Skip to main content

Metal Uptake and Nanoparticle Synthesis in Hairy Root Cultures

  • Chapter
  • First Online:
Biotechnology of Hairy Root Systems

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 134))

Abstract

Hairy roots are a convenient experimental tool for investigating the interactions between plant cells and metal ions. Hairy roots of species capable of hyperaccumulating Cd and Ni have been applied to investigate heavy metal tolerance in plants; hairy roots of nonhyperaccumulator species have also been employed in metal uptake studies. Furnace treatment of hairy root biomass containing high concentrations of Ni has been used to generate Ni-rich bio-ore suitable for metal recovery in phytomining applications. Hairy roots also have potential for biological synthesis of quantum dot nanocrystals. As plant cells intrinsically provide the confined spaces needed to limit the size of nanocrystals, hairy roots cultured in bioreactors under controlled conditions are a promising vehicle for the manufacture of peptide-capped semiconductor quantum dots.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Aird ELH, Hamill JD, Rhodes MJC (1988) Cytogenetic analysis of hairy root cultures from a number of plant species transformed by Agrobacterium rhizogenes. Plant Cell Tissue Organ Cult 15:47–57

    Article  Google Scholar 

  2. Al-Shalabi Z (2010) Production of cadmium sulphide quantum dots in tomato hairy root cultures. Dissertation, University of New South Wales, Australia

    Google Scholar 

  3. Bae W, Mehra RK (1998) Properties of glutathione- and phytochelatin-capped CdS bionanocrystallites. J Inorg Biochem 69:33–43

    Article  CAS  Google Scholar 

  4. Bailey RE, Smith AM, Nie S (2004) Quantum dots in biology and medicine. Physica E 25:1–12

    Article  CAS  Google Scholar 

  5. Boldt JR (1967) The winning of nickel. Methuen, London

    Google Scholar 

  6. Boominathan R, Doran PM (2002) Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New Phytol 156:205–215

    Article  CAS  Google Scholar 

  7. Boominathan R, Doran PM (2003) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol Bioeng 83:158–167

    Article  PubMed  CAS  Google Scholar 

  8. Boominathan R, Doran PM (2003) Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species. J Biotechnol 101:131–146

    Article  PubMed  CAS  Google Scholar 

  9. Boominathan R, Saha-Chaudhury NM, Sahajwalla V, Doran PM (2004) Production of nickel bio-ore from hyperaccumulator plant biomass: applications in phytomining. Biotechnol Bioeng 86:243–250

    Article  PubMed  CAS  Google Scholar 

  10. Brus L (1986) Zero-dimensional “excitons” in semiconductor clusters. IEEE J Quantum Elect 22:1909–1914

    Article  Google Scholar 

  11. Chen C, Huang D, Liu J (2009) Functions and toxicity of nickel in plants: recent advances and future prospects. Clean 37:304–313

    CAS  Google Scholar 

  12. Cheng F, Yu WM, Zhang XB, Ruan Y (2009) Quantum-dot-based technology for sensitive and stable detection of prostate stem cell antigen expression in human transitional cell carcinoma. Int J Biol Marker 24:271–276

    CAS  Google Scholar 

  13. Clemens S, Peršoh D (2009) Multi-tasking phytochelatin synthesis. Plant Sci 177:266–271

    Article  CAS  Google Scholar 

  14. Conesa HM, Evangelou MWH, Robinson BH, Schulin R (2012) A critical review of current state of phytotechnologies to remediate soils: still a promising tool? Sci World J. doi:10.1100/2012/173829

    Google Scholar 

  15. Conn S, Gilliham M (2010) Comparative physiology of elemental distributions in plants. Ann Bot 105:1081–1102

    Article  PubMed  CAS  Google Scholar 

  16. Cui R, Liu H–H, Xie H-Y, Zhang Z-L, Yang Y-R, Pang D-W, Xie Z-X, Chen B–B, Hu B, Shen P (2009) Living yeast cells as a controllable biosynthesizer for fluorescent quantum dots. Adv Funct Mater 19:2359–2364

    Article  CAS  Google Scholar 

  17. Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597

    Article  CAS  Google Scholar 

  18. Doran PM (2009) Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol Bioeng 103:60–76

    Article  PubMed  CAS  Google Scholar 

  19. Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    Article  PubMed  CAS  Google Scholar 

  20. Eapen S, Suseelan KN, Tivarekar S, Kotwal SA, Mitra R (2003) Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor. Environ Res 91:127–133

    Article  PubMed  CAS  Google Scholar 

  21. Edgar R, McKinstry M, Hwang J, Oppenheim AB, Fekete RA, Giulian G, Merril C, Nagashima K, Adhya S (2006) High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. P Natl Acad Sci U S A 103:4841–4845

    Article  CAS  Google Scholar 

  22. Flores HE (1987) Use of plant cells and organ culture in the production of biological chemicals. In: LeBaron HM, Mumma RO, Honeycutt RC, Duesing JH (eds) Biotechnology in agricultural chemistry, ACS Symp Ser 334. American Chemical Society, Washington, D.C., pp 66–86

    Chapter  Google Scholar 

  23. Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  24. Grill E, Winnacker E-L, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. P Natl Acad Sci U S A 84:439–443

    Article  CAS  Google Scholar 

  25. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650

    Article  CAS  Google Scholar 

  26. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51

    Article  PubMed  CAS  Google Scholar 

  27. Janoušková M, Vosátka M (2005) Response to cadmium of Daucus carota hairy roots dual cultures with Glomus intraradices and Gigaspora margarita. Mycorrhiza 15:217–224

    Article  PubMed  Google Scholar 

  28. Jin Z, Hildebrandt N (2012) Semiconductor quantum dots for in vitro diagnostics and cellular imaging. Trends Biotechnol 30:394–403

    Article  PubMed  CAS  Google Scholar 

  29. Jorge P, Martins MA, Trindade T, Santos JL, Farahi F (2007) Optical fiber sensing using quantum dots. Sensors 7:3489–3534

    Article  CAS  Google Scholar 

  30. Kairemo K, Erba P, Bergström K, Pauwels EKJ (2008) Nanoparticles in cancer. Curr Radiopharm 1:30–36

    Article  CAS  Google Scholar 

  31. Kloepfer JA, Mielke RE, Wong MS, Nealson KH, Stucky G, Nadeau JL (2003) Quantum dots as strain- and metabolism-specific microbiological labels. Appl Environ Microb 69:4205–4213

    Article  CAS  Google Scholar 

  32. Kramer IJ, Sargent EH (2011) Colloidal quantum dot photovoltaics: a path forward. ACS Nano 5:8506–8514

    Article  PubMed  CAS  Google Scholar 

  33. Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157

    Article  CAS  Google Scholar 

  34. Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils. Environ Pollut 153:497–522

    Article  PubMed  CAS  Google Scholar 

  35. Lux A, Martinka M, Vaculík M, White PJ (2011) Root responses to cadmium in the rhizosphere. J Exp Bot 62:21–37

    Article  PubMed  CAS  Google Scholar 

  36. Macek T, Kotrba P, Suchova M, Skacel F, Demnerova K, Ruml T (1994) Accumulation of cadmium by hairy-root cultures of Solanum nigrum. Biotechnol Lett 16:621–624

    Article  CAS  Google Scholar 

  37. Macek T, Kotrba P, Ruml T, Skácel F, Macková M (1997) Accumulation of cadmium ions by hairy root cultures. In: Doran PM (ed) Hairy roots: culture and applications. Harwood Academic, Amsterdam, pp 133–138

    Google Scholar 

  38. Maitani T, Kubota H, Sato K, Takeda M, Yoshihira K (1996) Induction of phytochelatin (class III metallothionein) and incorporation of copper in transformed hairy roots of Rubia tinctorum exposed to cadmium. J Plant Physiol 147:743–748

    Article  CAS  Google Scholar 

  39. Metzger L, Fouchault I, Glad C, Prost R, Tepfer D (1992) Estimation of cadmium availability using transformed roots. Plant Soil 143:249–257

    Article  CAS  Google Scholar 

  40. Montón H, Nogués C, Rossinyol E, Castell O, Roldán M (2009) QDs versus Alexa: reality of promising tools for immunocytochemistry. J Nanobiotechnol 7:4. doi:10.1186/1477-3155-7-4

    Article  Google Scholar 

  41. Nedelkoska TV, Doran PM (2000) Characteristics of heavy metal uptake by plant species with potential for phytoremediation and phytomining. Miner Eng 13:549–561

    Article  CAS  Google Scholar 

  42. Nedelkoska TV, Doran PM (2000) Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens. Biotechnol Bioeng 67:607–615

    Article  PubMed  CAS  Google Scholar 

  43. Nedelkoska TV, Doran PM (2001) Hyperaccumulation of nickel by hairy roots of Alyssum species: comparison with whole regenerated plants. Biotechnol Prog 17:752–759

    Article  PubMed  CAS  Google Scholar 

  44. Nepovím A, Podlipná R, Soudek P, Schröder P, Vanĕk T (2004) Effects of heavy metals and nitroaromatic compounds on horseradish glutathione S-transferase and peroxidase. Chemosphere 57:1007–1015

    Article  PubMed  Google Scholar 

  45. Nozik AJ, Williams F, Nenadović MT, Rajh T, Mićić OI (1985) Size quantization in small semiconductor particles. J Phys Chem 89:397–399

    Article  Google Scholar 

  46. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  PubMed  CAS  Google Scholar 

  47. Pinaud F, King D, Moore H-P, Weiss S (2004) Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. J Am Chem Soc 126:6115–6123

    Article  PubMed  CAS  Google Scholar 

  48. Prasad K, Jha AK (2010) Biosynthesis of CdS nanoparticles: an improved green and rapid procedure. J Colloid Interf Sci 342:68–72

    Article  CAS  Google Scholar 

  49. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? and what makes them so interesting? Plant Sci 180:169–181

    Article  PubMed  CAS  Google Scholar 

  50. Reese RN, Winge DR (1988) Sulfide stabilization of the cadmium-γ-glutamyl peptide complex of Schizosaccharomyces pombe. J Biol Chem 263:12832–12835

    PubMed  CAS  Google Scholar 

  51. Reese RN, White CA, Winge DR (1992) Cadmium-sulfide crystallites in Cd-(γEC)nG peptide complexes from tomato. Plant Physiol 98:225–229

    Article  PubMed  CAS  Google Scholar 

  52. Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, De Dominicis V (1997) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86

    Article  CAS  Google Scholar 

  53. Rossetti R, Ellison JL, Gibson JM, Brus LE (1984) Size effects in the excited electronic states of small colloidal CdS crystallites. J Chem Phys 80:4464–4469

    Article  CAS  Google Scholar 

  54. Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898

    Article  PubMed  Google Scholar 

  55. Sheoran V, Sheoran AS, Poonia P (2009) Phytomining: a review. Miner Eng 22:1007–1019

    Article  CAS  Google Scholar 

  56. Stroinski A, Zielezinska M (1997) Cadmium effect on hydrogen peroxide, glutathione and phytochelatin levels in potato tuber. Acta Physiol Plant 19:127–135

    Article  CAS  Google Scholar 

  57. Van Nevel L, Mertens J, Oorts K, Verheyen K (2007) Phytoextraction of metals from soils: how far from practice? Environ Pollut 150:34–40

    Article  PubMed  Google Scholar 

  58. Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  PubMed  CAS  Google Scholar 

  59. Welch RM (1995) Micronutrient nutrition of plants. Crit Rev Plant Sci 14:49–82

    CAS  Google Scholar 

  60. Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  61. Williams P, Keshavarz-Moore E, Dunnill P (2002) Schizosaccharomyces pombe fed-batch culture in the presence of cadmium for the production of cadmium sulphide quantum semiconductor dots. Enzyme Microb Tech 30:354–362

    Article  CAS  Google Scholar 

  62. Wu S, Zu Y, Wu M (2001) Cadmium response of the hairy root culture of the endangered species Adenophora lobophylla. Plant Sci 160:551–562

    Article  PubMed  CAS  Google Scholar 

  63. Zhao F-J, McGrath SP (2009) Biofortification and phytoremediation. Curr Opinion Plant Biol 12:373–380

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Australian Research Council (ARC). We are grateful to Christopher Marquis and Scott Mins in the Recombinant Products Facility, University of New South Wales, for their assistance with protein purification, and to Marion Stevens-Kalceff for assistance with particle size estimation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline M. Doran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Al-Shalabi, Z., Doran, P.M. (2013). Metal Uptake and Nanoparticle Synthesis in Hairy Root Cultures. In: Doran, P. (eds) Biotechnology of Hairy Root Systems. Advances in Biochemical Engineering/Biotechnology, vol 134. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_180

Download citation

Publish with us

Policies and ethics