Skip to main content

Protein Glycosylation Control in Mammalian Cell Culture: Past Precedents and Contemporary Prospects

  • Chapter
  • First Online:
Genomics and Systems Biology of Mammalian Cell Culture

Part of the book series: Advances in Biochemical Engineering Biotechnology ((ABE,volume 127))

Abstract

Protein glycosylation is a post-translational modification of paramount importance for the function, immunogenicity, and efficacy of recombinant glycoprotein therapeutics. Within the repertoire of post-translational modifications, glycosylation stands out as having the most significant proven role towards affecting pharmacokinetics and protein physiochemical characteristics. In mammalian cell culture, the understanding and controllability of the glycosylation metabolic pathway has achieved numerous successes. However, there is still much that we do not know about the regulation of the pathway. One of the frequent conclusions regarding protein glycosylation control is that it needs to be studied on a case-by-case basis since there are often conflicting results with respect to a control variable and the resulting glycosylation. In attempts to obtain a more multivariate interpretation of these potentially controlling variables, gene expression analysis and systems biology have been used to study protein glycosylation in mammalian cell culture. Gene expression analysis has provided information on how glycosylation pathway genes both respond to culture environmental cues, and potentially facilitate changes in the final glycoform profile. Systems biology has allowed researchers to model the pathway as well-defined, inter-connected systems, allowing for the in silico testing of pathway parameters that would be difficult to test experimentally. Both approaches have facilitated a macroscopic and microscopic perspective on protein glycosylation control. These tools have and will continue to enhance our understanding and capability of producing optimal glycoform profiles on a consistent basis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADCC:

Antibody-dependent cellular cytotoxicity

BHK:

Baby hamster kidney cells

CDC:

Complement-dependent cytotoxicity

CHO:

Chinese hamster ovary cells

CMP-NeuAc:

Cytosine monophosphate-N-acetylneuraminic acid

DO:

Dissolved oxygen

EPO:

Erythropoietin

ER:

Endoplasmic reticulum

Fuc:

Fucose

FucT:

Glycoprotein 6-α-L-fucosyltransferase

Gal:

Galactose

GalNAc:

N-Acetylgalactosamine

GalT:

β-N-Acetylglucosaminyl glycopeptide β-1,4-galactosyltransferase

GDP-Fuc:

Guanidine diphosphate-fucose

GlcNAc:

N-Acetylglucosamine

GnT I:

α-1,3-Mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase

GnT II:

α-1,6-Mannosyl-glycoprotein 2-β-N-acetylglucosaminyltransferase

GnT III:

β-1,4-Mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase

GnT IV:

α-1,3-Mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase

GnT V:

α-1,6-Mannosyl-glycoprotein 4-β-N-acetylglucosaminyltransferase

GS:

Glutamine synthetase

IFN-γ:

Interferon-gamma

Man:

Mannose

Man I:

Mannosyl-oligosaccharide 1,2-α-mannosidase

Man II:

Mannosyl-oligosaccharide 1,3-1,6-α-mannosidase

ManNAc:

N-Acetylmannosamine

NeuAc:

N-Acetylneuraminic acid (sialic acid)

NeuGc:

N-Glycolylneuraminic acid

PK:

Pharmacokinetics

PCA:

Principal component analysis

tPA:

Tissue plasminogen activator

SiaT:

β-Galactoside α-2,3/6-sialyltransferase

UDP-Gal:

Uridine diphosphate-galactose

UDP-GlcNAc:

Uridine diphosphate-N-acetylglucosamine

UPR:

Unfolded protein response

References

  1. Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473(1):4–8

    Article  CAS  Google Scholar 

  2. Walsh MT et al (1990) Effect of the carbohydrate moiety on the secondary structure of beta 2-glycoprotein. I. Implications for the biosynthesis and folding of glycoproteins. Biochemistry 29(26):6250–6257

    Article  CAS  Google Scholar 

  3. Leavitt R, Schlesinger S, Kornfeld S (1977) Impaired intracellular migration and altered solubility of nonglycosylated glycoproteins of vesicular Stomatitis virus and Sindbis virus. J Biol Chem 252(24):9018–9023

    CAS  Google Scholar 

  4. Wallick SC, Kabat EA, Morrison SL (1988) Glycosylation of a VH residue of a monoclonal antibody against alpha (1–6) dextran increases its affinity for antigen. J Exp Med 168(3):1099–109

    Article  CAS  Google Scholar 

  5. Wyss DF, Wagner G (1996) The structural role of sugars in glycoproteins. Curr Opin Biotechnol 7(4):409–416

    Article  CAS  Google Scholar 

  6. Butler M (2006) Optimisation of the cellular metabolism of glycosylation for recombinant proteins produced by mammalian cell systems. Cytotechnology 50(1–3):57–76

    Article  CAS  Google Scholar 

  7. Butler M et al (2003) Detailed glycan analysis of serum glycoproteins of patients with congenital disorders of glycosylation indicates the specific defective glycan processing step and provides an insight into pathogenesis. Glycobiology 13(9):601–622

    Article  CAS  Google Scholar 

  8. Raman R et al (2005) Glycomics: an integrated systems approach to structure-function relationships of glycans. Nat Methods 2(11):817–824

    Article  CAS  Google Scholar 

  9. Kikuchi N et al (2005) The carbohydrate sequence markup language (CabosML): an XML description of carbohydrate structures. Bioinformatics 21(8):1717–1718

    Article  CAS  Google Scholar 

  10. Sahoo SS et al (2005) GLYDE––an expressive XML standard for the representation of glycan structure. Carbohydr Res 340(18):2802–2807

    Article  CAS  Google Scholar 

  11. Lowe JB, Marth JD (2003) A genetic approach to mammalian glycan function. Annu Rev Biochem 72:643–691

    Article  CAS  Google Scholar 

  12. Lis H, Sharon N (1993) Protein glycosylation. Structural and functional aspects. Eur J Biochem 218(1):1–27

    Article  CAS  Google Scholar 

  13. Rudd PM et al (2001) Glycosylation and the immune system. Science 291(5512):2370–2376

    Article  CAS  Google Scholar 

  14. Gross V et al (1988) Involvement of various organs in the initial plasma clearance of differently glycosylated rat liver secretory proteins. Eur J Biochem 173(3):653–659

    Article  CAS  Google Scholar 

  15. Sathyamoorthy N et al (1991) Evidence that specific high mannose structures directly regulate multiple cellular activities. Mol Cell Biochem 102(2):139–147

    Article  CAS  Google Scholar 

  16. Lifely MR et al (1995) Glycosylation and biological activity of CAMPATH-1H expressed in different cell lines and grown under different culture conditions. Glycobiology 5(8):813–822

    Article  CAS  Google Scholar 

  17. Shields RL et al (2002) Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 277(30):26733–26740

    Article  CAS  Google Scholar 

  18. Millward TA et al (2008) Effect of constant and variable domain glycosylation on pharmacokinetics of therapeutic antibodies in mice. Biologicals 36(1):41–47

    Article  CAS  Google Scholar 

  19. Hossler P, Khattak SF, Li ZJ (2009) Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 19(9):936–949

    Article  CAS  Google Scholar 

  20. Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291(5512):2364–2369

    Article  CAS  Google Scholar 

  21. Carraway KL, Hull SR (1989) O-glycosylation pathway for mucin-type glycoproteins. Bioessays 10(4):117–121

    Article  CAS  Google Scholar 

  22. Van den Steen P et al (1998) Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 33(3):151–208

    Article  Google Scholar 

  23. Ishida N, Kawakita M (2004) Molecular physiology and pathology of the nucleotide sugar transporter family (SLC35). Pflugers Arch 447(5):768–775

    Article  CAS  Google Scholar 

  24. Rademacher TW (1993) Glycosylation as a factor affecting product consistency. Biologicals 21(2):103–104

    Article  CAS  Google Scholar 

  25. Stanley P, Raju TS, Bhaumik M (1996) CHO cells provide access to novel N-glycans and developmentally regulated glycosyltransferases. Glycobiology 6(7):695–699

    Article  CAS  Google Scholar 

  26. Skibeli V, Nissen-Lie G, Torjesen P (2001) Sugar profiling proves that human serum erythropoietin differs from recombinant human erythropoietin. Blood 98(13):3626–3634

    Article  CAS  Google Scholar 

  27. Durocher Y, Butler M (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20(6):700–707

    Article  CAS  Google Scholar 

  28. Jenkins N, Parekh RB, James DC (1996) Getting the glycosylation right: implications for the biotechnology industry. Nat Biotechnol 14(8):975–981

    Article  CAS  Google Scholar 

  29. Larsen RD et al (1990) Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Gal:beta-D-Gal(1,4)-D-GlcNAc alpha(1,3)-galactosyltransferase cDNA. J Biol Chem 265(12):7055–7061

    CAS  Google Scholar 

  30. Baker KN et al (2001) Metabolic control of recombinant protein N-glycan processing in NS0 and CHO cells. Biotechnol Bioeng 73(3):188–202

    Article  CAS  Google Scholar 

  31. Borys MC et al (2010) Effects of culture conditions on N-glycolylneuraminic acid (Neu5Gc) content of a recombinant fusion protein produced in CHO cells. Biotechnol Bioeng 105(6):1048–1057

    CAS  Google Scholar 

  32. Lee EU, Roth J, Paulson JC (1989) Alteration of terminal glycosylation sequences on N-linked oligosaccharides of Chinese hamster ovary cells by expression of beta-galactoside alpha 2, 6-sialyltransferase. J Biol Chem 264(23):13848–13855

    CAS  Google Scholar 

  33. Campbell C, Stanley P (1984) A dominant mutation to ricin resistance in Chinese hamster ovary cells induces UDP-GlcNAc:glycopeptide beta-4-N-acetylglucosaminyltransferase III activity. J Biol Chem 259(21):13370–13378

    CAS  Google Scholar 

  34. Kim YK et al (2005) Production and N-glycan analysis of secreted human erythropoietin glycoprotein in stably transfected Drosophila S2 cells. Biotechnol Bioeng 92(4):452–461

    Article  CAS  Google Scholar 

  35. Hamilton SR et al (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313(5792):1441–1443

    Article  CAS  Google Scholar 

  36. Kunkel JP et al (2000) Comparisons of the glycosylation of a monoclonal antibody produced under nominally identical cell culture conditions in two different bioreactors. Biotechnol Prog 16(3):462–470

    Article  CAS  Google Scholar 

  37. Goldman MH et al (1998) Monitoring recombinant human interferon-gamma N-glycosylation during perfused fluidized-bed and stirred-tank batch culture of CHO cells. Biotechnol Bioeng 60(5):596–607

    Article  CAS  Google Scholar 

  38. Burger C et al (1999) An integrated strategy for the process development of a recombinant antibody-cytokine fusion protein expressed in BHK cells. Appl Microbiol Biotechnol 52(3):345–353

    Article  CAS  Google Scholar 

  39. Chotigeat W et al (1994) Role of environmental conditions on the expression levels, glycoform pattern and levels of sialyltransferase for hFSH produced by recombinant CHO cells. Cytotechnology 15(1–3):217–221

    Article  CAS  Google Scholar 

  40. Lin AA, Kimura R, Miller WM (1993) Production of tPA in recombinant CHO cells under oxygen-limited conditions. Biotechnol Bioeng 42(3):339–350

    Article  CAS  Google Scholar 

  41. Kunkel JP et al (1998) Dissolved oxygen concentration in serum-free continuous culture affects N-linked glycosylation of a monoclonal antibody. J Biotechnol 62(1):55–71

    Article  CAS  Google Scholar 

  42. Yoon SK, Song JY, Lee GM (2003) Effect of low culture temperature on specific productivity, transcription level, and heterogeneity of erythropoietin in Chinese hamster ovary cells. Biotechnol Bioeng 82(3):289–298

    Article  CAS  Google Scholar 

  43. Bollati-Fogolin M et al (2005) Temperature reduction in cultures of hGM-CSF-expressing CHO cells: effect on productivity and product quality. Biotechnol Prog 21(1):17–21

    Article  CAS  Google Scholar 

  44. Clark KJ, Chaplin FW, Harcum SW (2004) Temperature effects on product-quality-related enzymes in batch CHO cell cultures producing recombinant tPA. Biotechnol Prog 20(6):1888–1892

    Article  CAS  Google Scholar 

  45. Trummer E et al (2006) Process parameter shifting: part I. Effect of DOT, pH, and temperature on the performance of Epo-Fc expressing CHO cells cultivated in controlled batch bioreactors. Biotechnol Bioeng 94(6):1033–1044

    Article  CAS  Google Scholar 

  46. Muthing J et al (2003) Effects of buffering conditions and culture pH on production rates and glycosylation of clinical phase I anti-melanoma mouse IgG3 monoclonal antibody R24. Biotechnol Bioeng 83(3):321–334

    Article  CAS  Google Scholar 

  47. Gramer MJ, Goochee CF (1993) Glycosidase activities in Chinese hamster ovary cell lysate and cell culture supernatant. Biotechnol Prog 9(4):366–373

    Article  CAS  Google Scholar 

  48. Gramer MJ et al (1995) Removal of sialic acid from a glycoprotein in CHO cell culture supernatant by action of an extracellular CHO cell sialidase. Biotechnology (N Y) 13(7):692–698

    Article  CAS  Google Scholar 

  49. Gramer MJ, Goochee CF (1994) Glycosidase activities of the 293 and NS0 cell lines, and of an antibody-producing hybridoma cell line. Biotechnol Bioeng 43(5):423–428

    Article  CAS  Google Scholar 

  50. Thorens B, Vassalli P (1986) Chloroquine and ammonium chloride prevent terminal glycosylation of immunoglobulins in plasma cells without affecting secretion. Nature 321(6070):618–620

    Article  CAS  Google Scholar 

  51. Andersen DC, Goochee CF (1995) The effect of ammonia on the O-linked glycosylation of granulocyte colony-stimulating factor produced by chinese hamster ovary cells. Biotechnol Bioeng 47(1):96–105

    Article  CAS  Google Scholar 

  52. Yang M, Butler M (2000) Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation. Biotechnol Bioeng 68(4):370–380

    Article  CAS  Google Scholar 

  53. Curling EM et al (1990) Recombinant human interferon-gamma. Differences in glycosylation and proteolytic processing lead to heterogeneity in batch culture. Biochem J 272(2):333–337

    CAS  Google Scholar 

  54. Borys MC, Linzer DI, Papoutsakis ET (1994) Ammonia affects the glycosylation patterns of recombinant mouse placental lactogen-I by chinese hamster ovary cells in a pH-dependent manner. Biotechnol Bioeng 43(6):505–514

    Article  CAS  Google Scholar 

  55. Grammatikos SI et al (1998) Intracellular UDP-N-acetylhexosamine pool affects N-glycan complexity: a mechanism of ammonium action on protein glycosylation. Biotechnol Prog 14(3):410–419

    Article  CAS  Google Scholar 

  56. Hayter PM et al (1992) Glucose-limited chemostat culture of Chinese hamster ovary cells producing recombinant human interferon-gamma. Biotechnol Bioeng 39(3):327–335

    Article  CAS  Google Scholar 

  57. Hayter PM et al (1993) The effect of the dilution rate on CHO cell physiology and recombinant interferon-gamma production in glucose-limited chemostat culture. Biotechnol Bioeng 42(9):1077–1085

    Article  CAS  Google Scholar 

  58. Tachibana H et al (1994) Changes of monosaccharide availability of human hybridoma lead to alteration of biological properties of human monoclonal antibody. Cytotechnology 16(3):151–157

    Article  CAS  Google Scholar 

  59. Cruz HJ et al (2000) Metabolic shifts do not influence the glycosylation patterns of a recombinant fusion protein expressed in BHK cells. Biotechnol Bioeng 69(2):129–139

    Article  CAS  Google Scholar 

  60. Nyberg GB et al (1999) Metabolic effects on recombinant interferon-gamma glycosylation in continuous culture of Chinese hamster ovary cells. Biotechnol Bioeng 62(3):336–347

    Article  CAS  Google Scholar 

  61. Crowell CK et al (2007) Amino acid and manganese supplementation modulates the glycosylation state of erythropoietin in a CHO culture system. Biotechnol Bioeng 96(3):538–549

    Article  CAS  Google Scholar 

  62. Higa HH, Paulson JC (1985) Sialylation of glycoprotein oligosaccharides with N-acetyl-, N-glycolyl-, and N-O-diacetylneuraminic acids. J Biol Chem 260(15):8838–8849

    CAS  Google Scholar 

  63. Gawlitzek M et al (1995) Characterization of changes in the glycosylation pattern of recombinant proteins from BHK-21 cells due to different culture conditions. J Biotechnol 42(2):117–131

    Article  CAS  Google Scholar 

  64. Gu X et al (1997) Influence of Primatone RL supplementation on sialylation of recombinant human interferon-gamma produced by Chinese hamster ovary cell culture using serum-free media. Biotechnol Bioeng 56(4):353–360

    Article  CAS  Google Scholar 

  65. Andersen DC et al (2000) Multiple cell culture factors can affect the glycosylation of Asn-184 in CHO-produced tissue-type plasminogen activator. Biotechnol Bioeng 70(1):25–31

    Article  CAS  Google Scholar 

  66. Gu X, Wang DI (1998) Improvement of interferon-gamma sialylation in Chinese hamster ovary cell culture by feeding of N-acetylmannosamine. Biotechnol Bioeng 58(6):642–648

    Article  CAS  Google Scholar 

  67. Wong NS et al (2010) An investigation of intracellular glycosylation activities in CHO cells: effects of nucleotide sugar precursor feeding. Biotechnol Bioeng 107(2):321–336

    Article  CAS  Google Scholar 

  68. Rosenfeld R et al (2007) A lectin array-based methodology for the analysis of protein glycosylation. J Biochem Biophys Methods 70(3):415–426

    Article  CAS  Google Scholar 

  69. Lauc G et al (2010) Complex genetic regulation of protein glycosylation. Mol Biosyst 6(2):329–335

    Google Scholar 

  70. Ashwell G, Kawasaki T (1978) A protein from mammalian liver that specifically binds galactose-terminated glycoproteins. Methods Enzymol 50:287–288

    Article  CAS  Google Scholar 

  71. Weikert S et al (1999) Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat Biotechnol 17(11):1116–1121

    Article  CAS  Google Scholar 

  72. Schlenke P et al (1999) Construction and characterization of stably transfected BHK-21 cells with human-type sialylation characteristic. Cytotechnology 30(1–3):17–25

    Article  CAS  Google Scholar 

  73. Zhang X, Lok SH, Kon OL (1998) Stable expression of human alpha-2,6-sialyltransferase in Chinese hamster ovary cells: functional consequences for human erythropoietin expression and bioactivity. Biochim Biophys Acta 1425(3):441–452

    Article  CAS  Google Scholar 

  74. Ferrari J et al (1998) Chinese hamster ovary cells with constitutively expressed sialidase antisense RNA produce recombinant DNase in batch culture with increased sialic acid. Biotechnol Bioeng 60(5):589–595

    Article  CAS  Google Scholar 

  75. Wong NS, Yap MG, Wang DI (2006) Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter over expression in Chinese hamster ovary cells. Biotechnol Bioeng 93(5):1005–1016

    Article  CAS  Google Scholar 

  76. Chenu S et al (2003) Reduction of CMP-N-acetylneuraminic acid hydroxylase activity in engineered Chinese hamster ovary cells using an antisense-RNA strategy. Biochim Biophys Acta 1622(2):133–144

    Article  CAS  Google Scholar 

  77. Umana P et al (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17(2):176–180

    Article  CAS  Google Scholar 

  78. Davies J et al (2001) Expression of GnTIII in a recombinant anti-CD20 CHO production cell line: expression of antibodies with altered glycoforms leads to an increase in ADCC through higher affinity for FC gamma RIII. Biotechnol Bioeng 74(4):288–294

    Article  CAS  Google Scholar 

  79. Mori K et al (2004) Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA. Biotechnol Bioeng 88(7):901–908

    Article  CAS  Google Scholar 

  80. Potvin B et al (1990) Transfection of a human alpha-(1,3)fucosyltransferase gene into Chinese hamster ovary cells. Complications arise from activation of endogenous alpha-(1,3)fucosyltransferases. J Biol Chem 265(3):1615–1622

    CAS  Google Scholar 

  81. Yamane-Ohnuki N et al (2004) Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 87(5):614–622

    Article  CAS  Google Scholar 

  82. Lim SF et al (2008) The Golgi CMP-sialic acid transporter: a new CHO mutant provides functional insights. Glycobiology 18(11):851–860

    Article  CAS  Google Scholar 

  83. Chen P, Harcum SW (2006) Effects of elevated ammonium on glycosylation gene expression in CHO cells. Metab Eng 8(2):123–132

    Article  CAS  Google Scholar 

  84. Oh SK et al (1993) Substantial overproduction of antibodies by applying osmotic pressure and sodium butyrate. Biotechnol Bioeng 42(5):601–610

    Article  CAS  Google Scholar 

  85. Palermo DP et al (1991) Production of analytical quantities of recombinant proteins in Chinese hamster ovary cells using sodium butyrate to elevate gene expression. J Biotechnol 19(1):35–47

    Article  CAS  Google Scholar 

  86. De Leon Gatti M et al (2007) Comparative transcriptional analysis of mouse hybridoma and recombinant Chinese hamster ovary cells undergoing butyrate treatment. J Biosci Bioeng 103(1):82–91

    Article  CAS  Google Scholar 

  87. Mimura Y et al (2001) Butyrate increases production of human chimeric IgG in CHO-K1 cells whilst maintaining function and glycoform profile. J Immunol Methods 247(1–2):205–216

    Article  CAS  Google Scholar 

  88. Korke R et al (2004) Large scale gene expression profiling of metabolic shift of mammalian cells in culture. J Biotechnol 107(1):1–17

    Article  CAS  Google Scholar 

  89. Lecca MR et al (2005) Genome-wide analysis of the unfolded protein response in fibroblasts from congenital disorders of glycosylation type-I patients. FASEB J 19(2):240–242

    CAS  Google Scholar 

  90. Wong DC et al (2010) Profiling of N-glycosylation gene expression in CHO cell fed-batch cultures. Biotechnol Bioeng 107(3):516–528

    Google Scholar 

  91. Seth G et al (2007) Molecular portrait of high productivity in recombinant NS0 cells. Biotechnol Bioeng 97(4):933–951

    Article  CAS  Google Scholar 

  92. Shelikoff M, Sinskey AJ, Stephanopoulos G (1994) The effect of protein synthesis inhibitors on the glycosylation site occupancy of recombinant human prolactin. Cytotechnology 15(1–3):195–208

    Article  CAS  Google Scholar 

  93. Wang WC et al (1991) The poly-N-acetyllactosamines attached to lysosomal membrane glycoproteins are increased by the prolonged association with the Golgi complex. J Biol Chem 266(34):23185–23190

    CAS  Google Scholar 

  94. Bulleid NJ et al (1992) Cell-free synthesis of enzymically active tissue-type plasminogen activator. Protein folding determines the extent of N-linked glycosylation. Biochem J 286(Pt 1):275–280

    CAS  Google Scholar 

  95. Grabenhorst E et al (1999) Genetic engineering of recombinant glycoproteins and the glycosylation pathway in mammalian host cells. Glycoconj J 16(2):81–97

    Article  CAS  Google Scholar 

  96. Comelli EM et al (2006) A focused microarray approach to functional glycomics: transcriptional regulation of the glycome. Glycobiology 16(2):117–131

    Article  CAS  Google Scholar 

  97. Travers KJ et al (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101(3):249–258

    Article  CAS  Google Scholar 

  98. Klebl B et al (2001) A comprehensive analysis of gene expression profiles in a yeast N-glycosylation mutant. Biochem Biophys Res Commun 286(4):714–720

    Article  CAS  Google Scholar 

  99. Cullen PJ et al (2006) Genome-wide analysis of the response to protein glycosylation deficiency in yeast. FEMS Yeast Res 6(8):1264–1273

    Article  CAS  Google Scholar 

  100. Gerdtzen ZP, Daoutidis P, Hu WS (2004) Non-linear reduction for kinetic models of metabolic reaction networks. Metab Eng 6(2):140–154

    Article  CAS  Google Scholar 

  101. Umana P, Bailey JE (1997) A mathematical model of N-linked glycoform biosynthesis. Biotechnol Bioeng 55(6):890–908

    Article  CAS  Google Scholar 

  102. Krambeck FJ, Betenbaugh MJ (2005) A mathematical model of N-linked glycosylation. Biotechnol Bioeng 92(6):711–728

    Article  CAS  Google Scholar 

  103. Inoue N et al (1999) Asn-linked sugar chain structures of recombinant human thrombopoietin produced in Chinese hamster ovary cells. Glycoconj J 16(11):707–718

    Article  CAS  Google Scholar 

  104. Hossler P, Mulukutla BC, Hu WS (2007) Systems analysis of N-glycan processing in mammalian cells. PLoS One 2(1):e713

    Article  CAS  Google Scholar 

  105. Elsner M, Hashimoto H, Nilsson T (2003) Cisternal maturation and vesicle transport: join the band wagon!. Mol Membr Biol 20(3):221–229

    Article  CAS  Google Scholar 

  106. Marsh BJ, Howell KE (2002) The mammalian Golgi-complex debates. Nat Rev Mol Cell Biol 3(10):789–795

    Article  CAS  Google Scholar 

  107. Colley KJ (1997) Golgi localization of glycosyltransferases: more questions than answers. Glycobiology 7(1):1–13

    Article  CAS  Google Scholar 

  108. Hossler P et al (2006) GlycoVis: visualizing glycan distribution in the protein N-glycosylation pathway in mammalian cells. Biotechnol Bioeng 95(5):946–960

    Article  CAS  Google Scholar 

  109. Spellman MW et al (1989) Carbohydrate structures of human tissue plasminogen activator expressed in Chinese hamster ovary cells. J Biol Chem 264(24):14100–14111

    CAS  Google Scholar 

  110. Mironov A Jr, Luini A, Mironov A (1998) A synthetic model of intra-Golgi traffic. FASEB J 12(2):249–252

    CAS  Google Scholar 

  111. Ferrara C et al (2006) Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Biotechnol Bioeng 93(5):851–861

    Article  CAS  Google Scholar 

  112. Monica TJ, Andersen DC, Goochee CF (1997) A mathematical model of sialylation of N-linked oligosaccharides in the trans-Golgi network. Glycobiology 7(4):515–521

    Article  CAS  Google Scholar 

  113. Shelikoff M, Sinskey AJ, Stephanopoulos G (1996) A modeling framework for the study of protein glycosylation. Biotechnol Bioeng 50(1):73–90

    Article  CAS  Google Scholar 

  114. Liu G et al (2008) Systems-level modeling of cellular glycosylation reaction networks: O-linked glycan formation on natural selectin ligands. Bioinformatics 24(23):2740–2747

    Article  CAS  Google Scholar 

  115. Marathe DD et al (2008) Systems-level studies of glycosyltransferase gene expression and enzyme activity that are associated with the selectin binding function of human leukocytes. FASEB J 22(12):4154–4167

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Content review and helpful suggestions from Sean McDermott and Christopher Racicot is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Hossler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hossler, P. (2011). Protein Glycosylation Control in Mammalian Cell Culture: Past Precedents and Contemporary Prospects. In: Hu, W., Zeng, AP. (eds) Genomics and Systems Biology of Mammalian Cell Culture. Advances in Biochemical Engineering Biotechnology, vol 127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2011_113

Download citation

Publish with us

Policies and ethics