Skip to main content

Artificial Scaffolds and Mesenchymal Stem Cells for Hard Tissues

  • Chapter
  • First Online:
Tissue Engineering III: Cell - Surface Interactions for Tissue Culture

Part of the book series: Advances in Biochemical Engineering Biotechnology ((ABE,volume 126))

Abstract

Medicine was revolutionized in the last two centuries and its advances have more than doubled life expectancy. Nevertheless, some problems are as old as mankind and although the underlying causes might have changed, the problems themselves have not. Musculoskeletal disorders and tooth loss are such problems; they are the major reasons for the ever-growing need for bone replacement, which cannot always be realized by autologous material. New, multidisciplinary strategies are needed for the development of novel materials to meet the demand. Stem-cell-based approaches combined with newly designed scaffold materials seem to be promising tools for constructing tissue replacements. Human mesenchymal stem cells and their remarkable differentiation potential are an interesting cell source for the development of bio-engineered tissues. Scaffolds based on natural and synthetic materials with or without the use of bioactive molecules are constructed to mimic the natural environment. They can improve proliferation and differentiation of the scaffold-seeded cells. Combined, they can provide specific remedies for hard tissue replacement, which will be discussed in this chapter.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

AAV:

Adeno-associated virus

ALS:

Amyotrophic lateral sclerosis

ATP:

Adenosine-5′-triphosphate

ATSC:

Adipose tissue derived stem cell

BMSC:

Bone marrow stromal cell

BMP:

Bone morphogenic protein

cAMP:

Cyclic adenosine monophosphate

CD:

Cluster of Differentiation

CSD:

Critical size defect

CVD:

Chemical vapour deposition

DFC:

Dental follicle cell

DNA:

Deoxyribonucleic acid

DPLSC:

Dental periodontal ligament stem cell

DPSC:

Dental pulp stem cell

ECM:

Extracellular matrix

ESCs:

Embryonic stem cells

FDM:

Fused deposition modelling

HA:

Hydroxyapatite

HLA-DR:

Human leukocyte antigen-DR

hMSC:

Human MSC

HSCs:

Hematopoietic stem cells

IL:

Interleukin

iPS:

Induced pluripotent stem cells

ISCT:

International Society for Cellular Therapy

Klf4:

Krueppel-like factor 4

LB:

Langmuir–Blodgett

LbL:

Layer-by-layer

Lin28:

(Cell) lineage abnormal 28

MSCs:

Mesenchymal stem cells

Oct4:

Octamer binding transcription factor 4

P:

Purinergic

P2X:

Purinergic receptors (ligand-gated ion channels)

P2Y:

Purinergic receptors (G protein-coupled)

PCL:

Poly(ε-caprolactone)

PCL/TCP:

Poly(ε-caprolactone)/tri-calcium phosphate

PEO:

Poly(ethylene oxide)

PEOT/PBT:

Poly(poly(ethylene oxide)terephthalate-co-(butylene)terephtalate)

PGA:

Poly(glycolic acid)

PHMGCL:

Poly(hydroxymethyl glycolide-co-ε-caprolactone)

PLA:

Poly(lactic acid)

PLGA:

Poly(lactic-co-glycolide)

PVD:

Physical vapour deposition

RA:

Retinoic acid

RGD:

(one letter code of amino acids)

rhBMP-7:

Recombinant human bone morphogenic protein

RhoA:

Ras homolog gene family, member A

ROCKII:

Rho-associated protein kinase II

SATB2:

Special AT-rich sequence-binding protein 2

SC:

Stem cell

SCAP:

Stem cells from the apical papilla

SCID:

Severe combined immunodeficiency

SEM:

Scanning electron microscope

SES:

Screw extrusion system

SHED:

Stem cells of human exfoliated deciduous teeth

SLA:

Selective laser ablation

SLS:

Selective laser sintering

SMCs:

Smooth muscle cells

Sox2:

Sex determining region Y-related High-Mobility Group box 2

TGF-β:

Transforming growth factor β

TIP:

Tension-induced proteins

TP:

Tricalcium phosphate

TRP:

Transient receptor potential

UTP:

Uridine-5′-triphosphate

VEGF:

Vascular endothelial growth factor

Wnt:

Wingless integration (signaling pathway)

References

  1. Bartold PM (2000) Periodontology 40:164–172

    Google Scholar 

  2. Aejaz HM, Aleem AK, Parveen N et al (2007) Stem cell therapy-present status. Transplant Proc 39:694–699

    CAS  Google Scholar 

  3. McKay R (2000) Stem cells––hype and hope. Nature 406:361–364

    Google Scholar 

  4. Chung Y, Klimanskaya I, Becker S et al (2005) Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 439: 216–219

    Google Scholar 

  5. Bladé J, Samson D, Reece D et al (1998) Criteria for evaluating disease response and progression in patients with multiple myeloma treated by high-dose therapy and haemopoietic stem cell transplantation. Br J Haematol 102:1115–1123

    Google Scholar 

  6. Pavletic S, Khouri I, Haagenson M et al (2005) Unrelated donor marrow transplantation for B-cell chronic lymphocytic leukemia after using myeloablative conditioning: results from the Center for international blood and marrow transplant research. J Clin Oncol 23:5788–5794

    Google Scholar 

  7. Crisostomoto PR, Wang Y, Markel TA et al (2008) Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B— but not JNK-dependent mechanism. Am J Physiol Cell Physiol 294:675–682

    Google Scholar 

  8. Slayton WB, Spangrude GJ (2004) Adult stem cell plasticity. In: Turksen K (ed) Adult stem cells. Humana Press, New Jersey, pp 1–3

    Google Scholar 

  9. Forte E, Chimenti I, Barile L et al (2011) Cardiac cell therapy: the next (re)generation. Stem Cell Rev Rep. doi:10.1007/s12015-011-9252-8 [Epub ahead of print]

  10. Mozid AM, Arnous S, Sammut EC et al (2011) Stem cell therapy for heart diseases. Br Med Bull 98:143--159

    Google Scholar 

  11. Vanikar AV, Dave SD, Thakkar UG et al (2010) Cotransplantation of adipose tissue-derived insulin-secreting mesenchymal stem cells and hematopoietic stem cells: a novel therapy for insulin-dependent diabetes mellitus. Stem Cells Int 2010:582382. 20 Dec 2010

    Google Scholar 

  12. Meng J, Muntoni F, Morgan JE (2011) Stem cells to treat muscular dystrophies—where are we? Neuromuscul Disord 1:4–12

    Google Scholar 

  13. Illes J, Reimer JC, Kwon BK (2011) Stem cell clinical trials for spinal cord injury: readiness, reluctance, redefinition. Stem Cell Rev Rep. doi:10.1007/s12015-011-9259-1 [Epub ahead of print]

  14. Joe AW, Gregory-Evans K (2010) Mesenchymal stem cells and potential applications in treating ocular disease. Curr Eye Res 35:941–52

    Google Scholar 

  15. Barranco C (2011) Stem cells: mesenchymal stem cells from adipose tissue could be used to deliver gene therapy to the liver. Nat Rev Gastroenterol Hepatol 8:64

    Google Scholar 

  16. Liu T, Wang Y, Wen C, Zhang S et al (2011) Stem cells or macrophages, which contribute to bone marrow cell therapy for liver cirrhosis? Hepatology. doi:10.1002/hep.24431

  17. Rhee YH, Ko JY, Chang MY et al (2011) Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. J Clin Invest. doi:10.1172/JCI45794

  18. Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders—time for clinical translation. J Clin Invest 120:29–40

    CAS  Google Scholar 

  19. Mucke L (2009) Neuroscience: Alzheimer’s disease. Nature 461:895–897

    CAS  Google Scholar 

  20. Ringe J, Kaps C, Burmester G-R et al (2002) Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften 89:338–351

    CAS  Google Scholar 

  21. Schaefer D, Klemt C, Zhang X et al (2000) Tissue engineering with mesenchymal stem cells for cartilage and bone regeneration. Chirurg 71:1001–1008

    CAS  Google Scholar 

  22. Breitbach M, Bostani T, Roell W et al (2007) Potential risks of bone marrow cell transplantation into infarcted hearts. Blood 110:1362–1369

    CAS  Google Scholar 

  23. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    CAS  Google Scholar 

  24. Whittaker PA (2005) Therapeutic cloning: the ethical limits. Toxicol Appl Pharmacol 207:689–691

    Google Scholar 

  25. Peljto M, Wichterle H (2011) Programming embryonic stem cells to neuronal subtypes. Curr Opin Neurobiol 21:43–51 Feb 2011 Epub 20 Oct 2010

    Google Scholar 

  26. Canaari J, Kollet O, Lapidot T et al (2011) Neural regulation of bone, marrow, and the microenvironment. Front Biosci (Schol Ed) 3:1021–1031, June 1

    Google Scholar 

  27. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    CAS  Google Scholar 

  28. Takahashi K, Okita K, Nakagawa M et al (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2:3081–3089

    CAS  Google Scholar 

  29. Wernig A, Schäfer R, Knauf U et al (2005) On the regenerative capacity of human skeletal muscle. Artif Organs 29:192–198

    Google Scholar 

  30. Yu J, Vodyanik M, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    CAS  Google Scholar 

  31. Eminli S, Foudi A, Stadtfeld M et al (2009) Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 41:968–976

    CAS  Google Scholar 

  32. Kim J, Greber B, Araúzo-Bravo M et al (2009a) Direct reprogramming of human neural stem cells by OCT4. Nature 461:643–649

    Google Scholar 

  33. Kim J, Sebastiano V, Wu G et al (2009b) Oct4-induced pluripotency in adult neural stem cells. Cell 136:411–419

    CAS  Google Scholar 

  34. Kaji K, Norrby K, Paca A et al (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771–775

    CAS  Google Scholar 

  35. Woltjen K, Michael I, Mohseni P et al (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770

    CAS  Google Scholar 

  36. Hentze H, Soong PL, Wang ST et al (2009) Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2:198–210

    Google Scholar 

  37. Locke M, Ussher JE, Mistry R et al (2011) Transduction of human adipose-derived mesenchymal stem cells by recombinant adeno-associated virus vectors. Tissue Eng Part C Methods 17:949--959

    Google Scholar 

  38. Ohi Y, Qin H, Hong C et al (2011) Imcomplete DNA methylation underlines a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol 5:541–549

    Google Scholar 

  39. Zhao T, Zhang ZN, Rong Z et al (2011) Immunogenicity of induced pluripotent stem cells. Nature 474:212–215

    Google Scholar 

  40. Bilousova G, Hyun JD, King KB et al (2011) Osteoblasts derived from induced pluripotent stem cells from calcified structures in scaffolds both in vitro and in vivo. Stem Cells 29:206–216

    Google Scholar 

  41. Ye JH, Xu YJ, Gao J et al (2011) Critical size calvarial bone defects healing in a mouse model with silk scaffolds and SATB2-modified iPSCs. Biomaterials 32:5065–5076

    CAS  Google Scholar 

  42. Goodman J, Hodgson G (1962) Evidence for stem cells in the peripheral blood of mice. Blood 19:702–714

    CAS  Google Scholar 

  43. Blanpain C (2010) Stem cells. Skin regeneration and repair. Nature 464:686–687

    CAS  Google Scholar 

  44. Toma J, Akhavan M, Fernandes K et al (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778–784

    CAS  Google Scholar 

  45. Marshman E, Booth C, Potten CS (2002) The intestinal epithelial stem cell. Bioessays 24:91–98, Review

    Google Scholar 

  46. Becker AJ, McCulloch EA et al (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 2:452–454

    Google Scholar 

  47. Bianco P, Riminucci M, Gronthos S et al (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192 (Review)

    Google Scholar 

  48. Cudkowicz G, Upton A, Smith L et al (1964) An approach to the characterization of stem cells in mouse bone marrow. Ann NY Acad Sci 31:571–585

    Google Scholar 

  49. Michalopoulos GK, DeFrances MC (1997) Liver regeneration. Science 276:60–66

    CAS  Google Scholar 

  50. Xiao JC, Jin XL, Ruck P et al (2004) Hepatic progenitor cells in human liver cirrhosis: immunohistochemical, electron microscopic and immunofluorencence confocal microscopic findings. World J Gastroenterol 10:1208–1211

    Google Scholar 

  51. Miura M, Gronthos S, Zhao M et al (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100:5807–5812

    CAS  Google Scholar 

  52. Morsczeck C, Götz W, Schierholz J et al (2005) Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24:155–165

    CAS  Google Scholar 

  53. Murphy M, Reid K, Dutton R et al (1997) Neural stem cells. J Investig Dermatol Symp Proc 2:8–13 (Review)

    Google Scholar 

  54. Schultz SS, Lucas PA (2006) Human stem cells isolated from adult skeletal muscle differentiate into neural phenotypes. J Neurosci Methods 152:144–155

    CAS  Google Scholar 

  55. Tedesco FS, Dellavalle A, Diaz-Manera J et al (2010) Repairing skeletal muscle regenerative potential of skeletal muscle stem cells. J Clin Invest 120:11–9

    CAS  Google Scholar 

  56. Rodriguez A-M, Elabd C, Amri E-Z et al (2005) The human adipose tissue is a source of multipotent stem cells. Biochimie 87:125–128

    CAS  Google Scholar 

  57. Zuk P, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    CAS  Google Scholar 

  58. Leri A, Hosoda T, Kajstura J et al (2011) Identification of a coronary stem cell in the human heart. J Mol Med 89:947–959

    Google Scholar 

  59. Kajstura J, Rota M, Hall SR et al (2011) Evidence for human lung stem cells. N Engl J Med 364:1795–806

    CAS  Google Scholar 

  60. McQualter J, Yuen K, Williams B et al (2010) Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci USA 4:1414–1419

    Google Scholar 

  61. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8:315–317

    CAS  Google Scholar 

  62. De Ugarte DA, Morizono K, Elbarbary A et al (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109

    Google Scholar 

  63. Izadpanah R, Trygg C, Patel B et al (2006) Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 99:1285–1297

    CAS  Google Scholar 

  64. Kern S, Eichler H, Stoeve J et al (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301

    CAS  Google Scholar 

  65. Minguell J, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med 226:507–520 (Review)

    Google Scholar 

  66. Psaltis PJ, Zannettino ACW, Worthley SG et al (2008) Concise review: mesenchymal stromal cells: potential for cardiovascular repair. Stem Cells 26:2201–2210

    Google Scholar 

  67. Zuk P, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells.Mol Biol Cell 13:4279–4295

    CAS  Google Scholar 

  68. Shay JW, Wright WE (2010) Telomeres and telomerase in normal and cancer stem cells. FEBS Lett 584(17):3819–3825

    CAS  Google Scholar 

  69. Zuk PA (2010) The adipose-derived stem cell: looking back and looking ahead. Mol Biol Cell 21:1783–1787

    CAS  Google Scholar 

  70. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    CAS  Google Scholar 

  71. Dicker A, Le Blanc K, Aström G et al. (2005) Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res 308:283–290

    CAS  Google Scholar 

  72. Lee J, Kim Y, Kim S et al (2004) Chondrogenic differentiation of mesenchymal stem cells and its clinical applications. Yonsei Med J 30:41–47

    Google Scholar 

  73. Pansky A, Roitzheim B, Tobiasch E (2007) Differentiation potential of adult human mesenchymal stem cells. Clin Lab 53:81–84

    CAS  Google Scholar 

  74. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    CAS  Google Scholar 

  75. Pacary E, Legros H, Valable S et al. (2006) Synergistic effects of CoCl2 and ROCK inhibition on mesenchymal stem cell differentiation into neuron-like cells. J Cell Sci 119:2667–2678

    CAS  Google Scholar 

  76. Liu M, Han Z (2008) Mesenchymal stem cells: biology and clinical potential in type 1 diabetes therapy. J Cell Mol Med 12:1155–1168

    CAS  Google Scholar 

  77. Xie QP, Huang H, Xu B et al (2009) Human bone marrow mesenchymal stem cells differentiate into insulin-producing cells upon microenvironmental manipulation in vitro. Differentiation 77:483–491

    CAS  Google Scholar 

  78. Saulnier N, Lattanzi W, Puglisi MA et al (2009) Mesenchymal stromal cells multipotency and plasticity: induction toward the hepatic lineage. Eur Rev Med Pharmacol Sci 13:71–78

    Google Scholar 

  79. Planat-Benard V, Silvestre J, Cousin B et al (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109:656–663

    Google Scholar 

  80. De Francesco F, Tirino V, Desiderio V et al (2009) Human CD34+/CD90+ASCs Are Capable of Growing as Sphere Clusters, producing high levels of VEGF and forming capillaries. PLoS One 4:6537

    Google Scholar 

  81. Porada C, Zanjani E, Almeida-Porad G (2006) Adult mesenchymal stem cells: a pluripotent population with multiple applications. Curr Stem Cell Res Ther 1:365–369

    CAS  Google Scholar 

  82. Morsczeck C, Reichert TE, Vollner F et al (2007) The state of the art in human dental stem cell research. Mund Kiefer Gesichtschir 11:259–266

    Google Scholar 

  83. Williams DF (1999) Williams dictionary of biomaterials. Liverpool University Press, Liverpool

    Google Scholar 

  84. Griffith L, Naughton G (2002) Tissue engineering—current challenges and expanding opportunities. Science 295:1009–1014

    CAS  Google Scholar 

  85. Khademhosseini A, Vacanti J, Langer R (2009) Progress in tissue engineering. Sci Am 300:64–71

    CAS  Google Scholar 

  86. Langer R, Vacanti J (1993) Tissue engineering. Science 260:920–926

    CAS  Google Scholar 

  87. Park J, Lakes R (2007) Biomaterials: an introduction. Springer Science and Business Media, New York

    Google Scholar 

  88. Hutmacher D, Schantz J, Lam C et al (2007) State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Reg Med 1:245–260

    CAS  Google Scholar 

  89. Ogushi H, Caplan A (1999) Stem cell technology and bioceramics: from cell to gene engineering. J Biomed Mater Res 48:913–927

    Google Scholar 

  90. Kon E, Muraglia A, Corsi A et al (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49:328–337

    CAS  Google Scholar 

  91. Hoppe A, Guldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass–ceramics. Biomaterials 32:2757–2774

    CAS  Google Scholar 

  92. Hofmann I, Haas D, Eckert A et al (2008) Mechanical properties of cellulose-apatite composite fibers for biomedical applications. Adv Appl Ceramics 107:293–297

    CAS  Google Scholar 

  93. Dvir T, Tsur-Gang O, Cohen S (2005) Designer-scaffolds for tissue engineering and regeneration. Israel J Chem 45:487–494

    CAS  Google Scholar 

  94. Kim I, Seo S, Moon H et al (2008) Chitosan and its derivatives for tissue engineering applications. Biotech Adv 26:1–21

    CAS  Google Scholar 

  95. Segura T, Anderson B, Chung P et al (2005) Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials 26:359–371

    CAS  Google Scholar 

  96. Sachlos E, Czernuszka J (2003) Making tissue engineering scaffolds work. Eur Cell Mater 30:29–39

    Google Scholar 

  97. Ragetly G, Griffon DJ, Chung YS (2010) The effect of type II collagen coating of chitosan fibrous scaffolds on mesenchymal stem cell adhesion and chondrogenesis. Acta Biomater 6:3988–3997

    CAS  Google Scholar 

  98. Mauney J, Jaquiéry C, Volloch V et al (2005) In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering. Biomaterials 26:3173–3185

    CAS  Google Scholar 

  99. Ragetly G, Ratanavaraporn J, Damrongsakkul S et al (2011) Osteogenic differentiation of bone-marrow-derived stem cells cultured with mixed gelatine and chitosanoligosaccharide scaffolds. J Biomater Sci Polym Ed 22:1083–1098

    Google Scholar 

  100. Zippel N, Schulze M, Tobiasch E (2010) Biomaterials and mesenchymal stem cells for regenerative medicine. Recent Pat Biotech 4:1–22

    CAS  Google Scholar 

  101. Moroni L, Wijn J, Van Blitterswijkc A (2008) Integrating novel technologies to fabricate smart scaffolds. J Biomater Sci Polymer Ed 19:543–572

    CAS  Google Scholar 

  102. Kim SH, Oh SA; Lee WK et al (2011a) Poly(lactic acid) porous scaffold with calcium phosphate mineralized surface and bone marrow mesenchymal stem cell growth and differentiation. Mater Sci Eng C-Mater Biol Appl 31:612–619

    CAS  Google Scholar 

  103. Li Y, Danmark S, Edlund U et al (2011) Resveratrol-conjugated poly-epsilon-caprolactone facilitates in vitro mineralization and in vivo bone regeneration. Acta Biomater 7:751–758

    CAS  Google Scholar 

  104. Wan ACA, Ying JY (2010) Nanomaterials for in situ cell delivery and tissue regeneration. Adv Drug Deliv Rev 62:731–740

    CAS  Google Scholar 

  105. Goldstein A, Zhu G, Morris G et al (1999) Effect of osteoblastic culture conditions on the structure of poly(D,L-lactic-co-glycolic acid) foam scaffolds. Tissue Eng 5:421–434

    CAS  Google Scholar 

  106. Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 60:184–98

    CAS  Google Scholar 

  107. Nasibulin AG, Anisimov AS, Pikhitsa PV et al (2007) Investigations of NanoBud formation. Chem Phys Letters 446:109–114

    CAS  Google Scholar 

  108. Wang J, Yu X (2010) Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Acta Biomater 6:3004–3012

    CAS  Google Scholar 

  109. Kim K, Dean D, Lu AQ et al (2011b) Early osteogenic signal expression of rat bone marrow stromal cells is influenced by both hydroxyapatite nanoparticles content and initial cell seeding density in biodegradable nanocomposites scaffolds. Acta Biomater 7:1249–1264

    CAS  Google Scholar 

  110. Zhang L, Webster T (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4:66–80

    CAS  Google Scholar 

  111. Bauer S, Park J, von der Mark K et al (2008) Improved attachment of mesenchymal stem cells on super hydrophobic TiO2 nanotubes. Acta Biomater 4:1576–1582

    CAS  Google Scholar 

  112. Park J, Bauer S, Schmuki P et al (2009) Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces. Nano Lett 9:3157–3164

    CAS  Google Scholar 

  113. Sahithi K, Swetha M, Ramasamy K et al (2010) Polymeric composites containing carbon nanotubes for bone tissue engineering. Int J Biol Macromol 46:281–283

    CAS  Google Scholar 

  114. Oliveira JM, Sousa RA, Malafaya PB et al (2011) In vivo study of dendron-like nanoparticles for stem cells “tune-up”: from nano to tissues. Nanomedicine. doi:10.1016/j.nano.2011.03.002 [Epub ahead of print]

  115. Sitharaman B, Avti PK, Schaefer K et al (2011) A novel nanoparticle-enhanced photoacustic stimulus for bone tissue engineering. Tissue Eng A 17:1851–1858

    Google Scholar 

  116. Lim YC, Johnson J, Fei ZZ et al (2011) Micropatterning and characterization of electrospun poly(epsilon-caprolactone)/gelatin nanofiber tissue scaffolds by femtosecond laser ablation for tissue engineering applications. Biotechnol Bioeng 108:116–126

    CAS  Google Scholar 

  117. Wei G, Ma PX (2008) Nanostructured biomaterials for regeneration, nano-scaled drug release systems incorporated into nanostructured biomaterials represents a novel and promising strategy to tissue regeneration. Adv Funct Mater 18:3568–3582

    CAS  Google Scholar 

  118. Fan DM, Akkaraju GR, Couch EF et al (2011) The role of nanostructured mesoporous silicon in discriminating in vitro calcification for electrospun composite tissue engineering scaffolds. Nanoscale 3:354–361

    CAS  Google Scholar 

  119. Poursamar SA, Azami M, Mozafari M (2011) Controllable synthesis and characterization of porous polyvinyl alcohol/hydroxyapatite nanocomposite scaffolds via an in situ colloidal technique. Colloids Surf B Biointerfaces 84:310–316

    CAS  Google Scholar 

  120. Burdick JA, Vunjak-Novakovic G (2009) Engineered microenvironments for controlled stem cell differentiation. Tissue Eng A15:205–219

    CAS  Google Scholar 

  121. Kretlow J, Mikos A (2008) From material to tissue: biomaterial development. Scaffold fabrication, and tissue engineering. AIChE J 54:3048–3067

    CAS  Google Scholar 

  122. Peltola S, Sanna M, Melchels F et al (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40:268–280

    CAS  Google Scholar 

  123. Seyednejad H, Gawlitta D, Dhert WJ et al (2011) Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications. Acta Biomater 7:1999–2006

    Google Scholar 

  124. De Gennes PG, Brochard-Wyart F, Quéré D (2002) Capillary and wetting phenomena—drops, bubbles, pearls, waves. Springer, New York

    Google Scholar 

  125. He L, Dexter AF, Middelberg APJ (2006) Biomolecular engineering at interfaces. Chem Eng Sci 61:989–1003

    CAS  Google Scholar 

  126. Chew SY, Low WC (2011) Scaffold-based approach to direct stem cell neural and cardiovascular differentiation: an analysis of physical and biochemical effects. J Biomed Mater Res A 29:355–374

    Google Scholar 

  127. Biondi M, Ungaro F, Quaglia F et al (2008) Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev 60:229–242

    CAS  Google Scholar 

  128. Cartmell S (2009) Controlled release scaffolds for bone tissue engineering. J Pharm Sci 98:430–441

    CAS  Google Scholar 

  129. Quaglia F (2008) Bioinspired tissue engineering: the great promise of protein delivery technologies. Int J Pharm 364:281–297

    CAS  Google Scholar 

  130. Richardson TP, Peters MC, Ennett AB et al (2001) Polymeric system for dual growth factor delivery. Nature Biotech 19:1029–1034

    CAS  Google Scholar 

  131. Sokolsky-Papkov M, Agashi K, Olaye A et al (2007) Polymeric carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:187–206

    CAS  Google Scholar 

  132. Ubersax L, Merkle H, Meinel L (2009) Biopolymer based growth factor delivery for tissue repair: from natural concepts to engineered systems. Tissue Eng Part B Rev 15:263–289

    Google Scholar 

  133. Vallet-Regi M, Balas F, Colilla M et al (2008) Bone-regenerative bioceramic implants with drug and protein controlled delivery capability. Prog Solid State Chem 36:163–91

    CAS  Google Scholar 

  134. Kong SW, Kim JS, Park KS et al (2011) Surface modification with fibrin hyaluronic acid hydrogel on solid-free form-based scaffolds followed by BMP-2 loading to enhance bone regeneration. Bone 48:298–306

    Google Scholar 

  135. Ratanavaraporn J, Furuya H, Kohara H et al (2011) Synergistic effects of the dual release of stromal cell-derived factor-1 and bone morphogenic protein-2 from hydrogels on bone regeneration. Biomaterials 32:2797–2811

    CAS  Google Scholar 

  136. Baraniak PR, Nelson DM, Leeson CE et al (2011) Spatial control of gene expression within a scaffold by localized inducer release. Biomaterials 32:3062–3071

    CAS  Google Scholar 

  137. Smith RA, Meade K, Pickford CE et al (2011) Glycosaminoglycans as regulators of stem cell differentiation. Biochem Soc Trans 39:383–387

    CAS  Google Scholar 

  138. Huang Z, Feng QL, Yu B et al (2011) Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/collagen composite. Mater Sci Eng C-Mater Biolog Appl 31:683–687

    CAS  Google Scholar 

  139. Zheng L, Fan H, Sun J et al (2010) Chondrogenic differentiation of mesenchymal stem cells induced by collagen-based hydrogel: an in vivo study. J Biomed Mater Res A 93:783–792

    CAS  Google Scholar 

  140. Fischbach C, Mooney DJ (2006) Polymeric systems for bioinspired delivery of angiogenetic molecules. Polym Reg Med Adv Polym Sci 203:191–221

    Google Scholar 

  141. Arafat MT, Lam CXF, Ekaputra AK et al (2011) Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Acta Biomater 7:809–820

    CAS  Google Scholar 

  142. Kuo YC, Yeh CF (2011) Effect of surface-modified collagen on the adhesion, biocompatibility and differentiation of bone marrow stromal cells in poly(lactides-co-glycolide)/chitosan scaffolds. Colloids Surf B Biointerfaces 82:624–631

    CAS  Google Scholar 

  143. Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modelling. Adv Drug Deliv Rev 58:1379–1408

    CAS  Google Scholar 

  144. König U, Nitschke M, Menning A et al (2002) Durable surface modification of poly(tetrafluoroethylene) by low pressure H2O plasma treatment followed by acrylic acid graft polymerization. Colloids Surf B Biointerfaces 24:63–71

    Google Scholar 

  145. Curtis A, Wilkinson C (1997) Topographical control of cells. Biomaterials 18:1573–1583

    CAS  Google Scholar 

  146. Schaefer D, Klemt C, Zhang X et al (2000) Tissue engineering with mesenchymal stem cells for cartilage and bone regeneration. Chirurg 71:1001–1008

    CAS  Google Scholar 

  147. Faid K, Voicu R, Bani-Yaghoub M et al (2005) Rapid fabrication and chemical patterning of polymer microstructures and their applications as a platform for cell cultures. Biomed Microdevices 7:179–184

    CAS  Google Scholar 

  148. Bens A, Bermes G, Emons M et al (2007) Non-toxic flexible photopolymers for medical stereolithography technology. Rapid Prot J 13:38–47

    Google Scholar 

  149. Kane RS, Takayama S, Ostuni E et al (1999) Patterning proteins and cells using soft lithography. Biomaterials 20:2363–2376

    CAS  Google Scholar 

  150. Whitesides GM, Ostuni E, Takayama S et al (2001) Soft lithography in biology and biochemistry. Ann Rev Biomed Eng 3:335–373

    CAS  Google Scholar 

  151. Guilak F, Cohen DM, Estes BT et al (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5:17–26

    CAS  Google Scholar 

  152. Gerecht S, Vunjak-Novakovic G, Langer R (2007) Engineering biomaterials for vascular differentiation and regeneration. Circulation 116:235

    Google Scholar 

  153. Boudou T, Crouzier T, Ren K et al (2010) Multiple functionalities of polyelectrolyte multilayer films: new biomedical applications. Adv Mater 22:441–467

    CAS  Google Scholar 

  154. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421

    CAS  Google Scholar 

  155. Chen M, Le DQ, Baatrup A et al (2011) Self-assembled composite matrix in a hierarchical 3-D scaffold for bone tissue engineering. Acta Biomater 7:2244–2255

    Google Scholar 

  156. Tanaka M (2011) Design of novel 2D and 3D biointerfaces using self-organization to control cell behaviour. Biochim Biophys Acata-Gen Subjects 1810:251–258

    CAS  Google Scholar 

  157. Graziano A, d’Aquino R, Cusella-De Angelis MG et al (2007) Concave pit-containing scaffold surfaces improve stem cell-derived osteoblast performance and lead to significant bone tissue formation. PLoS One 6:e496

    Google Scholar 

  158. Vendra VK, Wu L, Krishnan S (2007) Polymer thin films for biomedical applications in nanotechnologies for the life sciences. Wiley–VCH, New York

    Google Scholar 

  159. Khademhosseini A, Jon S, Suh KY et al (2003) Direct patterning of protein- and cell-resistant polymeric monolayers and microstructures. Adv Mater 15:1995–2000

    CAS  Google Scholar 

  160. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicmposites. Science 277:1232–1237

    CAS  Google Scholar 

  161. Entcheva E, Bien H, Yin L et al (2004) Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials 25:5753–5762

    CAS  Google Scholar 

  162. Marchenko I, Yashchenok A, German S et al (2010) Polyelectrolytes: influence on evaporative self-assembly of particles and assembly of multilayers. Polymers 2:690–708

    CAS  Google Scholar 

  163. Moby V, Labrude P, Kadi A et al (2011) Polyelctrolyte multilayer film and human mesenchymal stem cells: An attractive alternative in vascular engineering approaches. J Biomed Mater Res 96A:313–319

    CAS  Google Scholar 

  164. Schulze M (1997) Supramolecular architectures from cellulose materials. Macromol Chem Macromol Symp 120:237–242

    CAS  Google Scholar 

  165. Rulkens R, Wegner G, Enkelmann V et al (1996) Synthesis and properties of rigid polyelectrolytes based on sulfonated poly-p-phenylenes. Ber Bunsenges Phys Chem 100:707–715

    CAS  Google Scholar 

  166. Kamm B, Kamm M, Kiener A et al (2005) Polycarnitine—a new biomaterial. Appl Microbiol Biotechnol 67:1–7

    CAS  Google Scholar 

  167. Gupta VK, Kornfield JA, Ferencz A et al. (1994) Controlling molecular order in “hairy-rod” Langmuir–Blodgett films: a polarization-modulation microscopy study. Science 265:940–942

    CAS  Google Scholar 

  168. Lenhert S, Meier MB, Meyer U et al (2005) Osteoblast alignment, elongation and migration on grooved polystyrene surface patterned by Langmuir–Blodgett lithography. Biomaterials 26:563–570

    CAS  Google Scholar 

  169. Schreiber TD, Steinl C, Essl M et al (2009) The integrin {alpha}9{beta}1 on haematopoietic stem and progenitor cells: involvement in cell adhesion, proliferation and differentiation. Haematologica 94:1493--1501

    Google Scholar 

  170. Engler AJ, Sen S, Sweeney HL et al (2006) Matrix elasticity directs stem cell lineage specificationn. Cell 126:677–689

    CAS  Google Scholar 

  171. Terraciano V, Hwang N, Moroni L et al (2007) Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells 25:2730–2738

    CAS  Google Scholar 

  172. Yim EKF, Pang SW, Leong KW (2007) Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 313:1820–1829

    CAS  Google Scholar 

  173. McBeath R, Pirone DM, Nelson CM et al (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495

    CAS  Google Scholar 

  174. Hsiong SX, Carampin P, Kong HJ et al (2008) Differentiation stage alters matrix control of stem cells. J Biomed Mater Res A 85:145–156

    Google Scholar 

  175. McAdams TA, Miller WM, Papoutsakis ET (1997) Variations in culture pH affect the cloning efficiency and differentiation of progenitor cells in ex vivo haemopoiesis. Br J Haematol 97:889–95

    CAS  Google Scholar 

  176. Basciano L, Nemos C, Foliguet B et al (2011) Long term culture of mesenchymal stem cells in hypoxia promotes a genetic program maintaining their undifferentiated and multipotent status. BMC Cell Biol 12:12

    CAS  Google Scholar 

  177. Adams GB, Chabner KT, Alley IR et al (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439:599–603

    CAS  Google Scholar 

  178. Tanentzapf G, Devenport D, Godt D et al (2007) Integrin-dependent anchoring of a stem-cell niche. Nat Cell Biol 9(12):1413–1418

    CAS  Google Scholar 

  179. Dennis E, Discher D, Mooney DJ et al (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677

    Google Scholar 

  180. Vicente-Manzanares M, Ma X, Adelstein RS et al (2009) Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 10:778–790

    CAS  Google Scholar 

  181. Tobiasch E, Winter H, Schweizer J (1992) Structural features and sites of expression of a new murine 65 kD and 48 kD hair-related keratin pair, associated with a spezial type of parakeratotic epithelial differentiation. Differentiation 50:163–178

    CAS  Google Scholar 

  182. Gurumurthy S, Xie SZ, Alagesan B (2010) The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468:659–663

    CAS  Google Scholar 

  183. Jia C, Doherty JP, Crudgington S et al (2009) Activation of purinergic receptors induces proliferation and neuronal differentiation in Swiss Webster mouse olfactory epithelium. Neuroscience 163:120–128

    CAS  Google Scholar 

  184. Xi R, Xie T (2005) Stem cell-renewal controlled by chromatin remodelling factors. Science 310:1487–1489

    CAS  Google Scholar 

  185. Mylotte LA, Duffy AM, Murphy M et al (2008) Metabolic flexibility permits mesenchymal stem cell survival in an ischemic environment. Stem Cells 5:1325–1336

    Google Scholar 

  186. D’Atri LP, Etulain J, Romaniuk MA et al (2011) The low viability of human CD34+ cells under acidic conditions is improved by exposure to thrombopoietin, stem cell factor, interleukin-3, or increased cyclic adenosine monophosphate levels. Transfusion. doi:10.1111/j.1537-2995.2010.03051

  187. Zippel N, Scholze NJ, Müller CA et al (2011) Purinergic receptors influence the differentiation of human mesenchymal stem cells. Stem Cells Develop. doi:10.1089/scd.2010.0576 [Epub ahead of print]

  188. De Proost I, Pintelon I, Wilkinson WJ et al (2009) Purinergic signalling in the pulmonary neuroepitelial body microenvironment unravelled by live cell imaging. FASEB J 4:1153–1160

    Google Scholar 

  189. Williams SE, Beronja S, Pasolli HA et al (2011) Asymmetric cell divisions promote Notch-dependent epidermal differentiation. Nature 470:353–358

    CAS  Google Scholar 

  190. Ehninger A, Trumpp A (2011) The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move. J Exp Med 208:421–428

    CAS  Google Scholar 

  191. Visigalli I, Biffi A (2011) Maintenance of a functional hematopoietic stem cell niche through galactocerebrosidase and other enzymes. Curr Opin Hematol 18:214–219

    Google Scholar 

  192. Yang L, Peng R (2010) Unweiling hair follicle stem cells. Stem Cell Rev 4:658–664

    Google Scholar 

  193. Notara M, Shortt AJ, Galatowicz G et al (2010) IL6 and the human limbal stem cell niche: a mediator of epithelial–stromal interaction. Stem Cell Res 3:188–200

    Google Scholar 

  194. Peerani R, Zandstra PW (2010) Enabling stem cell therapies through synthetic stem cell-niche engineering. J Clin Invest 120:60–70

    CAS  Google Scholar 

  195. Waddington CH (1956) Principles of embryology. Allen & Unwin, London

    Google Scholar 

  196. Huang S, Ingber DE (2004) From stem cells to functional tissue architecture. In: Sell S (ed) Stem cells handbook. Humana press, New Jersey

    Google Scholar 

  197. Curran JM, Chen R, Hunt JA (2006) The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials 27:4783–4793

    CAS  Google Scholar 

  198. Cavalcanti-Adam EA, Aydin D, Hirschfeld-Warneken VC et al (2008) Cell adhesion and response to synthetic nanopatterned environments by steering receptor clustering and spatial location. HFSP J 2:276–285

    CAS  Google Scholar 

  199. Catledge SA, Vohra YK, Bellis SL et al (2004) Mesenchymal stem cell adhesion and spreading on nanostructured biomaterials. J Nanosci Nanotech 4:986–989

    CAS  Google Scholar 

  200. Pennisi CP, Sevencu C, Dolatshahi-Pirouz A et al (2009) Responses of fibroblasts and glial cells to nanostructured platinum surfaces. Nanotechnology 20:1–9

    Google Scholar 

  201. zur Nieden NI (2011) Embryonic stem cells for osteo-degenerative diseases. Methods Mol Biol 690:1–30

    CAS  Google Scholar 

  202. Kelly DJ, Jacobs CR (2010) The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res C Embryo Today A 90:75–85

    CAS  Google Scholar 

  203. Park JS, Chu JS, Tsou AD et al (2011) The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β. Biomaterials 32:3921–3930

    CAS  Google Scholar 

  204. Arnsdorf EJ, Tummala P, Kwon RY et al (2009) Mechanically induced osteogenic differentiation—the role of RhoA, ROCKII and cytoskeletal dynamics. J Cell Sci 122:546–553

    CAS  Google Scholar 

  205. Lennon DP, Edmison JM, Caplan AI (2001) Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol 187:345–55

    CAS  Google Scholar 

  206. Nakamura S, Matsumoto T, Sasaki J et al (2010) Effect of calcium ion concentrations on osteogenic differentiation and hematopoietic stem cell niche-related protein expression in osteoblasts. Tissue Eng Part A 16:2467–2473

    CAS  Google Scholar 

  207. Gong Z, Niklason LE (2008) Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J 22:1635–1648

    CAS  Google Scholar 

  208. Thesleff I, Tummers M (2008) Tooth organogenesis and regeneration. StemBook [Internet]. Harvard Stem Cell Institute, Cambridge, 31 Jan 2008–2009

    Google Scholar 

  209. Tziafas D, Kodonas K (2010) Differentiation potential of dental papilla, dental pulp, and apical papilla progenitor cells. J Endod 36:781–789

    Google Scholar 

  210. Estrela C, Alencar AH, Kitten GT et al (2011) Mesenchymal stem cells in the dental tissues: perspectives for tissue regeneration. Braz Dent J 22:91–8

    Google Scholar 

  211. Ferro F, Spelat R, Falini G et al (2011) Adipose tissue-derived stem cell in vitro differentiation in a three-dimensional dental bud structure. Am J Pathol 178:2299–2310

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Yu Zhang for his great help in drawing the beautiful pictures for this work. Without his highly appreciated input, this chapter would have been less vivid. The results summarized in this work were supported by BMBF-AIF, AdiPaD; FKZ: 1720X06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edda Tobiasch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schulze, M., Tobiasch, E. (2011). Artificial Scaffolds and Mesenchymal Stem Cells for Hard Tissues. In: Kasper, C., Witte, F., Pörtner, R. (eds) Tissue Engineering III: Cell - Surface Interactions for Tissue Culture. Advances in Biochemical Engineering Biotechnology, vol 126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2011_115

Download citation

Publish with us

Policies and ethics