From Single Cells to Microbial Population Dynamics: Modelling in Biotechnology Based on Measurements of Individual Cells

  • Thomas BleyEmail author
Part of the Advances in Biochemical Engineering / Biotechnology book series (ABE, volume 124)


The development of dynamic modelling of microbial populations in bioprocesses is reviewed. In the 1960s Arnold Fredrickson established the theoretical basis of such models, and other researchers have subsequently advanced them. This review explores the relationships that describe cell proliferation and evaluates the importance of the application of flow cytometry to the fundamental parameterisation of the models for their use in bioprocess engineering. The section “Individual-Based Modelling” discusses recent theoretical developments. Delay-differential equations are demonstrated to describe accurately temporal variation of the cell proliferation cycle and specialised approaches and related iconography are applied to stochastic and deterministic modelling of stages of cellular development. Synchronised cultures of the bacterium Cupriavidus necator were prepared and monitored using a flow cytometer. The data obtained demonstrate that cell proliferation could be simulated quantitatively using the developed model.

Graphical Abstract


Microbial population dynamics Modelling Flow cytometry Synchronisation 



The author would like to thank Florian Centler, Andreas Deutsch, and Felix Lenk for their critical reading of the manuscript and their helpful notes.


  1. 1.
    Ackermann J-U, Müller S, Lösche A, Bley T et al (1995) Methylobacterium rhodesianum cells tend to double the DNA content under growth limitations and accumulate PHB. J Biotechnol 39:9–20CrossRefGoogle Scholar
  2. 2.
    Bailey JE, Ollis FD (1977) Biochemical engineering fundamentals. McGraw-Hill, New YorkGoogle Scholar
  3. 3.
    Bellgardt K-H (1994) Analysis of synchronous growth of baker’s yeast. Part i: development of a theoretical model for sustained oscillations. J Biotechnol 35:19–33CrossRefGoogle Scholar
  4. 4.
    Ben-Jacob E, Schochet O, Tenenbaum A, Cohen I et al (1994) Generic modeling of cooperative growth patterns in bacterial colonies. Nature 368:46–49CrossRefGoogle Scholar
  5. 5.
    Bley T, Schmidt A (1980) A two state microbial growth model for continuous fermentation. Stud Biophys 78:11–12Google Scholar
  6. 6.
    Bley T, Heinritz B, Schmidt A (1984) Some stationary properties of a two-state microbial growth model for continuous fermentation derived from the smith and martin hypothesis. Stud Biophys 98:119–124Google Scholar
  7. 7.
    Bley T (1987) State-structure models of microbial growth. Acta Biotechnol 7:173–177CrossRefGoogle Scholar
  8. 8.
    Bley T, Wegner B (1988) Hopf bifurcation for a family of two-state microbial growth models. Acta Biotechnol 8:267–275CrossRefGoogle Scholar
  9. 9.
    Bley T (1990) State structure models––a base for efficient control of fermentation processes. Biotechnol Adv 8:233–259CrossRefGoogle Scholar
  10. 10.
    Bley T (1992) Delay-differential equations for modeling synchrony and periodic phenomena in microbial population dynamics. In: Karim MN, Stephanopoulos G (eds) Modeling and control of biotechnical processes. Pergamon Press, NY, pp 195–199Google Scholar
  11. 11.
    Bley T, Müller S (2002) How should microbial life be quantified to optimize bioprocesses. Acta Biotechnol 22:401–409CrossRefGoogle Scholar
  12. 12.
    Boschke E, Bley T (1998) Growth patterns of yeast colonies depending on nutrient supply. Acta Biotechnol 18:17–27CrossRefGoogle Scholar
  13. 13.
    Cazzador L, Mariani L, Martegani E, Alberghina L (1990) Structured segregated models and analysis of self-oscillating yeast continuous cultures. Bioprocess Eng 5:175–180CrossRefGoogle Scholar
  14. 14.
    Cipollina C, Vai M, Porro D, Hatzis C (2007) Towards understanding of the complex structure of growing yeast populations. J Biotechnol 128:393–402CrossRefGoogle Scholar
  15. 15.
    Cooper S (1979) A unifying model for the g1 period in prokaryotes and eukaryotes. Nature 280:17–19CrossRefGoogle Scholar
  16. 16.
    Dawson PSS (1972) Continuously synchronized growth. J Appl Chem Biotechnol 22:79–103Google Scholar
  17. 17.
    Deutsch A, Dress A, Rensing L (1993) Formation of morphological differentiation patterns in the ascomycete Neurospora crassa. Mech Dev 44:17–31CrossRefGoogle Scholar
  18. 18.
    Deutsch A, Dormann S (2005) Cellular automation modelling of biological pattern formation. Birkhauser, BostonGoogle Scholar
  19. 19.
    Eakman JM, Fredrickson AG, Tsuchiya HM (1966) Statistics and dynamics of microbial cell populations. Chem Eng Prog 62:37–49Google Scholar
  20. 20.
    Ferrer J, Prats C, López D (2008) Individual-based modelling: an essential tool for microbiology. J Biol Phys 34:19–37CrossRefGoogle Scholar
  21. 21.
    Fredrickson AG, Ramkrishna D, Tsuchiya HM (1967) Statistics and dynamics of procaryotic cell populations. Math Biosci 1:327–374CrossRefGoogle Scholar
  22. 22.
    Fredrickson AG, Mantzaris NV (2002) A new set of population balance equations for microbial and cell cultures. Chem Eng Sci 57:2265–2278CrossRefGoogle Scholar
  23. 23.
    Fritsch M, Starruss J, Loesche A, Mueller S et al (2005) Cell cycle synchronization of Cupriavidus necator by continuous phasing measured via flow cytometry. Biotechnol Bioeng 92:635–642CrossRefGoogle Scholar
  24. 24.
    Grimm V, Railsback SF (2005) Individual-based modeling and ecology. Princeton University Press, PrincetonGoogle Scholar
  25. 25.
    Große-Uhlmann R, Bley T (1999) A modular approach to situation identification of the dynamics of bacterial populations synthesizing poly-β-hydroxybutyrate. Bioprocess Eng 21:191–200CrossRefGoogle Scholar
  26. 26.
    Gurney WS, Nisbet RM (1984) The systematic formulation of delay-differential models of age or size structured populations. Lect Notes Biomath 52:163–172Google Scholar
  27. 27.
    Hatzis C, Porro D (2006) Morphologically-structured models of growing budding yeast populations. J Biotechnol 124:420–438CrossRefGoogle Scholar
  28. 28.
    Hellweger FL, Bucci V (2009) A bunch of tiny individuals––individual-based modeling for microbes. Ecol Model 220:8–22CrossRefGoogle Scholar
  29. 29.
    Hjortso MA, Bailey JE (1982) Steady-state growth of budding yeast populations in well-mixed continuos-flow microbial reactors. Math Biosci 60:235–263CrossRefGoogle Scholar
  30. 30.
    Hjortso MA, Nielsen J (1995) Population balance models of autonomous microbial oscillations. J Biotechnol 42:255–269CrossRefGoogle Scholar
  31. 31.
    Kiefer J (1973) Zur Mathematischen Beschreibung der Zellproliferation. Biophysik 10:115–124CrossRefGoogle Scholar
  32. 32.
    Kreft J-U, Booth G, Wimpenny JWT (1998) Bacsim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144:3275–3287CrossRefGoogle Scholar
  33. 33.
    Kreft J-U, Picioreanu C, Wimpenny JWT, van Loosdrecht MCM (2001) Individual-based modeling of biofilms. Microbiology 147:2897–2912Google Scholar
  34. 34.
    Lapin A, Müller D, Reuss M (2004) Dynamic behavior of microbial populations in stirred bioreactors simulated with Euler–Lagrange methods: traveling along the lifelines of single cells. Ind Eng Chem Res 43:4647–4656CrossRefGoogle Scholar
  35. 35.
    Lapin A, Schmidt J, Reuss M (2006) Modelling the dynamics of E. coli populations in the three-dimensional turbulent field of a stirred-tank bioreactor—a structured-segregated approach. Chem Eng Sci 61:4783–4797.CrossRefGoogle Scholar
  36. 36.
    Lavric V, Graham DW (2010) Birth, growth and death as structuring operators in bacterial population dynamics. J Theor Biol 264:45–54CrossRefGoogle Scholar
  37. 37.
    Lee MW, Vassiliadis VS, Park JM (2009) Individual-based and stochastic modelling of cell population dynamics considering substrate dependency. Biotechnol Bioeng 103:891–899CrossRefGoogle Scholar
  38. 38.
    Mantzaris NV (2007) From single-cell genetic architecture to cell population dynamics: quantitatively decomposing the effects of different population heterogeneity sources for a genetic network with positive feedback architecture. Biophys J 92:4271–4288CrossRefGoogle Scholar
  39. 39.
    Mhaskar P, Hjortso MA, Henson MA (2002) Cell population modelling and parameter estimation for continuous cultures of Saccharomyces cerevisiae. Biotechnol Prog 18:1010–1026CrossRefGoogle Scholar
  40. 40.
    Möckel B, Bley T, Böhme B (1989) Cyclic control of continuous biotechnological processes on the basis of a hierarchical control system. Syst Anal Model Simul 6:181–196Google Scholar
  41. 41.
    Möckel B, Bley T, Böhme B (1990) Model simulation of an efficient periodic control strategy for continuous fermentation processes. Acta Biotechnol 10:395–400CrossRefGoogle Scholar
  42. 42.
    Müller S, Bley T, Babel W (1999) Adaptive responses of Ralstonia eutropha to feast and famine conditions analyzed by flow cytometry. J Biotechnol 75:81–97CrossRefGoogle Scholar
  43. 43.
    Müller S (2007) Modes of cytometric bacterial DNA pattern: a tool for pursuing growth. Cell Prolif 40:621–639CrossRefGoogle Scholar
  44. 44.
    Müller S, Harms H, Bley T (2010) Origin and analysis of microbial population heterogeneity in bioprocesses. Curr Opin Biotechnol 21:100–113CrossRefGoogle Scholar
  45. 45.
    Nishimura Y, Bailey JE (1980) On the dynamics of Cooper-Helmstetter-Donachie populations. Math Biosci 51:305–328CrossRefGoogle Scholar
  46. 46.
    Noack S, Klöden W, Bley T (2008) Modelling synchronous growth of bacterial populations in phased cultivation. Bioprocess Biosyst Eng 31:435–443CrossRefGoogle Scholar
  47. 47.
    Porro D, Vai M, Vanoni M, Alberghina L et al (2009) Analysis and modeling of growing budding yeast populations at the single cell level. Cytometry 75A:114–120CrossRefGoogle Scholar
  48. 48.
    Prats C, López D, Giró A, Ferrer J et al (2006) Individual-based modelling of bacterial cultures to study the microscopic causes of the lag phase. J Theor Biol 241:939–953Google Scholar
  49. 49.
    Priori L, Ubezio P (1996) Mathematical modelling and computer simulation of cell synchrony. Methods Cell Sci 18:83–91CrossRefGoogle Scholar
  50. 50.
    Sherer E, Tocce E, Hannemann RE, Rundell AF et al (2008) Identification of age-structured models: cell cycle phase transition. Biotechnol Bioeng 99:960–974CrossRefGoogle Scholar
  51. 51.
    Slater ML, Sharrow SO, Gart JJ (1977) Cell cycle of Saccharomyces cerevisiae in populations growing at different rates. Proc Natl Acad Sci USA 74:3850–3854CrossRefGoogle Scholar
  52. 52.
    Smith JA, Martin L (1973) Do cells cycle? Proc Natl Acad Sci USA 70:1263–1267CrossRefGoogle Scholar
  53. 53.
    Srienc F (1999) Cytometric data as the basis for rigorous models of cell population dynamics. J Biotechnol 71:233–238CrossRefGoogle Scholar
  54. 54.
    Starruß J, Bley T, Sogaard-Andersen L, Deutsch A (2007) A new mechanism for collective migration in Myxococcus xanthus. J Stat Phys 128:269–286.CrossRefGoogle Scholar
  55. 55.
    Trucco E (1965) Mathematical models for cellular systems: the von Foerster equation. Part i and ii. Bull Math Biophys 27:285–304 (see also pp 449–471).Google Scholar
  56. 56.
    von Foerster H (1959) Some remarks on changing populations. In: Stohlman F (ed) The kinetics of cellular proliferation. Grune & Stratton, New YorkGoogle Scholar
  57. 57.
    Walther T, Reinsch H, Große A, Ostermann K et al (2004) Mathematical modeling of regulatory mechanisms in yeast colony development. J Theor Biol 229:327–338CrossRefGoogle Scholar
  58. 58.
    Walther T, Reinsch H, Ostermann K, Deutsch A et al (2005) Coordinated development of yeast colonies: B) quantitative modeling of diffusion-limited growth. Eng Life Sci 5:125–133.CrossRefGoogle Scholar
  59. 59.
    Walther Th, Reinsch H, Ostermann K, Deutsch A, Bley Th (2010) Applying dimorphic yeasts as model organisms to study mycelial growth: Part 2: application of mathematical models to identify different construction principles in yeast colonies. Bioprocess Biosyst Eng. doi: 10.1007/s00449-010-0443-5. Accessed 15 June 2010
  60. 60.
    Winfree AT (1990) The geometry of biological time. Springer, BerlinGoogle Scholar
  61. 61.
    Xavier JB, Foster KR (2007) Cooperation and conflict in microbial biofilms. Proc Natl Acad Sci USA 104:876–881CrossRefGoogle Scholar
  62. 62.
    Zamamiri AM, Zhang Y, Henson MA, Hjortso MA (2002) Dynamics analysis of an age distribution model of oscillating yeast cultures. Chem Eng Sci 57:2169–2181CrossRefGoogle Scholar
  63. 63.
    Zhu G-Y, Zamamiri A, Henson MA, Hjortso MA (2000) Model predictive control of continuous yeast bioreactors using cell population balance models. Chem Eng Sci 55:6155–6167CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institute of Food Technology and Bioprocess EngineeringDresden University of TechnologyDresdenGermany

Personalised recommendations