholar 

  17. Courdavault V, Burlat V, St-Pierre B, Giglioli-Guivarc’h N (2005) Characterisation of CaaX-prenyltransferases in Catharanthus roseus: relationships with the expression of genes involved in the early stages of monoterpenoid biosynthetic pathway. Plant Sci 168(4):1097–1107. doi:10.1016/j.plantsci.2004.12.010

    CrossRef  CAS  Google Scholar 

  18. Rodríguez-Concepción M, Boronat A, Rodríguez-Concepción M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130(3):1079–1089. doi:10.1104/pp.007138

    Google Scholar 

  19. Chahed K, Oudin A, Guivarc’h N, Hamdi S, Chenieux JC, Rideau M, Clastre M (2000) 1-Deoxy-D-xylulose 5-phosphate synthase from periwinkle: cDNA identification and induced gene expression in terpenoid indole alkaloid-producing cells. Plant Physiol Bioch 38(7–8):559–566. doi:10.1016/s0981-9428(00)00781-6

    CrossRef  CAS  Google Scholar 

  20. Veau B, Courtois M, Oudin A, Chenieux JC, Rideau M, Clastre M (2000) Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus. Biochim Biophys Acta 1517(1):159–163

    PubMed  CrossRef  CAS  Google Scholar 

  21. Friesen JA, Rodwell VW (2004) The 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductases. Genome Biol 5(11):248. doi:10.1186/gb-2004-5-11-248

    PubMed  CrossRef  Google Scholar 

  22. Ness GC, Chambers CM (2000) Feedback and hormonal regulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase: the concept of cholesterol buffering capacity. Proc Soc Exp Biol Med 224(1):8–19

    PubMed  CrossRef  CAS  Google Scholar 

  23. Suttipanta N, Pattanaik S, Gunjan S, Xie CH, Littleton J, Yuan L (2007) Promoter analysis of the Catharanthus roseus geraniol 10-hydroxylase gene involved in terpenoid indole alkaloid biosynthesis. Biochim Biophys Acta 1769(2):139–148. doi:10.1016/j.bbaexp.2007.01.006

    PubMed  CrossRef  CAS  Google Scholar 

  24. Canto-Canche BB, Loyola-Vargas VM (2000) Non-coordinated response of cytochrome P450-dependent geraniol 10-hydroxylase and NADPH: Cyt C (P-450) reductase in Catharanthus roseus hairy roots under different conditions. Phyton-Int J Exp Bot 66:183–190

    CAS  Google Scholar 

  25. McFarlane J, Madyastha KM, Coscia CJ (1975) Regulation of secondary metabolism in higher plants. Effect of alkaloids on a cytochrome P-450 dependent monooxygenase. Biochem Biophys Res Commun 66(4):1263–1269. doi:10.1016/0006-291X(75)90495-7

    PubMed  CrossRef  CAS  Google Scholar 

  26. Arvy MP, Imbault N, Naudascher F, Thiersault M, Doireau P (1994) 2,4-D and alkaloid accumulation in periwinkle cell suspensions. Biochimie 76(5):410–416

    PubMed  CrossRef  CAS  Google Scholar 

  27. Contin A, Rvd Heijden, Verpoorte R (1999) Accumulation of loganin and secologanin in vacuoles from suspension cultured Catharanthus roseus cells. Plant Sci 147(2):177–183. doi:10.1016/S0168-9452(99)00115-6

    CrossRef  CAS  Google Scholar 

  28. Li J, Last RL (1996) The Arabidopsis thaliana trp5 mutant has a feedback-resistant anthranilate synthase and elevated soluble tryptophan. Plant Physiol 110(1):51–59

    PubMed  CrossRef  CAS  Google Scholar 

  29. Noe W, Mollenschott C, Berlin J (1984) Tryptophan decarboxylase from Catharanthus roseus cell suspension cultures purification, molecular and kinetic data of the homogenous protein. Plant Mol Biol 3(5):281–288. doi:10.1007/bf00017782

    CrossRef  CAS  Google Scholar 

  30. Pasquali G, Goddijn OJ, de Waal A, Verpoorte R, Schilperoort RA, Hoge JH, Memelink J (1992) Coordinated regulation of two indole alkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors. Plant Mol Biol 18(6):1121–1131

    PubMed  CrossRef  CAS  Google Scholar 

  31. Menke FL, Champion A, Kijne JW, Memelink J (1999) A novel jasmonate—and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate—and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 18(16):4455–4463. doi:10.1093/emboj/18.16.4455

    PubMed  CrossRef  CAS  Google Scholar 

  32. Facchini PJ, De Luca V (2008) Opium poppy and Madagascar periwinkle: model non-model systems to investigate alkaloid biosynthesis in plants. Plant J 54(4):763–784. doi:10.1111/j.1365-313X.2008.03438.x

    PubMed  CrossRef  CAS  Google Scholar 

  33. Burlat V, Oudin A, Courtois M, Rideau M, St-Pierre B (2004) Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites. Plant J 38(1):131–141. doi:10.1111/j.1365-313X.2004.02030.x

    PubMed  CrossRef  CAS  Google Scholar 

  34. El-Sayed M, Verpoorte R (2004) Growth, metabolic profiling and enzymes activities of Catharanthus roseus seedlings treated with plant growth regulators. Plant Growth Regul 44(1):53–58. doi:10.1007/s10725-004-2604-5

    CrossRef  CAS  Google Scholar 

  35. Peebles CA, Hughes EH, Shanks JV, San KY (2009) Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time. Metab Eng 11(2):76–86. doi:10.1016/j.ymben.2008.09.002

    PubMed  CrossRef  CAS  Google Scholar 

  36. van der Fits L, Memelink J, van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Sci Signal 289(5477):295. doi:10.1126/science.289.5477.295

    Google Scholar 

  37. Li CY, Leopold AL, Sander GW, Shanks JV, Zhao L, Gibson SI (2013) The ORCA2 transcription factor plays a key role in regulation of the terpenoid indole alkaloid pathway. (manuscript submitted)

    Google Scholar 

  38. van der Fits L, Zhang H, Menke FL, Deneka M, Memelink J (2000) A Catharanthus roseus BPF-1 homologue interacts with an elicitor-responsive region of the secondary metabolite biosynthetic gene Str and is induced by elicitor via a JA-independent signal transduction pathway. Plant Mol Biol 44(5):675–685

    PubMed  CrossRef  Google Scholar 

  39. Chatel G, Montiel G, Pre M, Memelink J, Thiersault M, Saint-Pierre B, Doireau P, Gantet P (2003) CrMYC1, a Catharanthus roseus elicitor- and jasmonate-responsive bHLH transcription factor that binds the G-box element of the strictosidine synthase gene promoter. J Exp Bot 54(392):2587–2588. doi:10.1093/jxb/erg275

    PubMed  CrossRef  CAS  Google Scholar 

  40. Zhang HT, Hedhili S, Montiel G, Zhang YX, Chatel G, Pre M, Gantet P, Memelink J (2011) The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. Plant J 67(1):61–71. doi:10.1111/j.1365-313X.2011.04575.x

    PubMed  CrossRef  CAS  Google Scholar 

  41. Pauw B, Hilliou FA, Martin VS, Chatel G, de Wolf CJ, Champion A, Pre M, van Duijn B, Kijne JW, van der Fits L, Memelink J (2004) Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus. J Biol Chem 279(51):52940–52948. doi:10.1074/jbc.M404391200

    PubMed  CrossRef  CAS  Google Scholar 

  42. Sibéril Y, Benhamron S, Memelink J, Giglioli-Guivarc’h N, Thiersault M, Boisson B, Doireau P, Gantet P (2001) Catharanthus roseus G-box binding factors 1 and 2 act as repressors of strictosidine synthase gene expression in cell cultures. Plant Mol Biol 45(4):477–488

    PubMed  CrossRef  Google Scholar 

  43. Suttipanta N, Pattanaik S, Kulshrestha M, Patra B, Singh SK, Yuan L (2011) The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 157(4):2081–2093. doi:10.1104/pp.111.181834

    PubMed  CrossRef  CAS  Google Scholar 

  44. Suttipanta N (2011) Characterization of G10H promoter and isolation of WRKY transcription factors involved in Catharanthus terpenoid indole alkaloid biosynthesis pathway. University of Kentucky, Lexington

    Google Scholar 

  45. Hughes EH, Shanks JV (2002) Metabolic engineering of plants for alkaloid production. Metab Eng 4(1):41–48. doi:10.1006/mben.2001.0205

    PubMed  CrossRef  CAS  Google Scholar 

  46. Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004) Expression of a feedback-resistant anthranilate synthase in Catharanthus roseus hairy roots provides evidence for tight regulation of terpenoid indole alkaloid levels. Biotechnol Bioeng 86(6):718–727. doi:10.1002/bit.20081

    PubMed  CrossRef  CAS  Google Scholar 

  47. Hong SB, Peebles CA, Shanks JV, San KY, Gibson SI (2006) Expression of the Arabidopsis feedback-insensitive anthranilate synthase holoenzyme and tryptophan decarboxylase genes in Catharanthus roseus hairy roots. J Biotechnol 122. doi:10.1016/j.jbiotec.2005.08.008 (The Netherlands)

  48. Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004) Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metab Eng 6(4):268–276. doi:10.1016/j.ymben.2004.03.002

    PubMed  CrossRef  CAS  Google Scholar 

  49. Sander G (2009) Quantitative analysis of metabolic pathways in Catharanthus roseus hairy roots metabolically engineered for terpenoid indole alkaloid overproduction. Iowa State University, Ames, Iowa

    Google Scholar 

  50. Peebles CAM, Sander GW, Hughes EH, Peacock R, Shanks JV, San K-Y (2011) The expression of 1-deoxy-d-xylulosesynthase and geraniol-10-hydroxylase or anthranilate synthase increases terpenoid indole alkaloid accumulation in Catharanthus roseus hairy roots. Metab Eng 13(2):234–240. doi:10.1016/j.ymben.2010.11.005

    PubMed  CrossRef  CAS  Google Scholar 

  51. Magnotta M, Murata J, Chen J, Luca VD (2007) Expression of deacetylvindoline-4-O-acetyltransferase in Catharanthus roseus hairy roots. Phytochemistry 68(14):1922–1931. doi:10.1016/j.phytochem.2007.04.037

    PubMed  CrossRef  CAS  Google Scholar 

  52. Sander G (2009) Quantitative analysis of metabolic pathways in Catharanthus roseus hairy roots metabolically engineered for terpenoid indole alkaloid overproduction. Iowa State University, Ames, Iowa

    Google Scholar 

  53. Menke FLH, Champion A, Kijne JW, Memelink J (1999) A novel jasmonate—and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene Str interacts with a jasmonate—and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J 18(16):4455–4463. doi:10.1093/emboj/18.16.4455

    PubMed  CrossRef  CAS  Google Scholar 

  54. Nielsen J, Oliver S (2005) The next wave in metabolome analysis. Trends Biotechnol 23(11):544–546. doi:10.1016/j.tibtech.2005.08.005

    PubMed  CrossRef  CAS  Google Scholar 

  55. Verpoorte R, van der Heijden R, ten Hoopen HJG, Memelink J (1999) Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol Lett 21(6):467–479. doi:10.1023/a:1005502632053

    CrossRef  CAS  Google Scholar 

  56. Capell T, Christou P (2004) Progress in plant metabolic engineering. Curr Opin Biotechnol 15(2):148–154. doi:10.1016/j.copbio.2004.01.009

    PubMed  CrossRef  CAS  Google Scholar 

  57. Bringmann G, Wohlfarth M, Rischer H, Schlauer J, Brun R (2002) Extract screening by HPLC coupled to MS–MS, NMR, and CD: a dimeric and three monomeric naphthylisoquinoline alkaloids from Ancistrocladus griffithii. Phytochemistry 61(2):195–204

    PubMed  CrossRef  CAS  Google Scholar 

  58. Hisiger S, Jolicoeur M (2007) Analysis of Catharanthus roseus alkaloids by HPLC. Phytochem Rev 6(2–3):207–234

    CrossRef  CAS  Google Scholar 

  59. Chu I-H, Bodnar JA, Bowman RN, White EL (2006) Determination of vincristine and vinblastine in Catharanthus roseus plants by high performance liquid chromatography/electrospray ionization mass spectrometry. J Liq Chromatogr Relat Technol 20(8):1159–1174 (April 1997)

    Google Scholar 

  60. Peebles CA, Hong SB, Gibson SI, Shanks JV, San KY (2005) Transient effects of overexpressing anthranilate synthase alpha and beta subunits in Catharanthus roseus hairy roots. Biotechnol Prog 21(5):1572–1576. doi:10.1021/bp050210l

    PubMed  CrossRef  CAS  Google Scholar 

  61. Morgan JA, Barney CS, Penn AH, Shanks JV (2000) Effects of buffered media upon growth and alkaloid production of Catharanthus roseus hairy roots. Appl Microbiol Biotechnol 53(3):262–265

    PubMed  CrossRef  CAS  Google Scholar 

  62. Tikhomiroff C, Jolicoeur M (2002) Screening of Catharanthus roseus secondary metabolites by high-performance liquid chromatography. J Chromatogr A 955(1):87–93

    PubMed  CrossRef  CAS  Google Scholar 

  63. Mans DR, da Rocha AB, Schwartsmann G (2000) Anti-cancer drug discovery and development in Brazil: targeted plant collection as a rational strategy to acquire candidate anti-cancer compounds. Oncologist 5(3):185–198

    PubMed  CrossRef  CAS  Google Scholar 

  64. Zhou H, Tai Y, Sun C, Pan Y (2005) Rapid identification of vinca alkaloids by direct-injection electrospray ionisation tandem mass spectrometry and confirmation by high-performance liquid chromatography-mass spectrometry. Phytochem Anal 16(5):328–333

    PubMed  CrossRef  CAS  Google Scholar 

  65. Bringmann G, Wohlfarth M, Heubes M (2000) Observation of exchangeable protons by high-performance liquid chromatography-nuclear magnetic resonance spectroscopy and high-performance liquid chromatography-electrospray ionization mass spectrometry: a useful tool for the hyphenated analysis of natural products. J Chromatogr A 904(2):243–249

    PubMed  CrossRef  CAS  Google Scholar 

  66. Ratcliffe RG, Shachar-Hill Y (2005) Revealing metabolic phenotypes in plants: inputs from NMR analysis. Biol Rev Camb Philos Soc 80(1):27–43

    PubMed  CrossRef  CAS  Google Scholar 

  67. Sauer U (2004) High-throughput phenomics: experimental methods for mapping fluxomes. Curr Opin Biotechnol 15(1):58–63. doi:10.1016/j.copbio.2003.11.001

    PubMed  CrossRef  CAS  Google Scholar 

  68. Sweetlove LJ, Fernie AR (2005) Regulation of metabolic networks: understanding metabolic complexity in the systems biology era. New Phytol 168(1):9–24. doi:10.1111/j.1469-8137.2005.01513.x

    PubMed  CrossRef  CAS  Google Scholar 

  69. Ratcliffe RG, Shachar-Hill Y (2006) Measuring multiple fluxes through plant metabolic networks. Plant J 45(4):490–511. doi:10.1111/j.1365-313X.2005.02649.x

    PubMed  CrossRef  CAS  Google Scholar 

  70. Sweetlove LJ, Last RL, Fernie AR (2003) Predictive metabolic engineering: a goal for systems biology. Plant Physiol 132(2):420–425

    PubMed  CrossRef  CAS  Google Scholar 

  71. Morgan JA, Shanks JV (2002) Quantification of metabolic flux in plant secondary metabolism by a biogenetic organizational approach. Metab Eng 4(3):257–262

    PubMed  CrossRef  Google Scholar 

  72. Murata J, Roepke J, Gordon H, De Luca V (2008) The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell 20(3):524–542. doi:10.1105/tpc.107.056630

    PubMed  CrossRef  CAS  Google Scholar 

  73. Goddijn OJ, de Kam RJ, Zanetti A, Schilperoort RA, Hoge JH (1992) Auxin rapidly down-regulates transcription of the tryptophan decarboxylase gene from Catharanthus roseus. Plant Mol Biol 18(6):1113–1120

    PubMed  CrossRef  CAS  Google Scholar 

  74. Quint M, Gray WM (2006) Auxin signaling. Curr Opin Plant Biol 9(5):448–453. doi:10.1016/j.pbi.2006.07.006

    PubMed  CrossRef  CAS  Google Scholar 

  75. Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59:443–465. doi:10.1146/annurev.arplant.58.032806.103805 (Annual Review of Plant Biology. Annual Reviews, Palo Alto)

    Google Scholar 

  76. Lee-Parsons CWT, Erturk S (2005) Ajmalicine production in methyl jasmonate-induced Catharanthus roseus cell cultures depends on Ca2+ level. Plant Cell Rep 24(11):677–682. doi:10.1007/s00299-005-0026-0

    PubMed  CrossRef  CAS  Google Scholar 

  77. Oksman-Caldentey KM, Inze D (2004) Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci 9(9):433–440. doi:10.1016/j.tplants.2004.07.006

    PubMed  CrossRef  CAS  Google Scholar 

  78. Dafny-Yelin M, Tzfira T (2007) Delivery of multiple transgenes to plant cells. Plant Physiol. doi:10.1104/pp.107.106104

    Google Scholar 

  79. Lin L, Liu Y-G, Xu X, Li B (2003) Efficient linking and transfer of multiple genes by a multigene assembly and transformation vector system. Proc Natl Acad Sci U S A. doi:10.1073/pnas.0931425100

    Google Scholar 

  80. Hadi MZ, McMullen MD, Finer JJ (1996) Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep 15(7):500–505

    CrossRef  CAS  Google Scholar 

  81. Clarkson C, Staerk D, Hansen SH, Smith PJ, Jaroszewski JW (2006) Identification of major and minor constituents of Harpagophytum procumbens (devil’s claw) using HPLC-SPE-NMR and HPLC-ESIMS/APCIMS. J Nat Prod 69(9):1280–1288. doi:10.1021/np0601612

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Acknowledgments

We thank Al Fu for helping to draw the regulation map of the TIA biosynthesis pathway, Fig. 9. This material is based upon work supported by the National Science Foundation under Award No. CBET-1066879. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline V. Shanks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhao, L., Sander, G.W., Shanks, J.V. (2013). Perspectives of the Metabolic Engineering of Terpenoid Indole Alkaloids in Catharanthus roseus Hairy Roots. In: Doran, P. (eds) Biotechnology of Hairy Root Systems. Advances in Biochemical Engineering/Biotechnology, vol 134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_182

Download citation