Skip to main content

Potential for Neural Differentiation of Mesenchymal Stem Cells

  • Chapter
  • First Online:
Mesenchymal Stem Cells - Basics and Clinical Application I

Abstract

Adult human stem cells have gained progressive interest as a promising source of autologous cells to be used as therapeutic vehicles. Particularly, mesenchymal stem cells (MSCs) represent a great tool in regenerative medicine because of their ability to differentiate into a variety of specialized cells. Among adult tissues in which MSCs are resident, adipose tissue has shown clear advantages over other sources of MSCs (ease of surgical access, availability, and isolation), making adipose tissue the ideal large-scale source for research on clinical applications. Stem cells derived from the adipose tissue (adipose-derived stem cells = ADSCs) possess a great and unique regenerative potential: they are self-renewing and can differentiate along several mesenchymal tissue lineages (adipocytes, osteoblasts, myocytes, chondrocytes, endothelial cells, and cardiomyocytes), among which neuronal-like cells gained particular interest. In view of the promising clinical applications in tissue regeneration, research has been conducted towards the creation of a successful protocol for achieving cells with a well-defined neural phenotype from adipose tissue. The promising results obtained open new scenarios for innovative approaches for a cell-based treatment of neurological degenerative disorders.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADSCs:

Adipose-derived stem cells

ALP:

Alkaline phosphatase

ATMPs:

Advanced therapy medicinal products

BDNF:

Brain-derived neurotrophic factor

BM:

Bone marrow

BMI:

Body mass index

BMP:

Bone morphogenetic protein

CNS:

Central nervous system

DMEM:

Dulbecco’s modified Eagle’s medium

EGF:

Epidermal growth factor

FBS:

Fetal bovine serum

FGF:

Fibroblast growth factor

GFAP:

Glial fibrillar acidic protein

GMP:

Good manufacturing practice

HBSS:

Hank’s balanced salts solution

HGF:

Hepatocyte growth factor

IF:

Intermediate filament

IGF:

Insulin growth factor

IHC:

Intracerebral hemorrhage

MAs:

Multicellular aggregates

MCAO:

Middle cerebral artery occlusion

MSCs:

Mesenchymal stem cells

NGF:

Nerve growth factor

NT:

Neurotrophin

P:

Passage

PLA:

Processed lipoaspirate

PNS:

Peripheral nervous systems

ROS:

Reactive oxygen species

rpm:

Revolution per minute

SCI:

Spinal cord injury

SCs:

Schwann cells

SVF:

Stromal-vascular fraction

TBI:

Traumatic brain injury

TGF:

Transforming growth factor

TNF:

Tumor necrosis factor

UCB:

Umbilical cord blood

References

  1. Aguiari P, Leo S, Zavan B et al (2008) High glucose induces adipogenic differentiation of muscle-derived stem cells. Proc Natl Acad Sci U SA 105:1226–1231

    CAS  Google Scholar 

  2. Ahrens N, Tormin A, Paulus M et al (2004) Mesenchymal stem cell content of human vertebral bone marrow. Transplantation 78:925–929

    Google Scholar 

  3. Al Battah F, De Kock J, Vanhaecke T et al (2011) Current status of human adipose-derived stem cells: differentiation into hepatocyte-like cells. ScientificWorldJournal 11:1568–1581

    CAS  Google Scholar 

  4. Amos PJ, Kapur SK, Stapor PC et al (2010) Human adipose-derived stromal cells accelerate diabetic wound healing: impact of cell formulation and delivery. Tissue Eng Part A 16:1595–1606

    CAS  Google Scholar 

  5. Arboleda D, Forostyak S, Jendelova P et al (2011) Transplantation of predifferentiated adipose-derived stromal cells for the treatment of spinal cord injury. Cell Mol Neurobiol 31:1113–1122

    CAS  Google Scholar 

  6. Arrigoni E, Lopa S, de Girolamo L et al (2009) Isolation, characterization and osteogenic differentiation of adipose-derived stem cells: from small to large animal models. Cell Tissue Res 338:401–411

    Google Scholar 

  7. Aust L, Devlin B, Foster SJ et al (2004) Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 6:7–14

    CAS  Google Scholar 

  8. Aziz A, Miyake T, Engleka KA et al (2009) Menin expression modulates mesenchymal cell commitment to the myogenic and osteogenic lineages. Dev Biol 332:116–130

    CAS  Google Scholar 

  9. Bailey AM, Kapur S, Katz AJ (2010) Characterization of adipose-derived stem cells: an update. Curr Stem Cell Res Ther 5:95–102

    CAS  Google Scholar 

  10. Banerjee M, Bhonde RR (2006) Application of hanging drop technique for stem cell differentiation and cytotoxicity studies. Cytotechnology 51:1–5

    Google Scholar 

  11. Belicchi M, Pisati F, Lopa R et al (2004) Human skin-derived stem cells migrate throughout forebrain and differentiate into astrocytes after injection into adult mouse brain. J Neurosci Res 77:475–486

    CAS  Google Scholar 

  12. Bieback K, Hecker A, Kocaömer A et al (2009) Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow. Stem Cells 27:2331–2341

    CAS  Google Scholar 

  13. Bieback K, Kinzebach S, Karagianni M (2011) Translating research into clinical scale manufacturing of mesenchymal stromal cells. Stem Cells Int 2010:193519

    Google Scholar 

  14. Blande IS, Bassaneze V, Lavini-Ramos C et al (2009) Adipose tissue mesenchymal stem cell expansion in animal serum-free medium supplemented with autologous human platelet lysate. Transfusion 49:2680–2685

    Google Scholar 

  15. Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294

    CAS  Google Scholar 

  16. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    CAS  Google Scholar 

  17. Carpenter MK, Inokuma MS, Denham J et al (2001) Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol 172:383–397

    CAS  Google Scholar 

  18. Casteilla L, Planat-Bénard V, Cousin B et al (2005) Plasticity of adipose tissue: a promising therapeutic avenue in the treatment of cardiovascular and blood diseases? Arch Mal Coeur Vaiss 98:922–926

    CAS  Google Scholar 

  19. Chen J, Li Y, Wang L, Zhang Z et al (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32:1005–1011

    CAS  Google Scholar 

  20. Chen J, Li Y, Katakowski M et al (2003) Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 73:778–786

    CAS  Google Scholar 

  21. Chen X, Li Y, Wang L et al (2002) Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology 22:275–279

    Google Scholar 

  22. Chi GF, Kim MR, Kim DW et al (2010) Schwann cells differentiated from spheroid-forming cells of rat subcutaneous fat tissue myelinate axons in the spinal cord injury. Exp Neurol 222:304–317

    CAS  Google Scholar 

  23. Choi YS, Noh SE, Lim SM et al (2008) Multipotency and growth characteristic of periosteum-derived progenitor cells for chondrogenic, osteogenic, and adipogenic differentiation. Biotechnol Lett 30:593–601

    CAS  Google Scholar 

  24. Cízková D, Rosocha J, Vanický I et al (2006) Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat. Cell Mol Neurobiol 26:1167–1180

    Google Scholar 

  25. da Justa Pinheiro CH, de Queiroz JC, Guimarães-Ferreira L et al (2011) Local injections of adipose-derived mesenchymal stem cells modulate inflammation and increase angiogenesis ameliorating the dystrophic phenotype in dystrophin-deficient skeletal muscle. Stem Cell Rev 8(2):363–374 (Epub ahead of print)

    Google Scholar 

  26. De Bari C, Dell’Accio F, Tylzanowski P et al (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44:1928–1942

    Google Scholar 

  27. Dodson MV, Hausman GJ, Guan L et al (2010) Skeletal muscle stem cells from animals I. Basic cell biology. Int J Biol Sci 6:465–474

    Google Scholar 

  28. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    CAS  Google Scholar 

  29. Elabd C, Chiellini C, Carmona M et al (2009) Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells 27:2753–2760

    CAS  Google Scholar 

  30. Faulkner J, Keirstead HS (2005) Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal cord injury. Transpl Immunol 15:131–142

    CAS  Google Scholar 

  31. Feng J, Mantesso A, Sharpe PT (2010) Perivascular cells as mesenchymal stem cells. Expert Opin Biol Ther 10:1441–1451

    Google Scholar 

  32. Fernandes KJ, Kobayashi NR, Gallagher CJ et al (2006) Analysis of the neurogenic potential of multipotent skin-derived precursors. Exp Neurol 201:32–48

    Google Scholar 

  33. Ferreira A, Caceres A (1992) Expression of the class III beta-tubulin isotype in developing neurons in culture. J Neurosci Res 32:516–529

    CAS  Google Scholar 

  34. Fink T, Rasmussen JG, Lund P et al (2011) Isolation and expansion of adipose-derived stem cells for tissue engineering. Front Biosci (Elite Ed) 3:256–263

    Google Scholar 

  35. Franco Lambert AP, Fraga Zandonai A, Bonatto D et al (2009) Differentiation of human adipose-derived adult stem cells into neuronal tissue: does it work? Differentiation 77:221–228

    Google Scholar 

  36. Freyberg S, Song YH, Muehlberg F et al (2009) Thrombin peptide (TP508) promotes adipose tissue-derived stem cell proliferation via PI3 kinase/Akt pathway. J Vasc Res 46:98–102

    CAS  Google Scholar 

  37. Gao J, Dennis JE, Muzic RF et al (2001) The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169:12–20

    CAS  Google Scholar 

  38. Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100:1249–1260

    CAS  Google Scholar 

  39. Gimble JM, Guilak F, Nuttall ME et al (2008) In vitro differentiation potential of mesenchymal stem cells. Transfus Med Hemother 35:228–238

    Google Scholar 

  40. Gimble JM, Bunnell BA, Chiu ES et al (2011) Concise review: Adipose-derived stromal vascular fraction cells and stem cells: let’s not get lost in translation. Stem Cells 29:749–754

    Google Scholar 

  41. Gruber HE, Somayaji S, Riley F et al (2012) Human adipose-derived mesenchymal stem cells: serial passaging, doubling time and cell senescence. Biotech Histochem 87:303–311

    CAS  Google Scholar 

  42. Guilak F, Lott KE, Awad HA et al (2006) Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J Cell Physiol 206:229–237

    CAS  Google Scholar 

  43. Hicok KC, Du Laney TV, Zhou YS et al (2004) Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng 10:371–380

    CAS  Google Scholar 

  44. Izadpanah R, Trygg C, Patel B et al (2006) Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 99:1285–1297

    CAS  Google Scholar 

  45. Jeon BG, Kumar BM, Kang EJ et al (2011) Characterization and comparison of telomere length, telomerase and reverse transcriptase activity and gene expression in human mesenchymal stem cells and cancer cells of various origins. Cell Tissue Res 345:149–161

    CAS  Google Scholar 

  46. Kakudo N, Minakata T, Mitsui T et al (2008) Proliferation-promoting effect of platelet-rich plasma on human adipose-derived stem cells and human dermal fibroblasts. Plast Reconstr Surg 122:1352–1360

    CAS  Google Scholar 

  47. Kang SK, Lee DH, Bae YC et al (2003) Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol 183:355–366

    CAS  Google Scholar 

  48. Kang YJ, Jeon ES, Song HY et al (2005) Role of c-Jun N-terminal kinase in the PDGF-induced proliferation and migration of human adipose tissue-derived mesenchymal stem cells. J Cell Biochem 95:1135–1145

    CAS  Google Scholar 

  49. Katz AJ, Tholpady A, Tholpady SS et al (2005) Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 23:412–423

    CAS  Google Scholar 

  50. Kim HJ, Im GI (2009) Combination of transforming growth factor-beta2 and bone morphogenetic protein 7 enhances chondrogenesis from adipose tissue-derived mesenchymal stem cells. Tissue Eng Part A 15:1543–1551

    CAS  Google Scholar 

  51. Kim JM, Lee ST, Chu K et al (2007) Systemic transplantation of human adipose stem cells attenuated cerebral inflammation and degeneration in a hemorrhagic stroke model. Brain Res 1183:43–50

    CAS  Google Scholar 

  52. Knippenberg M, Helder MN, Doulabi BZ et al (2005) Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation. Tissue Eng 11:1780–1788

    CAS  Google Scholar 

  53. Kocaoemer A, Kern S, Klüter H et al (2007) Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells 25:1270–1278

    CAS  Google Scholar 

  54. Kozlov G, Lee J, Elias D, Gravel M et al (2003) Structural evidence that brain cyclic nucleotide phosphodiesterase is a member of the 2H phosphodiesterase superfamily. J Biol Chem 278(46):46021–46028

    CAS  Google Scholar 

  55. Kubal WS (2012) Updated imaging of traumatic brain injury. Radiol Clin North Am 50:15–41

    Google Scholar 

  56. Kulikov AV, Stepanova MS, Stvolinsky SL (2008) Application of multipotent mesenchymal stromal cells from human adipose tissue for compensation of neurological deficiency induced by 3-nitropropionic Acid in rats. Bull Exp Biol Med 145:514–519

    CAS  Google Scholar 

  57. Lee J, Gravel M, Zhang R et al (2005) Process outgrowth in oligodendrocytes is mediated by CNP, a novel microtubule assembly myelin protein. J Cell Biol 170:661–673

    CAS  Google Scholar 

  58. Li Y, Chopp M, Chen J et al (2000) Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab 20:1311–1319

    CAS  Google Scholar 

  59. Lindroos B, Suuronen R, Miettinen S (2011) The potential of adipose stem cells in regenerative medicine. Stem Cell Rev 7:269–291

    Google Scholar 

  60. Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders–time for clinical translation? J Clin Invest 120:29–40

    CAS  Google Scholar 

  61. Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4:399–415

    CAS  Google Scholar 

  62. Locke M, Feisst V, Dunbar PR (2011) Concise review: human adipose-derived stem cells: separating promise from clinical need. Stem Cells 29:404–411

    CAS  Google Scholar 

  63. Lu D, Sanberg PR, Mahmood A et al (2002) Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury. Cell Transplant 11:275–281

    Google Scholar 

  64. Madonna R, Renna FV, Cellini C et al (2011) Age-dependent impairment of number and angiogenic potential of adipose tissue-derived progenitor cells. Eur J Clin Invest 41:126–133

    Google Scholar 

  65. Mahmood A, Lu D, Lu M et al (2003) Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery 53:697–702

    Google Scholar 

  66. Michalczyk K, Ziman M (2005) Nestin structure and predicted function in cellular cytoskeletal organisation. Histol Histopathol 20:665–671

    CAS  Google Scholar 

  67. Mitchell JB, McIntosh K, Zvonic S et al (2006) Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24:376–385

    Google Scholar 

  68. Miura M, Gronthos S, Zhao M et al (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100:5807–5812

    CAS  Google Scholar 

  69. Mojallal A, Lequeux C, Shipkov C et al (2011) Influence of age and body mass index on the yield and proliferation capacity of adipose-derived stem cells. Aesthetic Plast Surg 35:1097–1105

    Google Scholar 

  70. Oedayrajsingh-Varma MJ, van Ham SM, Knippenberg M et al (2006) Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy 8:166–177

    CAS  Google Scholar 

  71. Ogawa R, Mizuno H, Watanabe A et al (2004) Osteogenic and chondrogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice. Biochem Biophys Res Commun 313:871–877

    CAS  Google Scholar 

  72. Onda T, Honmou O, Harada K (2008) Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab 28:329–340

    CAS  Google Scholar 

  73. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    CAS  Google Scholar 

  74. Planat-Bénard V, Menard C, André M et al (2004) Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res 94:223–229

    Google Scholar 

  75. Puissant B, Barreau C, Bourin P et al (2005) Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 129:118–129

    Google Scholar 

  76. Rodriguez AM, Elabd C, Amri EZ et al (2005) The human adipose tissue is a source of multipotent stem cells. Biochimie 87:125–128

    CAS  Google Scholar 

  77. Romanov YA, Darevskaya AN, Merzlikina NV et al (2005) Mesenchymal stem cells from human bone marrow and adipose tissue: isolation, characterization, and differentiation potentialities. Bull Exp Biol Med 140:138–143

    CAS  Google Scholar 

  78. Rowland JW, Hawryluk GW, Kwon B et al (2008) Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus 25(5):E2

    Google Scholar 

  79. Safford KM, Safford SD, Gimble JM et al (2004) Characterization of neuronal/glial differentiation of murine adipose-derived adult stromal cells. Exp Neurol 187:319–328

    CAS  Google Scholar 

  80. Safwani WK, Makpol S, Sathapan S et al (2012) The impact of long-term in vitro expansion on the senescence-associated markers of human adipose-derived stem cells. Appl Biochem Biotechnol 166:2101–2113

    CAS  Google Scholar 

  81. Sakaguchi Y, Sekiya I, Yagishita K et al (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52:2521–2529

    Google Scholar 

  82. Savitz SI, Dinsmore JH, Wechsler LR et al (2004) Cell therapy for stroke. NeuroRx 1:406–414

    Google Scholar 

  83. Schipper BM, Marra KG, Zhang W et al (2008) Regional anatomic and age effects on cell function of human adipose-derived stem cells. Ann Plast Surg 60:538–544

    CAS  Google Scholar 

  84. Sekhon LH, Fehlings MG (2001) Epidemiology, demographics, and pathophysiology of acute spinal cord injury spine (Phila Pa 1976) 26(24 Suppl):S2–12

    Google Scholar 

  85. Seo BM, Miura M, Gronthos S et al (2004) Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155

    CAS  Google Scholar 

  86. Shi M, Ishikawa M, Kamei N et al (2009) Acceleration of skeletal muscle regeneration in a rat skeletal muscle injury model by local injection of human peripheral blood-derived CD133-positive cells. Stem Cells 27:949–960

    CAS  Google Scholar 

  87. Slaper-Cortenbach IC (2008) Current regulations for the production of multipotent mesenchymal stromal cells for clinical application. Transfus Med Hemother 35:295–298

    Google Scholar 

  88. Smith P, Adams WP Jr, Lipschitz AH et al (2006) Autologous human fat grafting: effect of harvesting and preparation techniques on adipocyte graft survival. Plast Reconstr Surg 117:1836–1844

    CAS  Google Scholar 

  89. Soncini M, Vertua E, Gibelli L et al (2007) Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med 1:296–305

    CAS  Google Scholar 

  90. Song L, Young NJ, Webb NE et al (2005) Origin and characterization of multipotential mesenchymal stem cells derived from adult human trabecular bone. Stem Cells Dev 14:712–721

    CAS  Google Scholar 

  91. Sterodimas A, de Faria J, Nicaretta B et al (2010) Tissue engineering with adipose-derived stem cells (ADSCs): current and future applications. J Plast Reconstr Aesthet Surg 63:1886–1892

    Google Scholar 

  92. Takamori Y, Mori T, Wakabayashi T et al (2009) Nestin-positive microglia in adult rat cerebral cortex. Brain Res 1270:10–18

    CAS  Google Scholar 

  93. Taléns-Visconti R, Bonora A, Jover R et al (2006) Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells. World J Gastroenterol 12:5834–5845

    Google Scholar 

  94. Tator CH (1995) Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol 5:407–413

    CAS  Google Scholar 

  95. Tholpady SS, Llull R, Ogle RC et al (2006) Adipose tissue: stem cells and beyond. Clin Plast Surg 33:55–62

    Google Scholar 

  96. Timper K, Seboek D, Eberhardt M et al (2006) Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun 341:1135–1140

    CAS  Google Scholar 

  97. Todorov P, Hristova E, Konakchieva R et al (2010) Comparative studies of different cryopreservation methods for mesenchymal stem cells derived from human fetal liver. Cell Biol Int 34:455–462

    Google Scholar 

  98. Tohda C, Kuboyama T (2011) Current and future therapeutic strategies for functional repair of spinal cord injury. Pharmacol Ther 132:57–71

    CAS  Google Scholar 

  99. Toma JG, McKenzie IA, Bagli D et al (2005) Isolation and characterization of multipotent skin-derived precursors from human skin. Stem Cells 23:727–737

    CAS  Google Scholar 

  100. Traktuev DO, Merfeld-Clauss S, Li J et al (2008) A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102:77–85

    CAS  Google Scholar 

  101. van Harmelen V, Skurk T, Röhrig K et al (2003) Effect of BMI and age on adipose tissue cellularity and differentiation capacity in women. Int J Obes Relat Metab Disord 27:889–895

    Google Scholar 

  102. Vindigni V, Michelotto L, Lancerotto L et al (2009) Isolation method for a stem cell population with neural potential from skin and adipose tissue. Neurol Res (Epub ahead of print)

    Google Scholar 

  103. Williams SK, McKenney S, Jarrell BE (1995) Collagenase lot selection and purification for adipose tissue digestion. Cell Transplant 4:281–289

    CAS  Google Scholar 

  104. Yen AH, Sharpe PT (2008) Stem cells and tooth tissue engineering. Cell Tissue Res 331:359–372

    CAS  Google Scholar 

  105. Yuan A, Rao MV, Sasaki T et al (2006) Alpha-internexin is structurally and functionally associated with the neurofilament triplet proteins in the mature CNS. J Neurosci 26:10006–10019

    CAS  Google Scholar 

  106. Zachar V, Rasmussen JG, Fink T (2011) Isolation and growth of adipose tissue-derived stem cells. Methods Mol Biol 698:37–49

    CAS  Google Scholar 

  107. Zannettino AC, Paton S, Arthur A et al (2008) Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 214:413–421

    CAS  Google Scholar 

  108. Zavan B, Vindigni V, Gardin C et al (2010a) Neural potential of adipose stem cells. Discov Med 10:37–43

    Google Scholar 

  109. Zavan B, Michelotto L, Lancerotto L et al (2010b) Neural potential of a stem cell population in the adipose and cutaneous tissues. Neurol Res 32:47–54

    Google Scholar 

  110. Zeidán-Chuliá F, Noda M (2009) “Opening” the mesenchymal stem cell tool box. Eur J Dent 3:240–249

    Google Scholar 

  111. Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    CAS  Google Scholar 

  112. Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Zavan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferroni, L. et al. (2012). Potential for Neural Differentiation of Mesenchymal Stem Cells. In: Weyand, B., Dominici, M., Hass, R., Jacobs, R., Kasper, C. (eds) Mesenchymal Stem Cells - Basics and Clinical Application I. Advances in Biochemical Engineering/Biotechnology, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2012_152

Download citation

Publish with us

Policies and ethics