Advertisement

Interaction of Cartilage and Ceramic Matrix

  • K. Wiegandt
  • C. Goepfert
  • R. Pörtner
  • R. JanssenEmail author
Chapter
Part of the Advances in Biochemical Engineering Biotechnology book series (ABE, volume 126)

Abstract

As subchondral bone is often affected during cartilage injuries, the aim of research is to generate osteochondral implants in vitro using tissue engineering techniques. These constructs consist of a cartilage layer grown on top of a bone phase. In clinical applications, phosphate ceramics have gained acceptance as bone substitute materials because of their great affinity to natural bone. Furthermore, the interaction between cartilage and the underlying bone equivalent is essential for the development and success of osteochondral implants. Here, the influence of a carrier containing hydroxyapatite on the quality of cartilage constructs generated in vitro is investigated. Attempts are made to explain the effects described, by considering chemical and physical properties of the biomaterial.

Keywords

Bioceramics Cartilage Hydroxyapatite Osteochondral implants Surface structure 

Notes

Acknowledgments

We would like to thank Kerstin Michael, Ditte Siemesgelüss, Teresa Richter, Daniel Fritsch and Nadja Holstein for their excellent technical support. The project was kindly supported by DFG (PO 413/7-1) and by BWF-FHH (Tissue Engineering).

References

  1. 1.
    Petersen JP, Ruecker A, von Stechow D, Adamietz P, Poertner R, Rueger JM, Meenen MN (2003) Present and future therapies of articular cartilage defects. Eur J Trauma (29):1–10Google Scholar
  2. 2.
    Hangody L, Füles P (2003) Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am 85-A(Suppl 2):25–32Google Scholar
  3. 3.
    Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. a review of the current status and prospects. Osteoarthr Cartil 10(6):432–463. doi: 10.1053/joca.2002.0801 CrossRefGoogle Scholar
  4. 4.
    Uvehammer J (2001) Knee joint kinematics, fixation and function related to joint area design in total knee arthroplasty. Taylor & Francis, StockholmGoogle Scholar
  5. 5.
    Martin I, Miot S, Barbero A, Jakob M, Wendt D (2007) Osteochondral tissue engineering. J Biomech 40(4):750–765. doi: 10.1016/j.jbiomech.2006.03.008 CrossRefGoogle Scholar
  6. 6.
    Waldman SD, Grynpas MD, Pilliar RM, Kandel RA (2002) Characterization of cartilagenous tissue formed on calcium polyphosphate substrates in vitro. J Biomed Mater Res 62(3):323–330. doi: 10.1002/jbm.10235 CrossRefGoogle Scholar
  7. 7.
    Risbud MV, Sittinger M (2002) Tissue engineering: advances in in vitro cartilage generation. Trends Biotechnol 20(8):351–356CrossRefGoogle Scholar
  8. 8.
    Mano JF, Reis RL (2007) Osteochondral defects: present situation and tissue engineering approaches. J Tissue Eng Regen Med 1(4):261–273CrossRefGoogle Scholar
  9. 9.
    O’Shea TM, Miao X (2008) Bilayered scaffolds for osteochondral tissue engineering. Tissue Eng Part B 14(4):447–464CrossRefGoogle Scholar
  10. 10.
    Schwartz Z, Braun G, Kohavi D, Brooks B, Amir D, Sela J, Boyan B (1993) Effects of hydroxyapatite implants on primary mineralization during rat tibial healing: Biochemical and morphometric analyses. J Biomed Mater Res 27(8):1029–1038CrossRefGoogle Scholar
  11. 11.
    Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF (2001) Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 22(1):87–96CrossRefGoogle Scholar
  12. 12.
    Pennesi G, Scaglione S, Giannoni P, Quarto R (2011) Regulatory influence of scaffolds on cell behavior: how cells decode biomaterials. Curr Pharm Biotechnol 12(2):151–159CrossRefGoogle Scholar
  13. 13.
    Boyan BD, Hummert TW, Dean DD, Schwartz Z (1996) Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17(2):137–146CrossRefGoogle Scholar
  14. 14.
    Schwartz Z, Martin JY, Dean DD, Simpson J, Cochran DL, Boyan BD (1996) Effect of titanium surface roughness on chondrocyte proliferation, matrix production, and differentiation depends on the state of cell maturation. J Biomed Mater Res 30(2):145–155. doi: 10.1002/(SICI)1097-4636(199602)30:2<145:AID-JBM3>3.0.CO;2-R CrossRefGoogle Scholar
  15. 15.
    Raghunath J, Rollo J, Sales KM, Butler PE, Seifalian AM (2007) Biomaterials and scaffold design: key to tissue-engineering cartilage. Biotechnol Appl Biochem 46(2):73–84CrossRefGoogle Scholar
  16. 16.
    Boyan BD, Lincks J, Lohmann CH, Sylvia VL, Cochran DL, Blanchard CR, Dean DD, Schwartz Z (1999) Effect of surface roughness and composition on costochondral chondrocytes is dependent on cell maturation state. J Orthop Res 17(3):446–457CrossRefGoogle Scholar
  17. 17.
    Jarcho M (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res 157:259–278Google Scholar
  18. 18.
    Ponche A, Bigerelle M, Anselme K (2010) Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 1: physico-chemical effects. Proc Inst Mech Eng H224(12):1471–1486Google Scholar
  19. 19.
    Hamilton DW, Riehle MO, Rappuoli R, Monaghan W, Barbucci R, Curtis ASG (2005) The response of primary articular chondrocytes to micrometric surface topography and sulphated hyaluronic acid-based matrices. Cell Biol Int 29(8):605–615. doi: 10.1016/j.cellbi.2005.03.013 CrossRefGoogle Scholar
  20. 20.
    Curtis ASG, Wilkinson CDW (1998) Reactions of cells to topography. J Biomater Sci 9(12):1313–1329CrossRefGoogle Scholar
  21. 21.
    Costa Martínez E, Escobar Ivirico JL, Muñoz Criado I, Gómez Ribelles JL, Monleón Pradas M, Salmerón Sánchez M (2007) Effect of poly(L-lactide) surface topography on the morphology of in vitro cultured human articular chondrocytes. J Mater Sci Mater Med 18(8):1627–1632. doi: 10.1007/s10856-007-3038-1 CrossRefGoogle Scholar
  22. 22.
    Pennisi CP, Dolatshahi-Pirouz A, Foss M, Chevallier J, Fink T, Zachar V, Besenbacher F, Yoshida K (2011) Nanoscale topography reduces fibroblast growth, focal adhesion size and migration-related gene expression on platinum surfaces. Colloids Surf B 85(2):189–197CrossRefGoogle Scholar
  23. 23.
    Spiteri CG, Pilliar RM, Kandel RA (2006) Substrate porosity enhances chondrocyte attachment, spreading, and cartilage tissue formation in vitro. J Biomed Mater Res A 78(4):676–683. doi: 10.1002/jbm.a.30746 Google Scholar
  24. 24.
    dos Santos EA, Farina M, Soares GA, Anselme K (2009) Chemical and topographical influence of hydroxyapatite and β-tricalcium phosphate surfaces on human osteoblastic cell behavior. J Biomed Mater Res 89A(2):510–520CrossRefGoogle Scholar
  25. 25.
    Anselme K, Ponche A, Bigerelle M (2010) Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: biological aspects. Proc Inst Mech Eng H224(12):1487–1507Google Scholar
  26. 26.
    Lim JY, Liu X, Vogler EA, Donahue HJ (2004) Systematic variation in osteoblast adhesion and phenotype with substratum surface characteristics. J Biomed Mater Res 68A(3):504–512CrossRefGoogle Scholar
  27. 27.
    dos Santos EA, Farina M, Soares GA, Anselme K (2008) Surface energy of hydroxyapatite and beta-tricalcium phosphate ceramics driving serum protein adsorption and osteoblast adhesion. J Mater Sci Mater Med 19(6):2307–2316. doi: 10.1007/s10856-007-3347-4 CrossRefGoogle Scholar
  28. 28.
    Hallab NJ, Bundy KJ, O’Connor K, Moses RJ, Jacobs JJ (2001) Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Eng 7:55–71CrossRefGoogle Scholar
  29. 29.
    Papenburg BJ (2010) Insights into the role of material surface topography and wettability on cell-material interactions. Soft Matter 18(6):4377–4388CrossRefGoogle Scholar
  30. 30.
    Moroni L, Habibovic B, Monney DJ, van Blitterswijk CA (2010) Functional tissue engineering through biofunctional macromolecules and surface design. MRS Bull 35:584–590CrossRefGoogle Scholar
  31. 31.
    Kieswetter K, Schwartz Z, Hummert TW, Cochran DL, Simpson J, Dean DD, Boyan BD (1996) Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. J Biomed Mater Res 32(1):55–63CrossRefGoogle Scholar
  32. 32.
    Zeng H, Chittur KK, Lacefield WR (1999) Analysis of bovine serum albumin adsorption on calcium phosphate and titanium surfaces. Biomaterials 20(4):377–384CrossRefGoogle Scholar
  33. 33.
    Nagel-Heyer S, Goepfert C, Morlock MM, Pörtner R (2005) Relationship between physical, biochemical and biomechanical properties of tissue-engineered cartilage-carrier-constructs. Biotechnol Lett 27(3):187–192. doi: 10.1007/s10529-004-7859-4 CrossRefGoogle Scholar
  34. 34.
    Petersen JP, Ueblacker P, Goepfert C, Adamietz P, Baumbach K, Stork A, Rueger JM, Poertner R, Amling M, Meenen NM (2008) Long term results after implantation of tissue engineered cartilage for the treatment of osteochondral lesions in a minipig model. J Mater Sci Mater Med 19(5):2029–2038. doi: 10.1007/s10856-007-3291-3 CrossRefGoogle Scholar
  35. 35.
    Nagel-Heyer S, Goepfert C, Feyerabend F, Petersen J, Adamietz P, Meenen N, Pörtner R (2005) Bioreactor cultivation of three-dimensional cartilage-carrier-constructs. Bioprocess Biosyst Eng 27(4):273–280CrossRefGoogle Scholar
  36. 36.
    Wiegandt K, Goepfert C, Pörtner R (2007) Improving in vitro generated cartilage-carrier-constructs by optimizing growth factor combination. Open Biomed Eng J 1:85–90. doi: 10.2174/1874120700701010085 CrossRefGoogle Scholar
  37. 37.
    Goepfert C, Böer R, Nagel-Heyer S, Toykan D, Adamietz P, Janssen R, Poertner R (2004) Formation of tissue-engineered cartilage on different types of calcium phosphate ceramics. Cytotherapy: 270–271Google Scholar
  38. 38.
    Rodrigues CVM, Serricella P, Linhares ABR, Guerdes RM, Borojevic R, Rossi MA, Duarte MEL, Farina M (2003) Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials 24(27):4987–4997CrossRefGoogle Scholar
  39. 39.
    Teixeira CC, Nemelivsky Y, Karkia C, Legeros RZ (2006) Biphasic calcium phosphate: a scaffold for growth plate chondrocyte maturation. Tissue Eng 12(8):2283–2289. doi: 10.1089/ten.2006.12.2283 CrossRefGoogle Scholar
  40. 40.
    Chung C, Burdick JA (2008) Engineering cartilage tissue: emerging trends in cell-based therapies. Adv Drug Deliv Rev 60(2):243–262CrossRefGoogle Scholar
  41. 41.
    Anselme K, Bigerelle M, Noel B, Dufresne E, Judas D, Iost A, Hardouin P (2000) Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res 49(2):155–166CrossRefGoogle Scholar
  42. 42.
    LeGeros RZ, Parsons JR, Daculsi G, Driessens F, Lee D, Liu ST, Metsger S, Peterson D, Walker M (1988) Significance of the porosity and physical chemistry of calcium phosphate ceramics. Biodegradation-bioresorption. Ann NY Acad Sci 523:268–271CrossRefGoogle Scholar
  43. 43.
    Curran JM, Chen R, Hunt JA (2006) The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials 27(27):4783–4793. doi: 10.1016/j.biomaterials.2006.05.001 CrossRefGoogle Scholar
  44. 44.
    Keselowsky BG, Collard DM, García AJ (2005) Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc Natl Acad Sci USA 102(17):5953–5957. doi: 10.1073/pnas.0407356102 CrossRefGoogle Scholar
  45. 45.
    Lee MH, Ducheyne P, Lynch L, Boettiger D, Composto RJ (2006) Effect of biomaterial surface properties on fibronectin-[alpha]5[beta]1 integrin interaction and cellular attachment. Biomaterials 27(9):1907–1916CrossRefGoogle Scholar
  46. 46.
    Toh WS, Spector M, Lee EH, Cao T (2011) Biomaterial-mediated delivery of microenvironmental cues for repair and regeneration of articular cartilage. Mol PharmGoogle Scholar
  47. 47.
    Liu SQ, Tian Q, Hedrick JL, Po Hui JH, Rachel Ee PL, Yang YY (2010) Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage. Biomaterials 31(28):7298–7307CrossRefGoogle Scholar
  48. 48.
    Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689CrossRefGoogle Scholar
  49. 49.
    Wu JZ, Herzog W (2002) Elastic anisotropy of articular cartilage is associated with the microstructures of collagen fibers and chondrocytes. J Biomech 35(7):931–942CrossRefGoogle Scholar
  50. 50.
    Moroni L, Habibovic B, Monney DJ, van Blitterswijk CA (2010) Functional tissue engineering through biofunctional macromolecules and surface design. MRS Bull 35:584–590CrossRefGoogle Scholar
  51. 51.
    Luppa D (2000) Biochemie und Pathochemia des hyalinen Gelenkknorpels. KCS 1(12):29–39Google Scholar
  52. 52.
    Heyland J, Wiegandt K, Goepfert C, Nagel-Heyer S, Ilinich E, Schumacher U, Pörtner R (2006) Redifferentiation of chondrocytes and cartilage formation under intermittent hydrostatic pressure. Biotechnol Lett 28(20):1641–1648CrossRefGoogle Scholar
  53. 53.
    Hoenig E, Winkler T, Mielke G, Paetzold H, Schuettler D, Goepfert C, Machens HG, Morlock MM, Schill AF (2011) High amplitude direct compressive strain enhances mechanical properties of scaffold-free tissue-engineered cartilage. Tissue Eng Part A 17(9–10):1401–1411CrossRefGoogle Scholar
  54. 54.
    Wiegandt K, Pörtner R, Müller R (2009) Einfluss hydrostatischer Druckbelastung während der in vitro Herstellung von dreidimensionalen Knorpelimplantaten. urn:nbn:de:gbv:830-tubdok-8126Google Scholar
  55. 55.
    Ofek G, Revell CM, Hu JC, Allison DD, Grande-Allen KJ, Athanasiou KA (2008) Matrix development in self-assembly of articular cartilage. PLoS One 3(7):2795. doi: 10.1371/journal.pone.0002795 CrossRefGoogle Scholar
  56. 56.
    Kuettner KE, Aydelotte MB, Thonar EJ (1991) Articular cartilage matrix and structure: a minireview. J Rheumatol Suppl 27:46–48Google Scholar
  57. 57.
    Clark P, Connolly P, Curtis AS, Dow JA, Wilkinson CD (1990) Topographical control of cell behaviour: II. Multiple grooved substrata. Development 108(4):635–644Google Scholar
  58. 58.
    Brown A, Burke G, Meenan BJ (2011) Modeling of shear stress experienced by endothelial cells cultured on microstructured polymer substrates in a parallel plate flow chamber. Biotechnol Bioeng 108(5):1148–1158CrossRefGoogle Scholar
  59. 59.
    Elter P, Weihe T, Lange R, Gimsa J, Beck U (2011) The influence of topographic microstructures on the initial adhesion of L929 fibroblasts studied by single-cell force spectroscopy. Eur Biophys J 40(3):317–327CrossRefGoogle Scholar
  60. 60.
    Wiegandt K, Goepfert C, Richter T, Fritsch D, Janßen R, Pörtner R (2008) In vitro generation of cartilage-carrier-constructs on hydroxylapatite ceramics with different surface structures. Open Biomed Eng J 2:64–70. doi: 10.2174/1874120700802010064 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • K. Wiegandt
    • 1
  • C. Goepfert
    • 2
  • R. Pörtner
    • 2
  • R. Janssen
    • 1
    Email author
  1. 1.Institute of Advanced CeramicsHamburg University of TechnologyHamburgGermany
  2. 2.Institute of Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany

Personalised recommendations