Skip to main content

Metabolic Flux Analysis in Systems Biology of Mammalian Cells

  • Chapter
  • First Online:
Genomics and Systems Biology of Mammalian Cell Culture

Part of the book series: Advances in Biochemical Engineering Biotechnology ((ABE,volume 127))

Abstract

Reaction rates or metabolic fluxes reflect the integrated phenotype of genome, transcriptome and proteome interactions, including regulation at all levels of the cellular hierarchy. Different methods have been developed in the past to analyse intracellular fluxes. However, compartmentation of mammalian cells, varying utilisation of multiple substrates, reversibility of metabolite uptake and production, unbalanced growth behaviour and adaptation of cells to changing environment during cultivation are just some reasons that make metabolic flux analysis (MFA) in mammalian cell culture more challenging compared to microorganisms. In this article MFA using the metabolite balancing methodology and the advantages and disadvantages of 13C MFA in mammalian cell systems are reviewed. Application examples of MFA in the optimisation of cell culture processes for the production of biopharmaceuticals are presented with a focus on the metabolism of the main industrial workhorse. Another area in which mammalian cell culture plays a key role is in medical and toxicological research. It is shown that MFA can be used to understand pathophysiological mechanisms and can assist in understanding effects of drugs or other compounds on cellular metabolism.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alberghina L, Westerhoff HV (eds) (2005) Systems biology—definitions and perspectives. Springer, Heidelberg

    Google Scholar 

  2. Choi S (2007) Introduction to systems biology. Humana, Totowa

    Google Scholar 

  3. Villoslada P, Steinman L, Baranzini SE (2009) Ann Neurol 65:124–139

    CAS  Google Scholar 

  4. Beckers S, Noor F, Muller-Vieira U, Mayer M, Strigun A, Heinzle E (2010) Toxicol In Vitro 24:686–694

    CAS  Google Scholar 

  5. Niklas J, Noor F, Heinzle E (2009) Toxicol Appl Pharmacol 240:327–336

    CAS  Google Scholar 

  6. Noor F, Niklas J, Muller-Vieira U, Heinzle E (2009) Toxicol Appl Pharmacol 237:221–231

    CAS  Google Scholar 

  7. O’Callaghan PM, James DC (2008) Brief Funct Genomic Proteomic 7:95–110

    Google Scholar 

  8. Wurm FM (2004) Nat Biotechnol 22:1393–1398

    CAS  Google Scholar 

  9. Genzel Y, Reichl U (2009) Expert Rev Vaccines 8:1681–1692

    CAS  Google Scholar 

  10. Weber W, Fussenegger M (2007) Curr Opin Biotechnol 18:399–410

    CAS  Google Scholar 

  11. Koide T, Pang WL, Baliga NS (2009) Nat Rev Microbiol 7:297–305

    CAS  Google Scholar 

  12. Niklas J, Schneider K, Heinzle E (2010) Curr Opin Biotechnol 21:63–69

    CAS  Google Scholar 

  13. Sauer U (2006) Mol Syst Biol 2:62

    Google Scholar 

  14. Boghigian BA, Seth G, Kiss R, Pfeifer BA (2010) Metab Eng 12:81–95

    CAS  Google Scholar 

  15. Quek LE, Dietmair S, Kromer JO, Nielsen LK (2010) Metab Eng 12:161–171

    CAS  Google Scholar 

  16. Wittmann C (2007) Microb Cell Fact 6:6

    Google Scholar 

  17. Wiechert W, de Graaf AA (1996) Adv Biochem Eng Biotechnol 54:109–154

    CAS  Google Scholar 

  18. Aiba S, Matsuoka M (1978) Eur J Appl Microbiol Biotechnol 5:247–261

    CAS  Google Scholar 

  19. Bonarius HP, Hatzimanikatis V, Meesters KP, de Gooijer CD, Schmid G, Tramper J (1996) Biotechnol Bioeng 50:299–318

    CAS  Google Scholar 

  20. Sidorenko Y, Wahl A, Dauner M, Genzel Y, Reichl U (2008) Biotechnol Prog 24:311–320

    CAS  Google Scholar 

  21. Zupke C, Stephanopoulos G (1994) Biotechnol Prog 10:489–498

    CAS  Google Scholar 

  22. Schmidt K, Carlsen M, Nielsen J, Villadsen J (1997) Biotechnol Bioeng 55:831–840

    CAS  Google Scholar 

  23. Fischer E, Zamboni N, Sauer U (2004) Anal Biochem 325:308–316

    CAS  Google Scholar 

  24. Nanchen A, Fuhrer T, Sauer U (2007) Methods Mol Biol 358:177–197

    CAS  Google Scholar 

  25. Sauer U, Hatzimanikatis V, Bailey JE, Hochuli M, Szyperski T, Wuthrich K (1997) Nat Biotechnol 15:448–452

    CAS  Google Scholar 

  26. Velagapudi VR, Wittmann C, Schneider K, Heinzle E (2007) J Biotechnol 132:395–404

    CAS  Google Scholar 

  27. Sonntag K, Eggeling L, De Graaf AA, Sahm H (1993) Eur J Biochem 213:1325–1331

    CAS  Google Scholar 

  28. Zupke C, Stephanopoulos G (1995) Biotechnol Bioeng 45:292–303

    CAS  Google Scholar 

  29. Wittmann C, Heinzle E (1999) Biotechnol Bioeng 62:739–750

    CAS  Google Scholar 

  30. Wiechert W, Mollney M, Isermann N, Wurzel M, de Graaf AA (1999) Biotechnol Bioeng 66:69–85

    CAS  Google Scholar 

  31. Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Metab Eng 9:68–86

    CAS  Google Scholar 

  32. Niittylae T, Chaudhuri B, Sauer U, Frommer WB (2009) Methods Mol Biol 553:355–372

    CAS  Google Scholar 

  33. Becker J, Klopprogge C, Zelder O, Heinzle E, Wittmann C (2005) Appl Environ Microbiol 71:8587–8596

    CAS  Google Scholar 

  34. Kiefer P, Heinzle E, Zelder O, Wittmann C (2004) Appl Environ Microbiol 70:229–239

    CAS  Google Scholar 

  35. Wittmann C, Heinzle E (2002) Appl Environ Microbiol 68:5843–5859

    CAS  Google Scholar 

  36. Forbes NS, Meadows AL, Clark DS, Blanch HW (2006) Metab Eng 8:639–652

    CAS  Google Scholar 

  37. Maier K, Hofmann U, Bauer A, Niebel A, Vacun G, Reuss M, Mauch K (2009) Metab Eng 11:292–309

    CAS  Google Scholar 

  38. Srivastava S, Chan C (2008) Biotechnol Bioeng 99:399–410

    CAS  Google Scholar 

  39. Vo TD, Palsson BO (2006) Biotechnol Bioeng 95:972–983

    CAS  Google Scholar 

  40. Sanfeliu A, Paredes C, Cairo JJ, Godia F (1997) Enzyme Microb Technol 21:421–428

    CAS  Google Scholar 

  41. Llaneras F, Pico J (2007) BMC Bioinformatics 8:421

    Google Scholar 

  42. Niklas J, Schräder E, Sandig V, Noll T, Heinzle E (2011) Bioprocess Biosyst Eng. doi:10.1007/s00449-010-0502-y

  43. Deshpande R, Yang TH, Heinzle E (2009) Biotechnol J 4:247–263

    CAS  Google Scholar 

  44. Blank LM, Lehmbeck F, Sauer U (2005) FEMS Yeast Res 5:545–558

    CAS  Google Scholar 

  45. Sauer U (2004) Curr Opin Biotechnol 15:58–63

    CAS  Google Scholar 

  46. Yang TH, Frick O, Heinzle E (2008) BMC Syst Biol 2:29

    Google Scholar 

  47. Weitzel M, Wiechert W, Noh K (2007) BMC Bioinformatics 8:315

    Google Scholar 

  48. Fong SS, Burgard AP, Herring CD, Knight EM, Blattner FR, Maranas CD, Palsson BO (2005) Biotechnol Bioeng 91:643–648

    CAS  Google Scholar 

  49. Wahl A, Sidorenko Y, Dauner M, Genzel Y, Reichl U (2008) Biotechnol Bioeng 101:135–152

    CAS  Google Scholar 

  50. Kromer JO, Wittmann C, Schroder H, Heinzle E (2006) Metab Eng 8:353–369

    Google Scholar 

  51. Melzer G, Esfandabadi ME, Franco-Lara E, Wittmann C (2009) BMC Syst Biol 3:120

    Google Scholar 

  52. Patil KR, Rocha I, Forster J, Nielsen J (2005) BMC Bioinformatics 6:308

    Google Scholar 

  53. Segre D, Vitkup D, Church GM (2002) Proc Natl Acad Sci USA 99:15112–15117

    CAS  Google Scholar 

  54. Suthers PF, Burgard AP, Dasika MS, Nowroozi F, Van Dien S, Keasling JD, Maranas CD (2007) Metab Eng 9:387–405

    CAS  Google Scholar 

  55. Trinh CT, Wlaschin A, Srienc F (2009) Appl Microbiol Biotechnol 81:813–826

    CAS  Google Scholar 

  56. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BO (2007) Proc Natl Acad Sci USA 104:1777–1782

    CAS  Google Scholar 

  57. Quek LE, Nielsen LK (2008) Genome Inf 21:89–100

    CAS  Google Scholar 

  58. Selvarasu S, Karimi IA, Ghim GH, Lee DY (2010) Mol Biosyst 6:152–161

    CAS  Google Scholar 

  59. Nielsen J (2003) J Bacteriol 185:7031–7035

    CAS  Google Scholar 

  60. Beard DA, Babson E, Curtis E, Qian H (2004) J Theor Biol 228:327–333

    CAS  Google Scholar 

  61. Akesson M, Forster J, Nielsen J (2004) Metab Eng 6:285–293

    CAS  Google Scholar 

  62. Korke R, Gatti Mde L, Lau AL, Lim JW, Seow TK, Chung MC, Hu WS (2004) J Biotechnol 107:1–17

    CAS  Google Scholar 

  63. Vriezen N, van Dijken JP (1998) Biotechnol Bioeng 59:28–39

    CAS  Google Scholar 

  64. Savinell JM, Palsson BO (1992) J Theor Biol 154:455–473

    CAS  Google Scholar 

  65. Savinell JM, Palsson BO (1992) J Theor Biol 154:421–454

    CAS  Google Scholar 

  66. Lee WN, Boros LG, Puigjaner J, Bassilian S, Lim S, Cascante M (1998) Am J Physiol 274:E843–E851

    CAS  Google Scholar 

  67. Martens DE (2007) In: Al-Rubeai M, Fussenegger M (eds) Systems biology, vol 1, Springer, Berlin, pp. 275–299

    Google Scholar 

  68. Miller WM, Wilke CR, Blanch HW (1987) J Cell Physiol 132:524–530

    CAS  Google Scholar 

  69. Xie L, Wang DI (1996) Biotechnol Bioeng 52:591–601

    CAS  Google Scholar 

  70. Russell JB (2007) J Mol Microbiol Biotechnol 13:1–11

    CAS  Google Scholar 

  71. Jang JD, Barford JP (2000) Cytotechnology 32:229–242

    CAS  Google Scholar 

  72. Nielsen LK, Reid S, Greenfield PF (1997) Biotechnol Bioeng 56:372–379

    CAS  Google Scholar 

  73. Zwingmann C, Richter-Landsberg C, Leibfritz D (2001) Glia 34:200–212

    CAS  Google Scholar 

  74. Bonarius HPJ, Schmidt G, Tramper J (1997) Trends Biotechnol 15:308–314

    CAS  Google Scholar 

  75. Wiechert W (2001) Metab Eng 3:195–206

    CAS  Google Scholar 

  76. Sauer U, Bailey JE (1999) Biotechnol Bioeng 64:750–754

    CAS  Google Scholar 

  77. Petersen S, de Graaf AA, Eggeling L, Mollney M, Wiechert W, Sahm H (2000) J Biol Chem 275:35932–35941

    CAS  Google Scholar 

  78. Schmidt K, Marx A, de Graaf AA, Wiechert W, Sahm H, Nielsen J, Villadsen J (1998) Biotechnol Bioeng 58:254–257

    CAS  Google Scholar 

  79. Hofmann U, Maier K, Niebel A, Vacun G, Reuss M, Mauch K (2008) Biotechnol Bioeng 100:344–354

    CAS  Google Scholar 

  80. Maier K, Hofmann U, Reuss M, Mauch K (2008) Biotechnol Bioeng 100:355–370

    CAS  Google Scholar 

  81. Dietmair S, Timmins NE, Gray PP, Nielsen LK, Kromer JO (2010) Anal Biochem 404:155–164

    CAS  Google Scholar 

  82. Des Rosiers C, Lloyd S, Comte B, Chatham JC (2004) Metab Eng 6:44–58

    CAS  Google Scholar 

  83. Kelleher JK (2001) Metab Eng 3:100–110

    CAS  Google Scholar 

  84. Wittmann C, Hans M, Heinzle E (2002) Anal Biochem 307:379–382

    CAS  Google Scholar 

  85. Christensen B, Nielsen J (1999) Metab Eng 1:282–290

    CAS  Google Scholar 

  86. Maaheimo H, Fiaux J, Cakar ZP, Bailey JE, Sauer U, Szyperski T (2001) Eur J Biochem 268:2464–2479

    CAS  Google Scholar 

  87. Matsuda F, Morino K, Miyashita M, Miyagawa H (2003) Plant Cell Physiol 44:510–517

    CAS  Google Scholar 

  88. Wittmann C, Heinzle E (2001) Eur J Biochem 268:2441–2455

    CAS  Google Scholar 

  89. Wittmann C, Heinzle E (2001) Biotechnol Bioeng 72:642–647

    CAS  Google Scholar 

  90. Toya Y, Ishii N, Hirasawa T, Naba M, Hirai K, Sugawara K, Igarashi S, Shimizu K, Tomita M, Soga T (2007) J Chromatogr A 1159:134–141

    CAS  Google Scholar 

  91. Yang TH, Wittmann C, Heinzle E (2006) Metab Eng 8:417–431

    CAS  Google Scholar 

  92. Heinzle E, Yuan Y, Kumar S, Wittmann C, Gehre M, Richnow HH, Wehrung P, Adam P, Albrecht P (2008) Anal Biochem 380:202–210

    CAS  Google Scholar 

  93. Yuan Y, Hoon Yang T, Heinzle E (2010) Metab Eng 12:392–400

    CAS  Google Scholar 

  94. Wittmann C (2002) Adv Biochem Eng Biotechnol 74:39–64

    CAS  Google Scholar 

  95. Moseley HN (2010) BMC Bioinformatics 11:139

    Google Scholar 

  96. Wahl SA, Dauner M, Wiechert W (2004) Biotechnol Bioeng 85:259–268

    CAS  Google Scholar 

  97. Yang TH, Bolten CJ, Coppi MV, Sun J, Heinzle E (2009) Anal Biochem 388:192–203

    CAS  Google Scholar 

  98. van Winden WA, Wittmann C, Heinzle E, Heijnen JJ (2002) Biotechnol Bioeng 80:477–479

    Google Scholar 

  99. Dauner M, Sauer U (2000) Biotechnol Prog 16:642–649

    CAS  Google Scholar 

  100. Wittmann C, Heinzle E (2008) In: Burkovski A (ed) Corynebacteria: genomics and molecular biology. Caister Academic Press, Norfolk

    Google Scholar 

  101. Quek LE, Wittmann C, Nielsen LK, Kromer JO (2009) Microb Cell Fact 8:25

    Google Scholar 

  102. Wiechert W, Mollney M, Petersen S, de Graaf AA (2001) Metab Eng 3:265–283

    CAS  Google Scholar 

  103. Zamboni N, Fischer E, Sauer U (2005) BMC Bioinformatics 6:209

    Google Scholar 

  104. Goudar C, Biener R, Boisart C, Heidemann R, Piret J, de Graaf A, Konstantinov K (2010) Metab Eng 12:138–149

    CAS  Google Scholar 

  105. Metallo CM, Walther JL, Stephanopoulos G (2009) J Biotechnol 144:167–174

    CAS  Google Scholar 

  106. Eagle H (1959) Science 130:432–437

    CAS  Google Scholar 

  107. Seth G, Hossler P, Yee JC, Hu WS (2006) Adv Biochem Eng Biotechnol 101:119–164

    CAS  Google Scholar 

  108. Pavlou AK, Reichert JM (2004) Nat Biotechnol 22:1513–1519

    CAS  Google Scholar 

  109. Chu L, Robinson DK (2001) Curr Opin Biotechnol 12:180–187

    CAS  Google Scholar 

  110. Pau MG, Ophorst C, Koldijk MH, Schouten G, Mehtali M, Uytdehaag F (2001) Vaccine 19:2716–2721

    CAS  Google Scholar 

  111. Lim Y, Wong NS, Lee YY, Ku SC, Wong DC, Yap MG (2010) Biotechnol Appl Biochem 55:175–189

    CAS  Google Scholar 

  112. Godia F, Cairo JJ (2002) Bioprocess Biosyst Eng 24:289–298

    CAS  Google Scholar 

  113. Xie L, Wang DI (1996) Biotechnol Bioeng 52:579–590

    CAS  Google Scholar 

  114. Xie L, Wang DI (1997) Trends Biotechnol 15:109–113

    CAS  Google Scholar 

  115. Follstad BD, Balcarcel RR, Stephanopoulos G, Wang DI (1999) Biotechnol Bioeng 63:675–683

    CAS  Google Scholar 

  116. Europa AF, Gambhir A, Fu PC, Hu WS (2000) Biotechnol Bioeng 67:25–34

    CAS  Google Scholar 

  117. Gambhir A, Korke R, Lee J, Fu PC, Europa A, Hu WS (2003) J Biosci Bioeng 95:317–327

    CAS  Google Scholar 

  118. Bonarius HP, Ozemre A, Timmerarends B, Skrabal P, Tramper J, Schmid G, Heinzle E (2001) Biotechnol Bioeng 74:528–538

    CAS  Google Scholar 

  119. Bonarius HP, Houtman JH, Schmid G, de Gooijer CD, Tramper J (2000) Cytotechnology 32:97–107

    CAS  Google Scholar 

  120. Omasa T, Furuichi K, Iemura T, Katakura Y, Kishimoto M, Suga K (2010) Bioprocess Biosyst Eng 33:117–125

    CAS  Google Scholar 

  121. Dorka P, Fischer C, Budman H, Scharer JM (2009) Bioprocess Biosyst Eng 32:183–196

    CAS  Google Scholar 

  122. Selvarasu S, Wong VV, Karimi IA, Lee DY (2009) Biotechnol Bioeng 102:1494–1504

    CAS  Google Scholar 

  123. Puck TT, Cieciura SJ, Robinson A (1958) J Exp Med 108:945–956

    CAS  Google Scholar 

  124. Nyberg GB, Balcarcel RR, Follstad BD, Stephanopoulos G, Wang DI (1999) Biotechnol Bioeng 62:324–335

    CAS  Google Scholar 

  125. Nyberg GB, Balcarcel RR, Follstad BD, Stephanopoulos G, Wang DI (1999) Biotechnol Bioeng 62:336–347

    CAS  Google Scholar 

  126. Altamirano C, Illanes A, Becerra S, Cairo JJ, Godia F (2006) J Biotechnol 125:547–556

    CAS  Google Scholar 

  127. Altamirano C, Illanes A, Casablancas A, Gamez X, Cairo JJ, Godia C (2001) Biotechnol Prog 17:1032–1041

    CAS  Google Scholar 

  128. Altamirano C, Paredes C, Illanes A, Cairo JJ, Godia F (2004) J Biotechnol 110:171–179

    CAS  Google Scholar 

  129. Goudar C, Biener R, Zhang C, Michaels J, Piret J, Konstantinov K (2006) Adv Biochem Eng Biotechnol 101:99–118

    CAS  Google Scholar 

  130. Sengupta N, Rose ST, Morgan JA (2010) Biotechnol Bioeng 108:82–92

    Google Scholar 

  131. Mancuso A, Sharfstein ST, Tucker SN, Clark DS, Blanch HW (1994) Biotechnol Bioeng 44:563–585

    CAS  Google Scholar 

  132. Audsley JM, Tannock GA (2008) Drugs 68:1483–1491

    Google Scholar 

  133. Genzel Y, Dietzsch C, Rapp E, Schwarzer J, Reichl U (2010) Appl Microbiol Biotechnol 88:461–475

    CAS  Google Scholar 

  134. Kessler N, Thomas-Roche G, Gerentes L, Aymard M (1999) Dev Biol Stand 98:13–21 (discussion 73–74)

    CAS  Google Scholar 

  135. Le Ru A, Jacob D, Transfiguracion J, Ansorge S, Henry O, Kamen AA (2010) Vaccine 28:3661–3671

    CAS  Google Scholar 

  136. Jordan I, Vos A, Beilfuss S, Neubert A, Breul S, Sandig V (2009) Vaccine 27:748–756

    CAS  Google Scholar 

  137. Ritter JB, Wahl AS, Freund S, Genzel Y, Reichl U (2010) BMC Syst Biol 4:61

    Google Scholar 

  138. Henry O, Perrier M, Kamen A (2005) Metab Eng 7:467–476

    CAS  Google Scholar 

  139. Martinez V, Gerdtzen ZP, Andrews BA, Asenjo JA (2010) Metab Eng 12:129–137

    CAS  Google Scholar 

  140. Ramakrishna R, Edwards JS, McCulloch A, Palsson BO (2001) Am J Physiol Regul Integr Comp Physiol 280:R695–R704

    CAS  Google Scholar 

  141. Lee K, Berthiaume F, Stephanopoulos GN, Yarmush ML (1999) Tissue Eng 5:347–368

    CAS  Google Scholar 

  142. Forbes NS, Clark DS, Blanch HW (2001) Biotechnol Bioeng 74:196–211

    CAS  Google Scholar 

  143. Zwingmann C, Leibfritz D (2003) NMR Biomed 16:370–399

    CAS  Google Scholar 

  144. Cakir T, Alsan S, Saybasili H, Akin A, Ulgen KO (2007) Theor Biol Med Model 4:48

    Google Scholar 

  145. Teixeira AP, Santos SS, Carinhas N, Oliveira R, Alves PM (2008) Neurochem Int 52:478–486

    CAS  Google Scholar 

  146. Amaral AI, Teixeira AP, Martens S, Bernal V, Sousa MF, Alves PM (2010) J Neurochem 113:735–748

    CAS  Google Scholar 

  147. Kramer JA, Sagartz JE, Morris DL (2007) Nat Rev Drug Discov 6:636–649

    CAS  Google Scholar 

  148. Kola I, Landis J (2004) Nat Rev Drug Discov 3:711–715

    CAS  Google Scholar 

  149. Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Nat Rev Drug Discov 1:153–161

    CAS  Google Scholar 

  150. O’Connell TM, Watkins PB (2010) Clin Pharmacol Ther 88:394–399

    Google Scholar 

  151. Winnike JH, Li Z, Wright FA, Macdonald JM, O’Connell TM, Watkins PB (2010) Clin Pharmacol Ther 88:45–51

    CAS  Google Scholar 

  152. Hollemeyer K, Velagapudi VR, Wittmann C, Heinzle E (2007) Rapid Commun Mass Spectrom 21:336–342

    CAS  Google Scholar 

  153. Wittmann C, Kim HM, Heinzle E (2004) Biotechnol Bioeng 87:1–6

    CAS  Google Scholar 

  154. Balcarcel RR, Clark LM (2003) Biotechnol Prog 19:98–108

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Malina Orsini for valuable help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmar Heinzle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Niklas, J., Heinzle, E. (2011). Metabolic Flux Analysis in Systems Biology of Mammalian Cells. In: Hu, W., Zeng, AP. (eds) Genomics and Systems Biology of Mammalian Cell Culture. Advances in Biochemical Engineering Biotechnology, vol 127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2011_99

Download citation

Publish with us

Policies and ethics