Skip to main content

New Cell-Based Therapy Paradigm: Induction of Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells into Pro-Inflammatory MSC1 and Anti-inflammatory MSC2 Phenotypes

  • Chapter
  • First Online:
Mesenchymal Stem Cells - Basics and Clinical Application II

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 130))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASC:

Adipose-derived multipotent stromal or mesenchymal stem cell

BM-MSC:

Bone marrow-derived multipotent stromal

COX:

Cyclooxygenase

CTL:

Cytotoxic T lymphocyte

ESCs:

Embryonic stem cells

HLA:

Human leukocyte antigen

HSCs:

Hematopoietic stem cells

IDO:

Indoleamine 2,3-dioxygenase

IFN:

Interferon

IL:

Interleukin

iNOS:

Inducible nitric-oxide synthase

iPSCs:

Induced pluripotent stem cells

LPS:

Lipopolysaccharide

MHC:

Major histocompatibility complex

MSC:

Multipotent stromal or mesenchymal stem cell

MSC1 :

Pro-inflammatory MSC phenotype

MSC2 :

Anti-inflammatory MSC phenotype

NF:

Nuclear factor

PGE-2:

Prostaglandin E2

TGF:

Transforming growth factor

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

Th1:

T Helper cell 1

Treg:

T Regulatory lymphocyte

References

  1. Mason C et al (2011) Cell therapy industry: billion dollar global business with unlimited potential. Regen Med 6(3):265–272

    Google Scholar 

  2. Bianco P (2011) Back to the future: moving beyond “mesenchymal stem cells”. J Cell Biochem 112(7):1713–1721

    CAS  Google Scholar 

  3. Rayment EA, Williams DJ (2010) Concise review: mind the gap: challenges in characterizing and quantifying cell- and tissue-based therapies for clinical translation. Stem Cells 28(5):996–1004

    Google Scholar 

  4. Salem HK, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28(3):585–596

    CAS  Google Scholar 

  5. Singer NG, Caplan AI (2011) Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol 6:457–478

    CAS  Google Scholar 

  6. Perry D (2000) Patients’ voices: the powerful sound in the stem cell debate. Science 287(5457):1423

    CAS  Google Scholar 

  7. Sharp J, Keirstead HS (2007) Therapeutic applications of oligodendrocyte precursors derived from human embryonic stem cells. Curr Opin Biotechnol 18(5):434–440

    CAS  Google Scholar 

  8. Scolding N (2011) Adult stem cells and multiple sclerosis. Cell Prolif 44(Suppl 1):35–38

    Google Scholar 

  9. Mannello F, Tonti GA (2007) Concise review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold! Stem Cells 25(7):1603–1609

    CAS  Google Scholar 

  10. Martin MJ et al (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11(2):228–232

    CAS  Google Scholar 

  11. Sundin M et al (2007) No alloantibodies against mesenchymal stromal cells, but presence of anti-fetal calf serum antibodies, after transplantation in allogeneic hematopoietic stem cell recipients. Haematologica 92(9):1208–1215

    CAS  Google Scholar 

  12. Lepperdinger G et al (2008) Controversial issue: is it safe to employ mesenchymal stem cells in cell-based therapies? Exp Gerontol 43(11):1018–1023

    CAS  Google Scholar 

  13. Abdallah BM et al (2006) Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females. Bone 39(1):181–188

    Google Scholar 

  14. Zouboulis CC et al (2008) Human skin stem cells and the ageing process. Exp Gerontol 43(11):986–997

    CAS  Google Scholar 

  15. Giacomini M, Baylis F, Robert J (2007) Banking on it: public policy and the ethics of stem cell research and development. Soc Sci Med 65(7):1490–1500

    Google Scholar 

  16. Duquesnoy RJ (2008) Clinical usefulness of HLAMatchmaker in HLA epitope matching for organ transplantation. Curr Opin Immunol 20(5):594–601

    CAS  Google Scholar 

  17. Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8(4):315–317

    CAS  Google Scholar 

  18. Steidl C et al (2005) Adequate cytogenetic examination in myelodysplastic syndromes: analysis of 529 patients. Leuk Res 29(9):987–993

    Google Scholar 

  19. Yang W et al (2010) FISH analysis in addition to G-band karyotyping: utility in evaluation of myelodysplastic syndromes? Leuk Res 34(4):420–425

    CAS  Google Scholar 

  20. Muntion S et al (2012) Optimisation of mesenchymal stromal cells karyotyping analysis: implications for clinical use. Transfus Med 22(2):122–127

    CAS  Google Scholar 

  21. Sergent-Tanguy S et al (2003) Fluorescent activated cell sorting (FACS): a rapid and reliable method to estimate the number of neurons in a mixed population. J Neurosci Methods 129(1):73–79

    Google Scholar 

  22. Dobra K et al (2000) Differentiation of mesothelioma cells is influenced by the expression of proteoglycans. Exp Cell Res 258(1):12–22

    CAS  Google Scholar 

  23. Walen KH (2005) Budded karyoplasts from multinucleated fibroblast cells contain centrosomes and change their morphology to mitotic cells. Cell Biol Int 29(12):1057–1065

    CAS  Google Scholar 

  24. Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell imaging. Science 300(5616):82–86

    CAS  Google Scholar 

  25. Bianco P et al (2010) “Mesenchymal” stem cells in human bone marrow (skeletal stem cells): a critical discussion of their nature, identity, and significance in incurable skeletal disease. Hum Gene Ther 21(9):1057–1066

    CAS  Google Scholar 

  26. Sacchetti B et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336

    CAS  Google Scholar 

  27. da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26(9):2287–2299

    Google Scholar 

  28. Feng J et al. (2011) Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc Natl Acad Sci U S A 108(16):6503–6508

    Google Scholar 

  29. Zwezdaryk KJ et al (2007) Erythropoietin, a hypoxia-regulated factor, elicits a pro-angiogenic program in human mesenchymal stem cells. Exp Hematol 35(4):640–652

    CAS  Google Scholar 

  30. Pittenger MF et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    CAS  Google Scholar 

  31. Jaiswal N et al (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64(2):295–312

    CAS  Google Scholar 

  32. Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64(2):278–294

    CAS  Google Scholar 

  33. Digirolamo CM et al (1999) Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 107(2):275–281

    CAS  Google Scholar 

  34. Phinney DG et al (1999) Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem 72(4):570–585

    CAS  Google Scholar 

  35. Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 96(19):10711–10716

    CAS  Google Scholar 

  36. Sun Y et al (2007) Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chin Med J (Engl) 120(9):771–776

    CAS  Google Scholar 

  37. Ju S et al (2010) In vivo differentiation of magnetically labeled mesenchymal stem cells into hepatocytes for cell therapy to repair damaged liver. Invest Radiol 45(10):625–633

    Google Scholar 

  38. Prockop DJ (2003) Further proof of the plasticity of adult stem cells and their role in tissue repair. J Cell Biol 160(6):807–809

    CAS  Google Scholar 

  39. Prockop DJ (2009) Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms. Mol Ther 17(6):939–946

    CAS  Google Scholar 

  40. Le Blanc K et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363(9419):1439–1441

    Google Scholar 

  41. Abdi R et al (2008) Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes 57(7):1759–1767

    CAS  Google Scholar 

  42. Nemeth K, Mayer B, Mezey E (2009) Modulation of bone marrow stromal cell functions in infectious diseases by toll-like receptor ligands. J Mol Med 27:551–589

    Google Scholar 

  43. Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8(9):726–736

    CAS  Google Scholar 

  44. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822

    CAS  Google Scholar 

  45. Bunnell BA, Betancourt AM, Sullivan DE (2010) New concepts on the immune modulation mediated by mesenchymal stem cells. Stem Cell Res Ther 1(5):34

    CAS  Google Scholar 

  46. Nemeth K et al (2010) Bone marrow stromal cells use TGF-beta to suppress allergic responses in a mouse model of ragweed-induced asthma. Proc Natl Acad Sci U S A 107(12):5652–5657

    CAS  Google Scholar 

  47. Gur-Wahnon D et al (2009) The induction of APC with a distinct tolerogenic phenotype via contact-dependent STAT3 activation. PLoS One 4(8):e6846

    Google Scholar 

  48. Krampera M et al (2006) Regenerative and immunomodulatory potential of mesenchymal stem cells. Curr Opin Pharmacol 6(4):435–441

    CAS  Google Scholar 

  49. Honczarenko M et al (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells 24(4):1030–1041

    CAS  Google Scholar 

  50. Ringe J et al (2007) Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J Cell Biochem 101(1):135–146

    CAS  Google Scholar 

  51. Wynn RF et al (2004) A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 104(9):2643–2645

    CAS  Google Scholar 

  52. Sordi V et al (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106(2):419–427

    CAS  Google Scholar 

  53. Lapidot T (2001) Mechanism of human stem cell migration and repopulation of NOD/SCID and B2mnull NOD/SCID mice. The role of SDF-1/CXCR4 interactions. Ann N Y Acad Sci 938:83–95

    CAS  Google Scholar 

  54. Sasaki M et al (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180(4):2581–2587

    CAS  Google Scholar 

  55. Inokuma D et al (2006) CTACK/CCL27 accelerates skin regeneration via accumulation of bone marrow-derived keratinocytes. Stem Cells 24(12):2810–2816

    CAS  Google Scholar 

  56. Macmillan ML et al (2009) Transplantation of ex vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I-II clinical trial. Bone Marrow Transplant 43(6):447–454

    CAS  Google Scholar 

  57. Chen SL et al (2004) Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction. Chin Med J (Engl) 117(10):1443–1448

    Google Scholar 

  58. Romieu-Mourez R, Coutu DL, Galipeau J (2012) The immune plasticity of mesenchymal stromal cells from mice and men: concordances and discrepancies. Front Biosci (Elite Ed) 4:824–837

    Google Scholar 

  59. Krasnodembskaya A et al (2011) Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells 28(12):2229–2238

    Google Scholar 

  60. Gupta N et al. (2012) Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax 67(6):533–539

    Google Scholar 

  61. Coffelt SB et al (2009) The pro-inflammatory peptide LL-37 promotes ovarian tumor progression through recruitment of multipotent mesenchymal stromal cells. Proc Natl Acad Sci U S A 106(10):3806–3811

    CAS  Google Scholar 

  62. Coffelt SB, Scandurro AB (2008) Tumors sound the alarmin(s). Cancer Res 68(16):6482–6485

    CAS  Google Scholar 

  63. Coffelt SB et al (2009) Leucine leucine-37 uses formyl peptide receptor-like 1 to activate signal transduction pathways, stimulate oncogenic gene expression, and enhance the invasiveness of ovarian cancer cells. Mol Cancer Res 7(6):907–915

    CAS  Google Scholar 

  64. Coffelt SB et al (2008) Ovarian cancers overexpress the antimicrobial protein hCAP-18 and its derivative LL-37 increases ovarian cancer cell proliferation and invasion. Int J Cancer 122(5):1030–1039

    CAS  Google Scholar 

  65. Spaeth E et al (2008) Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 15(10):730–738

    CAS  Google Scholar 

  66. Spaeth EL et al (2009) Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 4(4):e4992

    Google Scholar 

  67. Waterman RS, Betancourt AM (2012) The role of mesenchymal stem cells in the tumor microenvironment. Tumor Microenvironment and Myelomonocytic Cells. InTech

    Google Scholar 

  68. Klopp AH et al. (2010) Dissecting a Discrepancy in the Literature: Do Mesenchymal Stem Cells Support or Suppress Tumor Growth? Stem Cells

    Google Scholar 

  69. Klopp AH et al (2011) Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells 29(1):11–19

    CAS  Google Scholar 

  70. Tomchuck SL et al (2008) Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 26(1):99–107

    CAS  Google Scholar 

  71. Waterman RS et al (2010) A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 5(4):e10088

    Google Scholar 

  72. Verreck FA et al (2006) Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J Leukoc Biol 79(2):285–293

    CAS  Google Scholar 

  73. Cassatella MA et al (2011) Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells 29(6):1001–1011

    CAS  Google Scholar 

  74. Krampera M (2011) Mesenchymal stromal cells: more than inhibitory cells. Leukemia 25(4):565–566

    CAS  Google Scholar 

  75. Romieu-Mourez R et al (2009) Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype. J Immunol 182(12):7963–7973

    CAS  Google Scholar 

  76. Tomchuck SL, Henkle SL, Coffelt SB, Betancourt AM (2012) Toll-like receptor 3 and suppressor of cytokine signaling proteins regulate CXCR4 and CXCR7 expression in bone marrow-derived human multipotent stromal cells. Manuscript submitted (in press)

    Google Scholar 

  77. Waterman RS, Henkle SL, Betancourt AM (2012) Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis. Manuscript submitted (in press)

    Google Scholar 

  78. Djouad F et al (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102(10):3837–3844

    CAS  Google Scholar 

  79. Karnoub AE et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563

    CAS  Google Scholar 

  80. Khakoo AY et al (2006) Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med 203(5):1235–1247

    CAS  Google Scholar 

  81. Shinagawa K et al (2010) Mesenchymal stem cells enhance growth and metastasis of colon cancer. Int J Cancer 127(10):2323–2333

    CAS  Google Scholar 

  82. Gialeli C, Theocharis AD, Karamanos NK (2010) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278(1):16–27

    Google Scholar 

  83. Cubillos-Ruiz JR, Rutkowski M, Conejo-Garcia JR (2010) Blocking ovarian cancer progression by targeting tumor microenvironmental leukocytes. Cell Cycle 9(2):260–268

    CAS  Google Scholar 

  84. Nesbeth Y et al (2009) CCL5-mediated endogenous antitumor immunity elicited by adoptively transferred lymphocytes and dendritic cell depletion. Cancer Res 69(15):6331–6338

    CAS  Google Scholar 

  85. Roby KF et al (2000) Development of a syngeneic mouse model for events related to ovarian cancer. Carcinogenesis 21(4):585–591

    CAS  Google Scholar 

  86. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2):263–266

    CAS  Google Scholar 

  87. Baay M et al (2011) Tumor cells and tumor-associated macrophages: secreted proteins as potential targets for therapy. Clin Dev Immunol 2011:565187

    Google Scholar 

  88. Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117(5):1155–1166

    CAS  Google Scholar 

  89. Murdoch C et al (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8(8):618–631

    CAS  Google Scholar 

  90. Navi D, Saegusa J, Liu FT (2007) Mast cells and immunological skin diseases. Clin Rev Allergy Immunol 33(1–2):144–155

    CAS  Google Scholar 

  91. Ingman WV et al (2006) Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland. Dev Dyn 235(12):3222–3229

    CAS  Google Scholar 

  92. Brown JM et al (2011) Bone marrow stromal cells inhibit mast cell function via a COX2-dependent mechanism. Clin Exp Allergy 41(4):526–534

    CAS  Google Scholar 

  93. Bianchi G et al (2011) Immunosuppressive cells and tumour microenvironment: focus on mesenchymal stem cells and myeloid derived suppressor cells. Histol Histopathol 26(7):941–951

    CAS  Google Scholar 

  94. Coffelt SB, Hughes R, Lewis CE (2009) Tumor-associated macrophages: Effectors of angiogenesis and tumor progression. Biochim Biophys Acta 1796(1):11–18

    CAS  Google Scholar 

  95. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    CAS  Google Scholar 

  96. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458

    CAS  Google Scholar 

  97. Rabinovich GA, Gabrilovich D, Sotomayor EM (2007) Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25:267–296

    CAS  Google Scholar 

  98. Strausberg RL (2005) Tumor microenvironments, the immune system and cancer survival. Genome Biol 6(3):211

    Google Scholar 

  99. Waterman RS, Morgenweck J, Nossaman BD, Scandurro AE, Scandurro SA, Betancourt AM (2012) Anti-inflammatory mesenchymal stem cells (MSC2) attenuate symptoms of painful diabetic peripheral neuropathy. Manuscript submitted (in press)

    Google Scholar 

  100. Bailey CJ (2007) Treating insulin resistance: future prospects. Diab Vasc Dis Res 4(1):20–31

    Google Scholar 

  101. Dominiczak MH (2003) Obesity, glucose intolerance and diabetes and their links to cardiovascular disease. Implications for laboratory medicine. Clin Chem Lab Med 41(9):1266–1278

    CAS  Google Scholar 

  102. Kampoli AM et al (2011) Potential pathogenic inflammatory mechanisms of endothelial dysfunction induced by type 2 diabetes mellitus. Curr Pharm Des 17(37):4147–4158

    CAS  Google Scholar 

  103. Niehoff AG et al (2007) C-reactive protein is independently associated with glucose but not with insulin resistance in healthy men. Diabetes Care 30(6):1627–1629

    CAS  Google Scholar 

  104. Purwata TE (2011) High TNF-alpha plasma levels and macrophages iNOS and TNF-alpha expression as risk factors for painful diabetic neuropathy. J Pain Res 4:169–175

    CAS  Google Scholar 

  105. Sjoholm A, Nystrom T (2005) Endothelial inflammation in insulin resistance. Lancet 365(9459):610–612

    Google Scholar 

  106. Uceyler N et al (2007) Differential expression of cytokines in painful and painless neuropathies. Neurology 69(1):42–49

    CAS  Google Scholar 

  107. Chopra K et al (2011) Sesamol suppresses neuro-inflammatory cascade in experimental model of diabetic neuropathy. J Pain 11(10):950–957

    Google Scholar 

  108. Doupis J et al (2009) Microvascular reactivity and inflammatory cytokines in painful and painless peripheral diabetic neuropathy. J Clin Endocrinol Metab 94(6):2157–2163

    CAS  Google Scholar 

  109. Pabreja K et al (2011) Minocycline attenuates the development of diabetic neuropathic pain: possible anti-inflammatory and anti-oxidant mechanisms. Eur J Pharmacol 661(1–3):15–21

    CAS  Google Scholar 

  110. Valsecchi AE et al (2011) The soy isoflavone genistein reverses oxidative and inflammatory state, neuropathic pain, neurotrophic and vasculature deficits in diabetes mouse model. Eur J Pharmacol 650(2–3):694–702

    CAS  Google Scholar 

  111. Newman RE et al (2009) Treatment of inflammatory diseases with mesenchymal stem cells. Inflamm Allergy Drug Targets 8(2):110–123

    CAS  Google Scholar 

  112. Kim BJ, Jin HK, Bae JS (2011) Bone marrow-derived mesenchymal stem cells improve the functioning of neurotrophic factors in a mouse model of diabetic neuropathy. Lab Anim Res 27(2):171–176

    Google Scholar 

  113. Shibata T et al (2008) Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes 57(11):3099–3107

    CAS  Google Scholar 

  114. Cameron NE et al (2001) Effect of the hydroxyl radical scavenger, dimethylthiourea, on peripheral nerve tissue perfusion, conduction velocity and nociception in experimental diabetes. Diabetologia 44(9):1161–1169

    CAS  Google Scholar 

  115. Drel VR et al (2006) The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity. Diabetes 55(12):3335–3343

    CAS  Google Scholar 

  116. Drel VR et al (2007) Evaluation of the peroxynitrite decomposition catalyst Fe(III) tetra-mesitylporphyrin octasulfonate on peripheral neuropathy in a mouse model of type 1 diabetes. Int J Mol Med 20(6):783–792

    CAS  Google Scholar 

  117. Ilnytska O et al (2006) Poly(ADP-ribose) polymerase inhibition alleviates experimental diabetic sensory neuropathy. Diabetes 55(6):1686–1694

    CAS  Google Scholar 

  118. Stevens MJ et al (2007) Nicotinamide reverses neurological and neurovascular deficits in streptozotocin diabetic rats. J Pharmacol Exp Ther 320(1):458–464

    CAS  Google Scholar 

  119. Obrosova IG (2009) Diabetic painful and insensate neuropathy: pathogenesis and potential treatments. Neurotherapeutics 6(4):638–647

    CAS  Google Scholar 

  120. Beiswenger KK, Calcutt NA, Mizisin AP (2008) Epidermal nerve fiber quantification in the assessment of diabetic neuropathy. Acta Histochem 110(5):351–362

    Google Scholar 

  121. Herrmann DN et al (1999) Epidermal nerve fiber density and sural nerve morphometry in peripheral neuropathies. Neurology 53(8):1634–1640

    CAS  Google Scholar 

  122. Muller KA et al (2008) Abnormal muscle spindle innervation and large-fiber neuropathy in diabetic mice. Diabetes 57(6):1693–1701

    CAS  Google Scholar 

  123. Sinnreich M, Taylor BV, Dyck PJ (2005) Diabetic neuropathies. Classification, clinical features, and pathophysiological basis. Neurologist 11(2):63–79

    Google Scholar 

  124. Fiorentino DF et al (1991) IL-10 inhibits cytokine production by activated macrophages. J Immunol 147(11):3815–3822

    CAS  Google Scholar 

  125. Soderquist RG et al (2010) PEGylation of interleukin-10 for the mitigation of enhanced pain states. J Biomed Mater Res A 93(3):1169–1179

    Google Scholar 

  126. Bishnoi M et al (2011) Streptozotocin-induced early thermal hyperalgesia is independent of glycemic state of rats: role of transient receptor potential vanilloid 1(TRPV1) and inflammatory mediators. Mol Pain 7:52

    Google Scholar 

  127. Kumar A, Negi G, Sharma SS (2011) JSH-23 targets nuclear factor-kappa B and reverses various deficits in experimental diabetic neuropathy: effect on neuroinflammation and antioxidant defence. Diabetes Obes Metab 13(8):750–758

    CAS  Google Scholar 

  128. Luo L et al (2011) Sildenafil improves diabetic vascular activity through suppressing endothelin receptor A, iNOS and NADPH oxidase which is comparable with the endothelin receptor antagonist CPU0213 in STZ-injected rats. J Pharm Pharmacol 63(7):943–951

    CAS  Google Scholar 

  129. Silva DC et al (2011) Pectin from Passiflora edulis shows anti-inflammatory action as well as hypoglycemic and hypotriglyceridemic properties in diabetic rats. J Med Food 14(10):1118–1126

    CAS  Google Scholar 

  130. Cui JG et al (2000) Possible role of inflammatory mediators in tactile hypersensitivity in rat models of mononeuropathy. Pain 88(3):239–248

    CAS  Google Scholar 

  131. Cruickshank AM et al (1990) Response of serum interleukin-6 in patients undergoing elective surgery of varying severity. Clin Sci (Lond) 79(2):161–165

    CAS  Google Scholar 

  132. Holzheimer RG, Steinmetz W (2000) Local and systemic concentrations of pro- and anti-inflammatory cytokines in human wounds. Eur J Med Res 5(8):347–355

    CAS  Google Scholar 

  133. Alexander GM et al (2005) Changes in cerebrospinal fluid levels of pro-inflammatory cytokines in CRPS. Pain 116(3):213–219

    CAS  Google Scholar 

  134. Watkins LR, Maier SF, Goehler LE (1995) Immune activation: the role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain 63(3):289–302

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grant 1P20RR20152-01, Department of Defense OC073102 Concept Award and research support from the Tulane Cancer Center and the Center for Stem Cell Research and Regenerative Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline M. Betancourt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 2013

About this chapter

Cite this chapter

Betancourt, A.M. (2012). New Cell-Based Therapy Paradigm: Induction of Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells into Pro-Inflammatory MSC1 and Anti-inflammatory MSC2 Phenotypes. In: Weyand, B., Dominici, M., Hass, R., Jacobs, R., Kasper, C. (eds) Mesenchymal Stem Cells - Basics and Clinical Application II. Advances in Biochemical Engineering/Biotechnology, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2012_141

Download citation

Publish with us

Policies and ethics