Advertisement

Fuels and Chemicals from Hemicellulose Sugars

  • Xiao-Jun Ji
  • He Huang
  • Zhi-Kui Nie
  • Liang Qu
  • Qing Xu
  • George T. Tsao
Chapter
Part of the Advances in Biochemical Engineering Biotechnology book series (ABE, volume 128)

Abstract

Industrial processes of lignocellulosic material have made use of only the hexose component of the cellulose fraction. Pentoses and some minor hexoses present in the hemicellulose fraction, which may represent as much as 40% of lignocellulosic biomass, have in most cases been wasted. The lack of good methods for utilization of hemicellulose sugars is a key obstacle hindering the development of lignocellulose-based ethanol and other biofuels. In this chapter, we focus on the utilization of hemicellulose sugars, the structure of hemicellulose and its hydrolysis, and the biochemistry and process technology involved in their conversion to valuable fuels and chemicals.

Graphical Abstract

Keywords

Chemicals Fuels Hemicelluloses Hydrolysis Sugars 

Notes

Acknowledgments

Funding for our research was provided by the National Basic Research Program of China (No. 2011CBA00802), the National Natural Science Foundation of China (Nos. 20936002; 21006049), the National High Technology Research and Development Program of China (No. 2011AA02A207), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

  1. 1.
    Qu YB, Zhu M, Liu K, Bao X, Lin J (2006) Studies on cellulosic ethanol production for sustainable supply of liquid fuel in China. Biotechnol J 1:1235–1240CrossRefGoogle Scholar
  2. 2.
    Fang X, Shen Y, Zhao J, Bao XM, Qu YB (2010) Status and prospect of lignocellulosic bioethanol production in China. Bioresour Technol 101:4814–4819CrossRefGoogle Scholar
  3. 3.
    Yang B, Lu Y (2007) The promise of cellulosic ethanol production in China. J Chem Technol Biotechnol 82:6–10CrossRefGoogle Scholar
  4. 4.
    Tan TW, Shang F, Zhang X (2010) Current development of biorefinery in China. Biotechnol Adv 28:543–555CrossRefGoogle Scholar
  5. 5.
    Tan TW, Yu JL, Lu JK, Zhang T (2010) Biofuels in China. Adv Biochem Eng Biotechnol 122:73–104Google Scholar
  6. 6.
    Li ZJ, Ji XJ, Kan SL, Qiao HQ, Jiang M, Lu DQ, Wang J, Huang H, Jia HH, Ouyang PK, Ying HJ (2010) Past, present, and future industrial biotechnology in China. Adv Biochem Eng Biotechnol 122:1–42Google Scholar
  7. 7.
    Zhong C, Cao YX, Li BZ, Yuan YJ (2010) Biofuels in China: past, present and future. Biofuels Bioprod Bioref 4:326–342CrossRefGoogle Scholar
  8. 8.
    Gong CS, Cao NJ, Du J, Tsao GT (1999) Ethanol production from renewable resources. Adv Biochem Eng Biotechnol 65:207–241Google Scholar
  9. 9.
    Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25:153–157CrossRefGoogle Scholar
  10. 10.
    Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Bioref 2:26–40CrossRefGoogle Scholar
  11. 11.
    Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291CrossRefGoogle Scholar
  12. 12.
    Wyman CE (1999) Biomass ethanol: technical progress, opportunities, and commercial challenges. Ann Rev Energ Environ 24:189–226CrossRefGoogle Scholar
  13. 13.
    Gong CS, Chen LF, Flickinger MC, Tsao GT (1981) Conversion of hemicellulose carbohydrates. Adv Biochem Eng Biotechnol 20:93–118Google Scholar
  14. 14.
    Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800CrossRefGoogle Scholar
  15. 15.
    Ebringerova A, Hromadkova Z, Heinze T (2005) Hemicellulose. Adv Polym Sci 186:1–67CrossRefGoogle Scholar
  16. 16.
    Saulnier L, Marot C, Chanliaud E, Thibault JF (1995) Cell wall polysaccharide interactions in maize bran. Carbohydr Polymers 26:279–287CrossRefGoogle Scholar
  17. 17.
    Lee YY, Iyer P, Torget RW (1999) Dilute-acid hydrolysis of lignocellulosic biomass. Adv Biochem Eng Biotechnol 65:93–115Google Scholar
  18. 18.
    DOE US (2006) Breaking the biological barriers to cellulosic ethanol: a joint research agenda, DOE/SC-0095. U.S. Department of Energy Office of Science and Office of Energy Efficiency and Renewable Energy. www.doegenomestolife.org/biofuels
  19. 19.
    Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–886CrossRefGoogle Scholar
  20. 20.
    Saha BC, Bothast RJ (1997) Enzymes in lignocellulosic biomass conversion. In: Saha BC, Woodward J (eds) Fuels and chemicals from biomass. American Chemical Society, Washington, D.CCrossRefGoogle Scholar
  21. 21.
    Jin Q, Zhang H, Yan L, Huang H (2010) Dilute acid hydrolysis reaction of biomass hemicellulose. Prog Chem 22:654–661 (in Chinese)Google Scholar
  22. 22.
    Jin Q, Zhang H, Yan L, Qu L, Huang H (2011) Kinetic characterization for hemicellulose hydrolysis of corn stover in a dilute acid cycle spray flow-through reactor at moderate conditions. Biomass Bioenerg 35:4158–4164Google Scholar
  23. 23.
    Cheng KK, Cai BY, Zhang JA, Ling HZ, Zhou YJ, Ge JP, Xu JM (2008) Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochem Eng J 38:105–109CrossRefGoogle Scholar
  24. 24.
    Yan L, Zhang H, Chen J, Lin Z, Jin Q, Jia H, Huang H (2009) Dilute sulfuric acid cycle spray flow-through pretreatment of corn stover for enhancement of sugar recovery. Bioresour Technol 100:1803–1808CrossRefGoogle Scholar
  25. 25.
    Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228CrossRefGoogle Scholar
  26. 26.
    Selinger LB, Forsberg CW, Cheng KJ (1996) The rumen: a unique source of enzymes for enhancing livestock production. Anaerobe 2:263–284CrossRefGoogle Scholar
  27. 27.
    Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103:11206–11210CrossRefGoogle Scholar
  28. 28.
    Chandel AK, Chan EC, Rudravaram R, Narasu ML, Rao LV, Ravindra P (2007) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2:14–32Google Scholar
  29. 29.
    Wang Y, Shi WL, Liu XY, Shen Y, Bao XM, Bai FW, Qu YB (2004) Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae. Biotechnol Lett 26:885–890CrossRefGoogle Scholar
  30. 30.
    Liu EK, Hu Y (2010) Construction of a xylose–fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem Eng J 48:204–210CrossRefGoogle Scholar
  31. 31.
    Du Preez JC (1994) Process parameters and environmental factors affecting D-xylose fermentation by yeasts. Enzyme Microb Technol 16:944–956CrossRefGoogle Scholar
  32. 32.
    Hahn–Hagerdal B, Jeppsson H, Skoog K, Prior BA (1994) Biochemistry and physiology of xylose fermentation by yeasts. Enzyme Microb Technol 16:933–943Google Scholar
  33. 33.
    Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642CrossRefGoogle Scholar
  34. 34.
    Cheng KK, Ge JP, Zhang JA, Ling HZ, Zhou YJ, Yang MD, Xu JM (2007) Fermentation of pretreated sugarcane bagasse hemicelluloses hydrolysate to ethanol by Pachysolen tannophilus. Biotechnol Lett 29:1051–1055CrossRefGoogle Scholar
  35. 35.
    Zhang ZH, Qu YB, Zhang X, Lin JQ (2008) Effects of oxygen limitation on xylose fermentation, intracellular metabolites, and key enzymes of Neurospora crassa AS3.1602. Appl Biochem Biotechnol 145:39–51CrossRefGoogle Scholar
  36. 36.
    Zhao L, Zhang X, Tan TW (2008) Influence of various glucose/xylose mixtures on ethanol production by Pachysolen tannophilus. Biomass Bioenerg 32:1156–1161CrossRefGoogle Scholar
  37. 37.
    Chen YF, Dong BY, Qin WJ, Xiao DG (2010) Xylose and cellulose fractionation from corncob with three different strategies and separate fermentation of them to bioethanol. Bioresour Technol 101:6994–6999CrossRefGoogle Scholar
  38. 38.
    Liu TJ, Lin L, Sun ZJ, Hu RF, Liu SJ (2010) Bioethanol fermentation by recombinant E. coli FBR5 and its robust mutant FBHW using hot–water wood extract hydrolyzate as substrate. Biotechnol Adv 28:602–608CrossRefGoogle Scholar
  39. 39.
    Zhang XR, Shen Y, Shi WL, Bao XM (2010) Ethanolic cofermentation with glucose and xylose by the recombinant industrial strain Saccharomyces cerevisiae NAN–127 and the effect of furfural on xylitol production. Bioresour Technol 101:7093–7099CrossRefGoogle Scholar
  40. 40.
    Zhao J, Xia LM (2010) Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells. Biochem Eng J 49:28–32CrossRefGoogle Scholar
  41. 41.
    Edgar WM (1998) Sugar substitutes, chewing gum and dental caries—a review. Br Dent J 184:29–32CrossRefGoogle Scholar
  42. 42.
    Chen X, Jiang ZH, Chen SF, Qin WS (2010) Microbial and bioconversion production of D-xylitol and its detection and application. Int J Biol Sci 6:834–844CrossRefGoogle Scholar
  43. 43.
    Mancilha IM, Karim MN (2003) Evaluation of ion exchange resins for removal of inhibitory compounds from corn stover hydrolyzate for xylitol fermentation. Biotechnol Prog 19:1837–1841CrossRefGoogle Scholar
  44. 44.
    Deng LH, Wang YH, Zhang Y, Ma RY (2006) The enhancement of ammonia pretreatment on the fermentation of rice straw hydrolysate to xylitol. J Food Biochem 31:195–205CrossRefGoogle Scholar
  45. 45.
    Carvalho W, Santos JC, Canilha L, Silva SS, Perego P, Converti A (2005) Xylitol production from sugarcane bagasse hydrolysate: metabolic behaviour of Candida guilliermondii cells entrapped in Ca-alginate. Biochem Eng J 25:25–31CrossRefGoogle Scholar
  46. 46.
    Canilha L, Almeida SJB, Solenzal AIN (2004) Eucalyptus hydrolysate detoxification with activated charcoal adsorption or ionexchanger resins for xylitol production. Process Biochem 39:1909–1912CrossRefGoogle Scholar
  47. 47.
    Solange IM, Giuliano D, Ines CR (2005) Influence of the toxic compounds present in brewer’s spent grain hemicellulosic hydrolysate on xylose-to-xylitol bioconversion by Candida guilliermondii. Process Biochem 40:3801–3806CrossRefGoogle Scholar
  48. 48.
    Farooq L, Mohammad IR (2001) Production of ethanol and xylitol from corncobs by yeasts. Bioresour Technol 77:57–63CrossRefGoogle Scholar
  49. 49.
    Roberto IC, de Mancilha IM, Sato S (1999) Influence of kLa on bioconversion of rice straw hemicellulose hydrolysate to xylitol. Bioprocess Biosyst Eng 21:505–508Google Scholar
  50. 50.
    Parajó JC, Domínguez H, Domínguez JM (1997) Improved xylitol production with Debaryomyces hansenii Y-7426 from raw or detoxified wood hydrolysates. Enzyme Microb Technol 21:18–24CrossRefGoogle Scholar
  51. 51.
    Converti A, Perego P, Domínguez JM (1999) Xylitol production from hardwood hemicellulose hydrolyzates by Pachysolen tannophilus, Debaryomyces hansenii, and Candida guillermondii. Appl Biochem Biotechnol 82:141–151CrossRefGoogle Scholar
  52. 52.
    Walther T, Hensirisak P, Agblevor FA (2001) The influence of aeration and hemicellulos ic sugars on xylitol production by Candida tropicalis. Bioresour Technol 76:213–220CrossRefGoogle Scholar
  53. 53.
    Cirino PC, Chin JW, Ingram LO (2006) Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnol Bioeng 95:1167–1176CrossRefGoogle Scholar
  54. 54.
    Lee WJ, Kim MD, Yoo MS, Ryu YW, Seo JH (2003) Effects of xylose reductase activity on xylitol production in two-substrate fermentation of recombinant Saccharomyces cerevisiae. J Microbiol Biotechnol 13:725–730Google Scholar
  55. 55.
    Sasaki M, Jojima T, Inui M, Yukawa H (2010) Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 86:1057–1066CrossRefGoogle Scholar
  56. 56.
    Fang XN, Huang W, Xia LM (2004) Xylitol production from corn cob hemicellulosic hydrolysate by Candida sp. Chin J Biotechnol 20(2):295–298 (in Chinese)Google Scholar
  57. 57.
    Ding XH, Xia LM (2006) Effect of aeration rate on production of xylitol from corncob hemicellulose hydrolysate. Appl Biochem Biotechnol 133:263–270CrossRefGoogle Scholar
  58. 58.
    Cheng KK, Zhang JA, Ling HZ, Ping WX, Huang W, Ge JP, Xu JM (2009) Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis. Biochem Eng J 43:203–207CrossRefGoogle Scholar
  59. 59.
    Huang W, Fang XN, Xia LM (2004) Production of xylitol from hemicellulose hydrolysate by immobilized Candida tropicalis cells. Chem Ind Forest Prod 24(1):29–33 (in Chinese)Google Scholar
  60. 60.
    Cheng H, Wang B, Lv J, Jiang M, Lin S, Deng Z (2011) Xylitol production from xylose mother liquor: a novel strategy that combines the use of recombinant Bacillus subtilis and Candida maltose. Microb Cell Fact 10:5CrossRefGoogle Scholar
  61. 61.
    Magee RJ, Kosaric N (1985) Bioconversion of hemicellulosics. Adv Biochem Eng Biotechnol 32:61–93Google Scholar
  62. 62.
    Garg S, Jain A (1995) Fermentative production of 2,3-butanediol: a review. Bioresour Technol 51:103–109CrossRefGoogle Scholar
  63. 63.
    Syu MJ (2001) Biological production of 2,3–butanediol. Appl Microbiol Biotechnol 55:10–18CrossRefGoogle Scholar
  64. 64.
    Celińska E, Grajek W (2009) Biotechnological production of 2,3–butanediol–current state and prospects. Biotechnol Adv 27:715–725CrossRefGoogle Scholar
  65. 65.
    Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29:351–364CrossRefGoogle Scholar
  66. 66.
    Maddox IS (2008) Microbial production of 2,3-butanediol. In: Rehm HJ, Reed G (eds) Biotechnology, 2nd edn. Wiley-VCH Verlag GmbH. WeinheimGoogle Scholar
  67. 67.
    Yu B, Sun J, Bommareddy RR, Song L, Zeng AP (2011) Novel (2R, 3R)-2,3-butanediol dehydrogenase from potential industrial strain Paenibacillus polymyxa ATCC 12321. Appl Environ Microbiol 77:4230–4233CrossRefGoogle Scholar
  68. 68.
    Jansen NB, Tsao GT (1983) Bioconversion of pentoses to 2,3-butanediol by Klebsiella pneumoniae. Adv Biochem Eng Biotechnol 27:85–99Google Scholar
  69. 69.
    Chandel AK, Singh OV, Rao LV (2010) Biotechnological applications of hemicellulosic derived sugars: State-of-the-art. In: Singh OV, Harvey SP (eds) Sustainable Biotechnology. Springer Netherlands, AmsterdamGoogle Scholar
  70. 70.
    Frazer FR, McCaskey TA (1989) Wood hydrolyzate treatments for improved fermentation of wood sugars to 2,3-butanediol. Biomass 18:31–42CrossRefGoogle Scholar
  71. 71.
    Grover BP, Garg SK, Verma J (1990) Production of 2,3-butanediol from wood hydrolysate by Klebsiella pneumoniae. World J Microbiol Biotechnol 6:328–332CrossRefGoogle Scholar
  72. 72.
    Yu EKC, Deschatelets L, Tan LUL, Saddler JN (1985) A simple method for xylanase preparation used for the hydrolysis and fermentation of hemicellulose to butanediol. Biotechnol Lett 7:425–430CrossRefGoogle Scholar
  73. 73.
    Yu EKC, Levitin N, Saddler JN (1982) Production of 2,3-butanediol by Klebsiella pneumoniae grown on acid hydrolyzed wood hemicellulose. Biotechnol Lett 4:741–746CrossRefGoogle Scholar
  74. 74.
    Frazer FR, McCaskey TA (1991) Effect of components of acid-hydrolysed hardwood on conversion of D-xylose to 2,3-butanediol by Klebsiella pneumoniae. Enzyme Microb Technol 13:110–115CrossRefGoogle Scholar
  75. 75.
    Nishikawa NK, Sutcliffe R, Saddler JN (1998) The effect of wood-derived inhibitors on 2,3-butanediol production by Klebsiella pneumoniae. Biotechnol Bioeng 31:624–627CrossRefGoogle Scholar
  76. 76.
    Yu EKC, Deschatelets L, Louis-Seize G, Saddler JN (1985) Butanediol production from cellulose and hemicellulose by Klebsiella pneumoniae grown in sequential coculture with Trichoderma harzianum. Appl Environ Microbiol 50:924–929Google Scholar
  77. 77.
    Yu EKC, Saddler JN (1985) Biomass conversion to butanediol by simultaneous saccharification and fermentation. Trends Biotechnol 3:100–104CrossRefGoogle Scholar
  78. 78.
    Saha BC, Bothast RJ (1999) Production of 2,3-butanediol by newly isolated Enterobacter cloacae. Appl Microbiol Biotechnol 52:321–326CrossRefGoogle Scholar
  79. 79.
    Ji XJ, Huang H, Du J, Zhu JG, Ren LJ, Li S, Nie ZK (2009) Development of an industrial medium for economical 2,3-butanediol production through co-fermentation of glucose and xylose by Klebsiella oxytoca. Bioresour Technol 100:5214–5218CrossRefGoogle Scholar
  80. 80.
    Cheng KK, Liu Q, Zhang JA, Li JP, Xu JM, Wang GH (2010) Improved 2,3-butanediol production from corncob acid hydrolysate by fed-batch fermentation using Klebsiella oxytoca. Process Biochem 45:613–616CrossRefGoogle Scholar
  81. 81.
    Si Y, Xia LM (2010) Fermentative production of 2,3-butanediol from corn stover hydrolysate. Food Ferment Ind 36(2):26–29 (in Chinese)Google Scholar
  82. 82.
    Wang AL, Wang Y, Jiang TY, Li LX, Ma CQ, Xu P (2010) Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production. Appl Microbiol Biotechnol 87:965–970CrossRefGoogle Scholar
  83. 83.
    83. Yang Y, Zhang YC, Sun YF, He LF, Jiang Y (2010) Study on production of 2,3-butanediol from straw paper pulp hydrolysate fermentation by Klebsiella pneumoniae. Renew Energ Resour 28(2):53–58 (in Chinese)Google Scholar
  84. 84.
    Ji XJ, Nie ZK, Huang H, Ren LJ, Peng C, Ouyang PK (2011) Elimination of carbon catabolite repression in Klebsiella oxytoca for efficient 2,3-butanediol production from glucose–xylose mixtures. Appl Microbiol Biotechnol 89:1119–1125CrossRefGoogle Scholar
  85. 85.
    Ji XJ, Huang H, Li S, Du J, Lian M (2008) Enhanced 2,3-butanediol production by altering the mixed acid fermentation pathway in Klebsiella oxytoca. Biotechnol Lett 30:731–734CrossRefGoogle Scholar
  86. 86.
    Ji XJ, Huang H, Zhu JG, Ren LJ, Nie ZK, Du J, Li S (2010) Engineering Klebsiella oxytoca for efficient 2,3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl Microbiol Biotechnol 85:1751–1758CrossRefGoogle Scholar
  87. 87.
    Görke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624CrossRefGoogle Scholar
  88. 88.
    van Haveren J, Scott EL, Sanders J (2008) Bulk chemicals from biomass. Biofuels Bioprod Bioref 2:41–57CrossRefGoogle Scholar
  89. 89.
    Emerson RR, Flickinger MC, Tsao GT (1982) Kinetics of dehydration of aqueous 2,3-butanediol to methyl ethyl ketone. Ind Eng Chem Prod Res Dev 21:473–477CrossRefGoogle Scholar
  90. 90.
    Tran AV, Chambers RP (1987) The dehydration of fermentative 2,3-butanediol into methyl ethyl ketone. Biotechnol Bioeng 29:343–351CrossRefGoogle Scholar
  91. 91.
    Speranza G, Manitto P, Fontana G, Monti D, Galli A (1996) Evidence for enantiomorphic-enantiotopic group discrimination in diol dehydratase-catalyzed dehydration of meso-2,3-butanediol. Tetrahedron Lett 37:4247–4250CrossRefGoogle Scholar
  92. 92.
    Wang D, Wang FQ, Wang JH (2000) Production of MEK by fermentation. Fine Spec Chem 15(9):19–20 (in Chinese)Google Scholar
  93. 93.
    Lee J, Grutzner JB, Walters WE, Delgass WN (2000) The conversion of 2,3-butanediol to methyl ethyl ketone over zeolites. Stud Surf Sci Catal 130:2603–2608CrossRefGoogle Scholar
  94. 94.
    Huang H, Yan J, Ji XJ, Li S, Hu YC. A method for methyl ethyl ketone production. Chinese Patent: 200810122489.4, June 20, 2008Google Scholar
  95. 95.
    Zhang JA, Xie Y, Cheng KK, Zhou YJ, Liu HJ, Liu DH. A high efficient method for converting 2,3-butanediol to methyl ethyl ketone. Chinese Patent: 200910083730.1, May 8, 2009Google Scholar
  96. 96.
    Ni Y, Sun Z (2009) Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Appl Microbiol Biotechnol 83:415–423CrossRefGoogle Scholar
  97. 97.
    Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by clostridia. Biotechnol Bioeng 101:209–228CrossRefGoogle Scholar
  98. 98.
    Chen CK, Blaschek HP (1999) Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101. Appl Microbiol Biotechnol 52:170–173CrossRefGoogle Scholar
  99. 99.
    Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89CrossRefGoogle Scholar
  100. 100.
    Zhang KC, Sawaya MR, Eisenberg DS, Liao JC (2008) Expanding metabolism for biosynthesis of nonnatural alcohols. Proc Natl Acad Sci USA 105:20653–20658CrossRefGoogle Scholar
  101. 101.
    Manzer LE. Method of making 2-butanol. US 7754928B2, Jul 13, 2010Google Scholar
  102. 102.
    Siemerink MAJ, Kuit W, Lopez Contreras AM, Eggink G, van der Oost J, Kengen SWM (2011) Heterologous expression of an acetoin reductase leads to D-2,3-butanediol production in Clostridium acetobutylicum. Appl Environ Microbiol 77:2582–2588CrossRefGoogle Scholar
  103. 103.
    Bramucci MG, Flint D, Miller ES, Nagarajan V, Sedkova N, Singh M, Van Dyk TK. Method for the production of 2-butanol, US 20080274525 A1, April 28, 2008Google Scholar
  104. 104.
    Burk MJ, Pharkya P, Burgard AP. Microorganisms for the production of methyl ethyl ketone and 2-butanol. US 20100184173 A1, November 13, 2009Google Scholar
  105. 105.
    Osterhout RE, Niu W, Burgard AP. Microorganisms and methods for carbon-efficient biosynthesis of MEK and 2-butanol. US 20110008858 A1, June 10, 2010Google Scholar
  106. 106.
    Tsao GT, Cao NJ, Du J, Gong CS (1999) Production of multifunctional organic acids from renewable resources. Adv Biochem Eng Biotechnol 65:243–280Google Scholar
  107. 107.
    Nigam P (2009) Production of organic acids from agro-industrial residues. In: Nigam P, Pandey A (eds) Biotechnology for agro-industrial residues utilization. Springer Netherlands, AmsterdamCrossRefGoogle Scholar
  108. 108.
    Werpy T, Petersen G (2004) Top value added chemicals from biomass, Volume 1: results of screening for potential candidates from sugars and synthesis gas. U.S. Department of Energy. http://www1.eere.energy.gov/biomass/pdfs/35523.pdf
  109. 109.
    Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acid: expanding the markets. Trends Biotechnol 26:100–108CrossRefGoogle Scholar
  110. 110.
    Zhu YM, Lee YY, Elander RT (2007) Conversion of aqueous ammonia-treated corn stover to lactic acid by simultaneous saccharification and cofermentation. Appl Biochem Biotechnol 137:721–738CrossRefGoogle Scholar
  111. 111.
    Givry S, Prevot V, Duchiron F (2008) Lactic acid production from hemicellulosic hydrolyzate by cells of Lactobacillus bifermentans immobilized in Ca-alginate using response surface methodology. World J Microbiol Biotechnol 24:745–752CrossRefGoogle Scholar
  112. 112.
    Ruengruglikit C, Hang YD (2003) L(+)-lactic acid production from corncobs by Rhizopus oryzae NRRL–395. Food Sci Technol 36:573–575Google Scholar
  113. 113.
    Woiciechowski AL, Soccol CR, Ramos LP, Pandey A (1999) Experimental design to enhance the production of L-(+)-lactic acid from steam-exploded wood hydrolysate using Rhizopus oryzae in a mixed-acid fermentation. Process Biochem 34:949–955CrossRefGoogle Scholar
  114. 114.
    Walton SL, Bischoff KM, van Heiningen ARP, van Walsum GP (2010) Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL-9. J Ind Microbiol Biotechnol 37:823–830CrossRefGoogle Scholar
  115. 115.
    Wee YJ, Yun JS, Park DH, Ryu HW (2004) Biotechnological production of L-lactic acid from wood hydrolyzate by batch fermentaion of Enterococcus faecalis. Biotechnol Lett 26:71–74CrossRefGoogle Scholar
  116. 116.
    Garde A, Jonsson G, Schmidt AS, Ahring BK (2002) Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis. Bioresour Technol 81:217–223CrossRefGoogle Scholar
  117. 117.
    Bustos G, Moldes AB, Cruz JM, Domínguez JM (2005) Influence of the metabolism pathway on lactic acid production from hemicellulosis trimming vine shoots hydrolyzates using Lactobacillus pentosus. Biotechnol Prog 21:793–798CrossRefGoogle Scholar
  118. 118.
    Moldes AB, Torrado A, Converti A, Domínguez JM (2006) Complete bioconversion of hemicellulosic sugars from agricultural residues into lactic acid by Lactobacillus pentosus. Appl Biochem Biotechnol 135:219–227CrossRefGoogle Scholar
  119. 119.
    Yang Y, Fan Y, Li W, Wang D, Wu Y, Zheng Z, Yu Z (2007) Optimization of L-lactic acid production from xylose with Rhizopus oryzae mutant RLC41-6 breeding by low-energy ion implantation. Plasma Sci Technol 9:638–642CrossRefGoogle Scholar
  120. 120.
    Bai DM, Li SZ, Liu ZL, Cui ZF (2008) Enhanced L-lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydrolysate. Appl Biochem Biotechnol 144:79–85CrossRefGoogle Scholar
  121. 121.
    Wang P, Li J, Wang L, Tang M, Yu Z, Zheng Z (2009) L-lactic acid production by co-fermentation of glucose and xylose with Rhizopus oryzae obtained by low-energy ion beam irradiation. J Ind Microbiol Biotechnol 36:1363–1368CrossRefGoogle Scholar
  122. 122.
    Guo Y, Yan Q, Jiang Z, Teng C, Wang X (2010) Efficient production of lactic acid from sucrose and corncob hydrolysate by a newly isolated Rhizopus oryzae GY18. J Ind Microbiol Biotechnol 37:1137–1143CrossRefGoogle Scholar
  123. 123.
    Guo W, Jia W, Li Y, Chen S (2010) Performances of Lactobacillus brevis for producing lactic acid from hydrolysate of lignocellulosics. Appl Biochem Biotechnol 161:124–136CrossRefGoogle Scholar
  124. 124.
    Wang L, Zhao B, Liu B, Yu B, Ma C, Su F, Hua D, Li Q, Ma Y, Xu P (2010) Efficient production of L-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain. Bioresour Technol 101:7908–7915CrossRefGoogle Scholar
  125. 125.
    Gao Z, Zhang K, Huang H, Li S, Wei P (2009) Fumaric acid production by Rhizopus sp. Prog Chem 21(1):251–258 (in Chinese)Google Scholar
  126. 126.
    Roa Engel CA, Straathof AJJ, Zijlmans TW, van Gulik WM, van der Wielen LAM (2008) Fumaric acid production by fermentation. Appl Microbiol Biotechnol 78:379–389CrossRefGoogle Scholar
  127. 127.
    Liao W, Liu Y, Frear C, Chen SL (2008) Co-production of fumaric acid and chitin from a nitrogen-rich lignocellulosic material–dairy manure–using a pelletized filamentous fungus Rhizopus oryzae ATCC 20344. Bioresour Technol 99:5859–5866CrossRefGoogle Scholar
  128. 128.
    Kautola H, Linko K (1989) Fumaric acid production from xylose by immobilized Rhizopus arrhizus cells. Appl Microbiol Biotechnol 31:448–452CrossRefGoogle Scholar
  129. 129.
    Woiciechowski AL, Soccol CR, Ramos LP, Affonso LF (2001) Screening of several Rhizopus strains to produce fumaric acid by biological conversion of hemicellulosic hydrolysates obtained by steam explosion. In: Proceedings V Simpósio de Hidrólise Enzimática de Biomassa. Universidade Estadual de Maringá, Maringá, BrasilGoogle Scholar
  130. 130.
    Liu N, Li S, He H, Wu H, Huang H, Ji SY (2008) Stepped utilization of xylose and glucose in fermentation of fumaric acid by Rhizopus arrhizus. Chin J Process Eng 8(4):794–797 (in Chinese)Google Scholar
  131. 131.
    Tai C, Li S, Xu Q, Ying H, Huang H, Ouyang PK (2010) Chitosan production from hemicellulose hydrolysate of corn straw: impact of degradation products on Rhizopus oryzae gr owth and chitosan fermentation. Lett Appl Microbiol 51:278–284CrossRefGoogle Scholar
  132. 132.
    Xu Q, Li S, Fu YQ, Tai C, Huang H (2010) Two-stage utilization of corn straw by Rhizopus oryzae for fumaric acid production. Bioresour Technol 101:6262–6264CrossRefGoogle Scholar
  133. 133.
    McKinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76:727–740CrossRefGoogle Scholar
  134. 134.
    Yu C, Cao Y, Zou H, Xian M (2011) Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl Microbiol Biotechnol 89:573–583CrossRefGoogle Scholar
  135. 135.
    Lee PC, Lee SY, Hong SH, Chang HN (2002) Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Appl Microbiol Biotechnol 58:663–668CrossRefGoogle Scholar
  136. 136.
    Kim DY, Yim SC, Lee PC, Lee WG, Lee SY, Chang HN (2004) Batch and continuous fermentation of succinic acid from wood hydrolysate by Mannheimia succiniciproducens MBEL55E. Enzyme Microb Technol 35:648–653CrossRefGoogle Scholar
  137. 137.
    Zheng P, Dong JJ, Sun ZH, Ni Y, Fang L (2009) Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes. Bioresour Technol 100:2425–2429CrossRefGoogle Scholar
  138. 138.
    Chen K, Jiang M, Wei P, Yao J, Wu H (2010) Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes. Appl Biochem Biotechnol 160:477–485CrossRefGoogle Scholar
  139. 139.
    Yu J, Li ZM, Ye Q, Yang Y, Chen S (2010) Development of succinic acid production from corncob hydrolysate by Actinobacillus succinogenes. J Ind Microbiol Biotechnol 37:1033–1040CrossRefGoogle Scholar
  140. 140.
    Willke T, Vorlop KD (2001) Biotechnological production of itaconic acid. Appl Microbiol Biotechnol 56:289–295CrossRefGoogle Scholar
  141. 141.
    Li ZY, Nie ZK, Ji XJ, Huang H (2010) Progress in xylonic acid production and application. Chem Ind Eng Prog 29(8):1525–1529 (in Chinese)Google Scholar
  142. 142.
    Qu YB, Chen HZ, Gao PJ (1992) SCP production from steam exploded hemicellulose autohydrolysate by Trichosporon cutaneum. J Ferment Bioeng 73:386–389CrossRefGoogle Scholar
  143. 143.
    Chen HZ, Liu J, Li ZH (1999) Production of single cell protein by fermentation of extracts from hemicellulose autohydrolysis. Eng Chem Metall 20(4):428–431 (in Chinese)Google Scholar
  144. 144.
    Wang CH, Ding YQ, Xiao CF, Hua W, Sun NX (2001) Production of high enzyme activity SCP from cellulose material. Ind Microbiol 31(1):30–33 (in Chinese)Google Scholar
  145. 145.
    Liu JH, Chen QS, Chen JY, Yan YL, Zhang XL, Pang GC (2001) Research on biotransformation to single cell proteins by using diluted sulfuric acid solution to pretreat corn stalk. J Tianjin Univ Commun 21(3):1–5 (in Chinese)Google Scholar
  146. 146.
    Gunaseelan N (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenerg 13:83–114CrossRefGoogle Scholar
  147. 147.
    Mamman AS, Lee JM, Kim YC, Hwang IT, Park NJ, Hwang YK, Chang JS, Hwang JS (2008) Furfural: Hemicellulose/xylose derived biochemical. Biofuels Bioprod Bioref 2:438–454CrossRefGoogle Scholar
  148. 148.
    Li ZS, Yi WG (2010) Study on furfural preparation from corn cob. Fine Chem Intermed 40(4):53–55 (in Chinese)Google Scholar
  149. 149.
    Gao LF, Xu HB, Zhang Y, Cao HB (2010) Optimization on production process of furfural by high-temperature dilute-acid hydrolysis of corncobs. Chin J Process Eng 10(20):292–297 (in Chinese)Google Scholar
  150. 150.
    Sun YD, Sun R, Jiang JX, Zhu LW (2008) Study on conversion process for furfural residue manufacture to ethanol by simultaneous saccharification and fermentation. Mod Chem Ind 28(12):48–52 (in Chinese)Google Scholar
  151. 151.
    Chen L, Zhao LX, Dong BC, Wan XC, Gao XX (2010) The status and trends of the development of biogas plants for crop straws in China. Renew Energ Resour 28(3):145–148 (in Chinese)Google Scholar
  152. 152.
    Zhang W, Li XJ, Pang YZ, Cai LP (2008) A pilot study on mesophilic dry anaerobic digestion of rice straw. J Agro-Environ Sci 27(5):2075–2079 (in Chinese)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xiao-Jun Ji
    • 1
  • He Huang
    • 1
  • Zhi-Kui Nie
    • 1
  • Liang Qu
    • 1
  • Qing Xu
    • 1
  • George T. Tsao
    • 2
  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical EngineeringNanjing University of TechnologyNanjingChina
  2. 2.Laboratory of Renewable Resources EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations