Skip to main content

The Microbial Desulfurization of Coal

  • Chapter
  • First Online:
Book cover Geobiotechnology II

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 142))

Abstract

The chemical structure of coal macerals is usually characterized by the presence of inorganic and organic sulfur. Inorganic sulfur consists mostly of iron sulfides, the so-called “pyritic sulfur,” whereas organic sulfur is covalently bound to the carbon atoms of the coal macromolecule. Comminution of coal to sizes that liberate the iron sulfide grains makes their removal with mineral beneficiation processes theoretically possible, but practically profitless. Microbial removal of pyritic sulfur has been extensively investigated over the last 50 years and the very promising results obtained have encouraged the design and construction of a semi-commercial pilot plant in the framework of Project JOULE 0039 funded by the European Commission. The results of the 1-year operation of this plant are reported here, the most significant being the 90 % pyrite removal achieved in five stirred tank bioreactors operating with a 40 % solids suspension and the pyritic iron solubilization rate of 36 mg dm−3 h−1. Taking into account the very high price of the kWh in Italy, a rough estimate of the overall costs is in the range from 25 to 30 € per tonne of dry coal. So far the development of a microbial process for organic sulfur removal has shown to be much more difficult and less successful, although significant progress in laboratory research is reported.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C.E.C:

Commission of European Communities

DBT:

Dibenzothiophene

D.M.T:

Deutsche Montan Technologie

E.C:

European Community

E.N.I:

Ente Nazionale Idrocarburi

EPS:

Extracellular polymer substance

EU:

European Union

m.o.g:

Mesh-of-grind

References

  1. Am Geol Inst (1997) Dictionary of mining, mineral and related terms, 2nd edn. The American Geological Institute in cooperation with the Society for Mining, Metallurgy and Exploration

    Google Scholar 

  2. Andrews G (1989) Reactors for scaling up coal bioprocessing. EPRI symposium on biological processing of coal and coal-derived substances, Palo Alto, CA, USA, pp 1–17

    Google Scholar 

  3. Andrews G, Datta R (1991) Mass and energy balances for coal-based microbial systems. In: Proceedings of the second international symposium on biological processing of coal, San Diego, CA, USA. EPRI US Department of Energy: 2-1-2-21

    Google Scholar 

  4. Andrews G, Quintana J (1990) Mixing and mass transfer in an aerated trough bioreactor. In: Proceedings of the first international symposium on biological processing of coal. Orlando, FL, USA; Palo Alto, CA, USA. Electric Power Research Institute: 5-69-5-85

    Google Scholar 

  5. ASTM International D2492-02 (2007) Standard Test Method for Forms of Sulfur in Coal. West Conshohocken, PA 19428-2959

    Google Scholar 

  6. Beyer M, Ebner HG, Klein J (1986) Influence of pulp density and bioreactor design on microbial desulphurization of coal. Appl Microbiol Biotechnol 24:342–346

    CAS  Google Scholar 

  7. Bos P, Huber TF, Kos CH, Ras C, Kuenen JG (1986) A Dutch feasibility study on microbial coal desulphurization. In: Lawrence RD, Branion RMR, Ebner HGR, Ritcey GM (eds) Process metallurgy. Elsevier, Amsterdam

    Google Scholar 

  8. Cara J, Carballo MT, Mora A, Bonilla D, Escolano O, Garcia Frutos FJ (2005) Biodesulphurisation of high sulphur coal by heap leaching. Fuel 84:1905–1910

    Article  CAS  Google Scholar 

  9. Cardona IC, Marquez MA (2009) Biodesulfurization of two Colombian coals with native microorganisms. Fuel Procesa Technol 90:1099–1106

    Article  CAS  Google Scholar 

  10. Carta M, Del Fa’ C, Agus M, Carbini P (1978) Studio di una campionatura del I fascio della Miniera di Seruci del Bacino carbonifero del Sulcis. Resoconti dell’Associazione Mineraria Sarda LXXXIV(1):111–169

    Google Scholar 

  11. Casagrande DJ (1987) Sulphur in peat and coal. In: Scott AC (ed) Coal and coal-bearing Strata: Recent Advances. Geological Society, London

    Google Scholar 

  12. Chandra D, Mishra AK (1988) Desulfurization of coal by bacterial means. Resour Conserv Recycl 1:293–308

    Article  CAS  Google Scholar 

  13. Chandra D, Roy P, Mishra AK, Chakrabarti JN, Sengupta B (1979) Microbial removal of organic sulfur from coal. Fuel 58:549–550

    Article  CAS  Google Scholar 

  14. Chen CCY, Skidmore DR (1989) Sulfur leaching by thermophilic microbes of coal particles varying in size. In: Schreiner BJ, Doyle FM, Kawatra SK (eds) Biotechnology in minerals and metal processing. Society of Mining Engineers Inc., Littleton

    Google Scholar 

  15. Chen CCY, Skidmore DR (1990) Microbial coal desulfurization with thermophilic microorgnisms. In: Wise DL (ed) Bioprocess biotreat coal. Marcel Dekker Inc, New York

    Google Scholar 

  16. Colmer AR, Hinkle ME (1947) The role of micrioorganisms in acid mine drainage. A preliminary Report. Science 106(2751):253–256

    Article  CAS  Google Scholar 

  17. Cutright TJ (1995) Polycyclic aromatic hydrocarbon biodegradation and kinetics using Cunninghamella echinukata var, elegans. Int Biodeterior Biodegrad 95:397–408

    Google Scholar 

  18. De-wen H, Yan-jie L, Li-yuan C, Yun-yan W, Yan J, Bing P (2006) Desulfurization of coal by fungus. In: Kongolim F, Reddy RG (eds) Sohn international symposium advanced processing of metals and materials, thermo physicochem princ, vol 2. TMS, Warrendale

    Google Scholar 

  19. Edwards MF, Baker MR (1992) A review of liquid mixing equipment. In: Harnby N, Edwards MF, Nienow AW (eds) Mixing in the process industries, Butterworths Heinemann, London

    Google Scholar 

  20. Frassinetti S, Setti L, Corti A, Farrinelli P, Montevecchi P, Vallini G (1998) Biodegradation of dibenzothiophene by a nodulating isolate of Rhizobium meliloti. Can J Microbiol 44(3):289–297

    Article  CAS  Google Scholar 

  21. Given PH, Wyss WF (1961) The chemistry of sulfur in coal. British Coal Util Res Assoc Mon Bull 25:165–179.

    Google Scholar 

  22. Ghosh TK, Prelas MA (2009) Coal: Energy, resources and systems: volume 1: Fundamentals and non-renewable resources. Springer, Hamburg

    Google Scholar 

  23. Göckay CF, Yurteri RN (1983) Microbial desulfurization of lugnites by a thermophilic bacterium. FUEL 62:1223–1224

    Article  Google Scholar 

  24. Gray RJ, Schapiro N, Dole Coe G (1963) Distribution and forms of sulfur in high volatile Pittsburgh seam coal. Trans AIME 226:113–121

    Google Scholar 

  25. Haghighat FH, Fereshteh E, Mahnaz M (2003) Isolation of a dibenzothiophene desulfurizing bacterium from soil of Tabriz oil refinery. Iranian J Biotechnol 1(2):121–134

    CAS  Google Scholar 

  26. Hansford GS, Bailey AD (1993) Oxygen transfer limitation of bio-oxidation at high solids concentration. Torma AE, Wey JE, Lakshmanan VI (eds) Proceedings of the international biohydrometal symposium. The Metals, Minerals and Materials Society, Warrendale

    Google Scholar 

  27. Hedrich S, Schlömann M, Johnson DB (2011) The iron-oxidizing proteobacteria. Microbiol 157(Pt 6):1551–1564

    Article  CAS  Google Scholar 

  28. Höne H-J, Beyer M, Ebner HG, Klein J, Jüntgen H (1957) Microbial deaulphurization of coal—development and application of a slurry reactor. Chem Ing Technol 10:173–179

    Google Scholar 

  29. Isbister JD (1985) Mutant microorganism and its use in removing organic sulfur compounds. Atlantic Research Corporation. USA Patent (4808535)

    Google Scholar 

  30. Isbister JD, Doyle RC (1989) Mutant microorganism and its use in removing organic sulfur compounds. Atlantic Research Corporation. USA Patent (4562156)

    Google Scholar 

  31. Johnson DB, Hallberg KB (2009) Carbon, iron and sulfur metabolism in acidophilic micro-organisms. Adv Microb Physiol 54:201–255

    Article  CAS  Google Scholar 

  32. Julia De Fatima WM, Setti L, Lanzarini G, Pifferi PG (1996) Dibenzothiophene biodegradation by a pseudomonas sp.in poorly degradable organic solvents. Process Biochem 31(7):711–717

    Google Scholar 

  33. Karavaiko GI, Lobyreva LB (1994) An overview of the bacteria and archaea involved in removal of inorganic and organic sulfur compounds from coal. Fuel Process Technol 40:167–182

    Article  CAS  Google Scholar 

  34. Kargi F (1982) Microbiological coal desulphurization. Enzyme Microb Technol 4:13–19

    Article  CAS  Google Scholar 

  35. Kargi F (1990) Use of Sulfolobus acidocaldariusf for microbial desulfurization of coal. In: Wise DL (ed) Bioprocessing and biotreatment of coal., Marcel Dekker, Inc., New York

    Google Scholar 

  36. Kargi F, Robinson JM (1986) Removal of organic sulphur from bituminous coal. FUEL 65:397–399

    Google Scholar 

  37. Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen.nov., Halothiobacillus gen.nov., and Thermithiobacillus gen.nov. Int J Syst Evol Microbiol 50:511–516

    Google Scholar 

  38. Kilbane JJ II (1990) Sulfur-specific microbial metabolism of organic compounds. Resour Conserv Recycl 3:69–79

    Article  Google Scholar 

  39. Klein J, van Afferden M, Pfeifer F, Schacht S (1994) Microbial desulfurization of coal and oil. Fuel Process Technol 40(297):310

    Google Scholar 

  40. Klubek B, Ochman M, Nabe S, Clark D, Alam K, Abdulrashid N (1988) Microbial removal of organic sulphur from coal. Mineral Matters 10:1–3

    Google Scholar 

  41. Kodama K (1970) Microbial conversion of petro-sulfur compounds part III. Agr Biol Chem 34(9):1320–1324

    Article  CAS  Google Scholar 

  42. Kodama K, Umehara K, Shimizu K, Nakatani S, Minoda Y, Yamada K (1973) Identification of microbial products from dibenzothiophene and its proposed oxidation pathway. Agr Biol Chem 37(1):45–50

    Google Scholar 

  43. Laborde A, Gibson DT (1977) Metabolism of dibenzothiophene by Beijerinkia species. Appl Environ Microbiol 34(6):783–790

    CAS  Google Scholar 

  44. Leathen WW, Braley SA, McIntyre LD (1953) The role of bacteria in the formation of acid from certain sulfuritic constituents associated with bituminous coal. II. Ferrous iron oxidizing bacteria. Appl Bacteriol 1:65–68

    Google Scholar 

  45. Leung KM, Wanger G, Qiuquan G, Gorby Y, Southam G, Woon M, Jun Yang L (2011) Bacterial nanowires: conductive as silicon, soft as polymer. Soft Matter 7:6617–6621

    Google Scholar 

  46. Levine DG, Schlosberg RH, Silbernagel BG (1982) Understanding the chemistry and physics of coal structure (A Review). Proc Natl Acad Sci U S A 79:3365–3370

    Article  CAS  Google Scholar 

  47. Liu YA, Lin CJ (1976) Assessment of sulfur and ash removal from coals by magnetic separation. IEEE trans Magnetics, MAG 12:538–550

    Article  Google Scholar 

  48. Loi G, Mura A, Trois P, Rossi G (1994) Bioreactor performance versus solids concentration in coal biodepyritization. Fuel Process Technol 40:251–260

    Article  CAS  Google Scholar 

  49. Loi G, Mura A, Rossi G, Trois P (1994) The Porto Torres biodepyritization pilot plant: light and shade of one year operation. Fuel Process Technol 40:261–268

    Article  CAS  Google Scholar 

  50. Loi G, Rossi A, Trois P, Rossi G (2006) Continuous revolving barrel bioreactor tailored to the bioleaching microorganisms. Miner Metall Process 23(4):196–202

    CAS  Google Scholar 

  51. Monticello DJ, Bakker D, Finnerty WR (1985) Plasmid mediated degradation of dibenzothiophene by Pseudomonas species. Appl Environ Microbiol 49(4):756–760

    CAS  Google Scholar 

  52. Neavel R (1966) Sulfur in coal: its distribution in the seam and in mine products. Dissertation, Pennsylvania State University

    Google Scholar 

  53. Okibe N, Gericke M, Hallberg, KB, Barrie Johnson, D (2003) Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Appl Environ Microbiol 66(4):1936–1943

    Google Scholar 

  54. Oolman T (1993) Bioreactor design and scale up. Applications in minerals bioleaching. Torma AE, Wey JE, Lakshmanan VI (eds) Proceedings of the international symposium on biohydrometallurgy, vol 1. The Metals, Minerals and Materials Society, Warrendale, pp 401–415

    Google Scholar 

  55. Orsi N, Rossi G, Trois P, Va lenti PD, Zecchin A (1991) Coal biodesulphurization: design criteria of a pilot plant. Res Conserv Recycl 5:211–230

    Google Scholar 

  56. Pandey RA, Raman VK, Bodkhe SY, Handa BK, Bal AS (2005) Microbial desulfurization of coal containing pyritic sulfur in a continuously operated bench scale coal slurry reactor. Fuel 84:81–87

    Article  CAS  Google Scholar 

  57. Pinches A, Huberts L, van Staden M, Muehlbauer RM (1991) Development and optimization of bacterial oxidation processes using small-scale pilot plants. Colloquium bacterial oxidation. The South African Institute of Mining and Metallurgy, Johannesburg, pp 67–89

    Google Scholar 

  58. Rai C, Reyniers JP (1988) Microbial desulfurization of coal by organisms of the genus Pseudomonas. Biotechnol Progress 4:225–230

    Google Scholar 

  59. Rickard DT, Luther GW III (2007) Chemistry of Iron Sulfides. Chem Rev 107:514–562

    Article  CAS  Google Scholar 

  60. Rohwerder T, Sand W (2007) Mechanisms and biochemical fundamentals of bacterial metal sulfide oxidation. In: Donati E, Sand W, (eds) Microbial processing of metal sulfides. Springer, Dordrecht, pp 35–58 (The Netherlands)

    Google Scholar 

  61. Rossi G (1990) Biohydrometallurgy. McGraw-Hill Book Co., Hamburg

    Google Scholar 

  62. Rossi G (1993) Biodepyritization of coal: achievements and problems. Fuel 72(12):1581–1592

    Article  CAS  Google Scholar 

  63. Rossi G (1993) La miscelazione nei reattori per bioidrometallurgia. ICP—Riv Ind Chimi 20(2):76–86

    Google Scholar 

  64. Rossi G (2001) The design of bioreactors. Hydrometall 59:217–231

    Article  CAS  Google Scholar 

  65. Roy GG, Sheckhar R (1996) Oxygen mass transfer in air-agitated Pachuca tanks—Part 1: Laboratory-scale experimental measurements. Part 2: Mathematical modelling of mass-transfer coefficients. Trans Inst Min Metall 105 (Section C):9–21

    Google Scholar 

  66. Runnion KN, Combi JD (1990) Microbial removal of organic sulfur from coal. 2/62–2/76

    Google Scholar 

  67. Schippers A (2007) Microorganisms involved in bioleaching and nucleic acid-based molecular methods for their identification and quantification. In: Donati E, Sand W (eds) Microbial processing of metal sulfides. Springer, Dordrecht, pp 3–33

    Chapter  Google Scholar 

  68. Sheckhar R, Evans JW (1989) Fluid flow in pachuca (air agitated)tanks: Part I. Laboratory-scale experimental measurements. Metall-Trans- B, pp 781–791.

    Google Scholar 

  69. Sheckhar R, Evans JW (1990) Fluid flow in pachuca (air agitated) tanks: Part II Mathematical modeling of flow in pachuca tanks. Metall Trans B 21:191–203

    Article  Google Scholar 

  70. Shinn JH (1984) From coal to single-stage and two-stage products: a reactive model of coal structure. Fuel 63:1187–1196

    Article  CAS  Google Scholar 

  71. Stach E, Taylor GH, Mackowski MT, Chandra D, Teichmuller M, Teichmuller R (1975) Stach’s textbook on coal petrology. Gebrüder Bornträger, Berlin

    Google Scholar 

  72. Stevens SE, Burgess WD (1989) Microbial desulfurization of coal. US Patent # 48511350

    Google Scholar 

  73. Stoner DL, Wey JE, Barrett KB, Jolley JG, Wright RB, Dugan PR (1990) Modification of water-soluble coal-derived products by dibenzothiophene-degrading microorganisms. Appl Environ Microbiol 56(9):2567–2675

    Google Scholar 

  74. Team of Experts (1994) A strategic document on the biological processing of fossil fuels. Fuel Process Technol 40:379–390

    Article  Google Scholar 

  75. Temple KL, Colmer AR (1951) The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans. J Bacteriol 62:605–611

    CAS  Google Scholar 

  76. Uhl W, Höne H-J, Beyer M, Klein J (1989) Continuous microbial desulfurization of coal—application of a multistage slurry reactor and analysis of the interactions of microbial and chemical kinetics. Biotechnol Bioeng 34:1341–1356

    Article  CAS  Google Scholar 

  77. Van Afferden M, Giralt MJ (1994) Desulfurization of dibenzothiophene by bacteria. World J Microbiol Biotechnol 10:510–516

    Article  Google Scholar 

  78. Van Afferden M, Schacht S, Beyer M, Klein J (1988) Microbial desulfurization of dibenzothiophene. Am Chem Soc 33(4):561–572

    Google Scholar 

  79. Van Afferden M, Schacht S, Klein J, Trüper HG (1990) Degradation of dibenzothiophene by Brevibacterium sp. DO. Arch Microbiol 153(4):324–328

    Article  Google Scholar 

  80. Whelan PF (1954) Finely disseminated sulfur compounds in British Coals. J Inst Fuel 27(164):455–457, 464

    Google Scholar 

  81. Wolfrum EA (1984) Correlations between petrographical properties, chemical structure, and technological behavior of Rhenish brown coal. In: Schobert H (ed) The chemistry of low-rank coals. American Chemical Society, Washington, DC

    Google Scholar 

  82. Young KD, Finnerty WR (1991) Molecular genetics of coal-based microbial systems. Workshop # 4 Electric Power Research Institute—US Department of Energy—Second international symposium on the biological processing of coal. San Diego, Ca, USA, pp 4-1–4-54

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rossi, G. (2013). The Microbial Desulfurization of Coal . In: Schippers, A., Glombitza, F., Sand, W. (eds) Geobiotechnology II. Advances in Biochemical Engineering/Biotechnology, vol 142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_178

Download citation

Publish with us

Policies and ethics