Skip to main content

Biofuels in China

  • Chapter
  • First Online:
Biotechnology in China II

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 122))

Abstract

The Chinese government is stimulating the biofuels development to replace partially fossil fuels in the transport sector, which can enhance energy security, reduce greenhouse gas emissions, and stimulate rural development. Bioethanol, biodiesel, biobutanol, biogas, and biohydrogen are the main biofuels developed in China. In this chapter, we mainly present the current status of biofuel development in China, and illustrate the issues of feedstocks, food security and conversion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Energy Agency (2006) World Energy Outlook 2006, p 8

    Google Scholar 

  2. http://science.jrank.org/pages/2575/Ethanol-Advantages-ethanol-an-alternative-fuel

  3. Dong FX (2007) Food security and biofuels development: the case of China. www.card.iastate.edu

  4. Qu YB, Zhu M, Liu K, Bao X, Lin J (2006) Studies on cellulosic ethanol production for sustainable supply of liquid fuel in China. Biotechnol J 1(11):1235–1240

    Article  CAS  Google Scholar 

  5. Foreign Agricultural Service, U.S. Department of Agriculture (FAS-USDA) (2006) People’s Republic of China bio-fuels annual 2006. Gain report number CH7039, Washington, DC

    Google Scholar 

  6. Liu Y (2005) Raw material shortage fetters China’s ethanol ambition. China Watch, Beijing, October 6

    Google Scholar 

  7. United States Department of Agriculture, Economic Research Service (2008) Agricultural baseline projections: baseline presentation, 2008–2017. http://www.ers.usda.gov/

  8. Gnansounou E, Dauriat A, Wyman CE (2005) Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China. Bioresour Technol 96:985–1002

    Article  CAS  Google Scholar 

  9. Rajagopal D (2008) Implications of India’s biofuel policies for food, water and the poor. Water Policy 10:95–106

    Article  Google Scholar 

  10. Macedo IC (2005) Sugarcane’s energy: twelve studies on Brazilian sugarcane agribusiness and its sustainability. Uniâo da Agroindústria Canavieira de Sâo Paulo, Sâo Paulo, p 195

    Google Scholar 

  11. FAO (2002) Sweet sorghum in China. In: World food summit, five years later. Agriculture Department, Food and Agriculture Organization of the United Nations (FAO)

    Google Scholar 

  12. Li SZ, Chan-Halbrendt C (2009) Ethanol production in (the) People’s Republic of China: potential and technologies. Appl Energy 86:S162–S169

    Article  CAS  Google Scholar 

  13. Dai D, Hu ZY, Pu GQ, Li H, Wang CT (2006) Energy efficiency and potentials of cassava fuel ethanol in Guangxi region of China. Energy Convers Manag 47(13–14):1686–1699

    Article  CAS  Google Scholar 

  14. Zhang C, Han WJ, Pu GQ, Wang CT (2003) Life cycle economic analysis of fuel ethanol derived from cassava in southwest China. Renew Sustain Energy Rev 7:353–366

    Article  CAS  Google Scholar 

  15. Feng X, Zhan L (2009) Analysis of the market of cassava and cassava products in China. China Trop Agric 3:26–30

    Google Scholar 

  16. Robert F (2007) Service cellulosic ethanol: biofuel researchers prepare to reap a new harvest. Science 315(5818):1488–1491

    Article  Google Scholar 

  17. Zhao L, Zhang Y, Fu Y, Huba ME, Liu D, Li S (2006) Liquid biofuels for transportation: Chinese potential and implications for sustainable agriculture and energy in the 21st century – (assessment study). http://www.gtz.de/de/dokumente/en-biofuels-for-transportation-in-china-2005.pdf

  18. Tian YS, Zhao LX, Meng HB, Sun LY, Yan JY (2009) Estimation of un-used land potential for biofuels development in (the) People’s Republic of China. Appl Energy 86(Suppl 1):S77–S85

    Article  Google Scholar 

  19. Jegannathan KR, Abang S, Poncelet D, Chan ES, Ravindra P (2008) Production of biodiesel using immobilized lipase – a critical review. Crit Rev Biotechnol 28:253–264

    Article  CAS  Google Scholar 

  20. Lu J, Nie K, Xie F, Wang F, Tan T (2007) Enzymatic synthesis of fatty acid methyl esters from lard with immobilized Candida sp. 99-125. Process Biochem 42:1367–1370

    Article  CAS  Google Scholar 

  21. Hu Z, Tan P, Yan X, Lou D (2008) Life cycle energy, environment and economic assessment of soybean-based biodiesel as an alternative automotive fuel in China. Energy 33:1654–1658

    Article  CAS  Google Scholar 

  22. Pizarro L, Park EY (2003) Lipase-catalyzed production of biodiesel fuel from vegetable oils contained in waste activated bleaching earth. Process Biochem 38:1077–1082

    Article  Google Scholar 

  23. Shimad Y, Watanabe Y, Sugihara A, Tominaga Y (2002) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B Enzym 17:133–142

    Article  Google Scholar 

  24. Lu J, Nie K, Wang F, Tan T (2008) Immobilized lipase Candida sp. 99-125 catalyzed methanolysis of glycerol trioleate: solvent effect. Bioresour Technol 99:6070–6074

    Article  CAS  Google Scholar 

  25. Salis A, Pinna M, Monduzzi M, Solinas V (2008) Comparison among immobilised lipases on macroporous polypropylene toward biodiesel synthesis. J Mol Catal B Enzym 54:19–26

    Article  CAS  Google Scholar 

  26. Cao L (2005) Immobilised enzymes: science or art? Curr Opin Chem Biol 9:217–226

    Article  CAS  Google Scholar 

  27. Shimada Y, Watanabe Y, Samukawa T, Sugihara A, Noda H, Fukuda H, Tominaga Y (1999) Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. J Am Oil Chem Soc 76:789–793

    Article  CAS  Google Scholar 

  28. Watanabe Y, Shimada Y, Sugihara A, Noda H, Fukuda H, Tominaga Y (2000) Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. J Am Oil Chem Soc 77:355–360

    Article  CAS  Google Scholar 

  29. Du W, Xu Y, Liu D, Zeng J (2004) Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B Enzym 30:125–129

    Article  CAS  Google Scholar 

  30. Wang J-X, Huang Q-D, Huang F-H, Wang J-W, Huang Q-J (2007) Lipase-catalyzed production of biodiesel from high acid value waste oil using ultrasonic assistant. Chin J Biotechnol 23:1121–1128

    Article  CAS  Google Scholar 

  31. Nie K, Xie F, Wang F, Tan T (2006) Lipase catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production. J Mol Catal B Enzym 43:142–147

    Article  CAS  Google Scholar 

  32. Lu J, Deng L, Zhao R, Zhang R, Wang F, Tan T (2010) Pretreatment of immobilized Candida sp. 99-125 lipase to improve its methanol tolerance for biodiesel production. J Mol Catal B Enzym. J Mol Catal B Enzym 62(1):15–18

    Google Scholar 

  33. Lu J, Chen Y, Wang F, Tan T (2009) Effect of water on methanolysis of glycerol trioleate catalyzed by immobilized lipase Candida sp. 99-125 in organic solvent system. J Mol Catal B Enzym 56:122–125

    Article  CAS  Google Scholar 

  34. Tan T, Nie K, Wang F (2006) Production of biodiesel by immobilized Candida sp. lipase at high water content. Appl Biochem Biotechnol 128:109–116

    Article  CAS  Google Scholar 

  35. Lv P, Wang X, Yuan Z, Tan T (2008) Conversion of soybean oil to biodiesel fuel with immobilized Candida lipase on textile cloth. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, A: Recover Util Environ Eff 30:872–879

    Article  CAS  Google Scholar 

  36. Soumanou MM, Bornscheuer UT (2003) Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme Microb Technol 33:97–103

    Article  CAS  Google Scholar 

  37. Iso M, Chen B, Eguchi M, Kudo T, Shrestha S (2001) Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J Mol Catal B Enzym 16:53–58

    Article  CAS  Google Scholar 

  38. Shah S, Gupta MN (2007) Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochem 42:409–414

    Article  CAS  Google Scholar 

  39. Salis A, Pinna M, Monduzzi M, Solinas V (2005) Biodiesel production from triolein and short chain alcohols through biocatalysis. J Biotechnol 119:291–299

    Article  CAS  Google Scholar 

  40. Yesiloglu Y (2004) Immobilized lipase-catalyzed ethanolysis of sunflower oil. J Am Oil Chem Soc 81:157–160

    Article  CAS  Google Scholar 

  41. Shieh CJ, Liao HF, Lee CC (2003) Optimization of lipase-catalyzed biodiesel by response surface methodology. Bioresour Technol 88:103–106

    Article  CAS  Google Scholar 

  42. Shah S, Sharma S, Gupta MN (2004) Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil. Energy Fuels 18:154–159

    Article  CAS  Google Scholar 

  43. Royon D, Daz M, Ellenrieder G, Locatelli S (2007) Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour Technol 98:648–653

    Article  CAS  Google Scholar 

  44. Wu H, Zong M-H (2007) Effect of ultrasonic irradiation on enxymatic transesterification of waste oil to biodiesel. In: Ultraclean transportation fuels. American Chemical Society, Washington, DC, pp 43–49

    Google Scholar 

  45. Zhang J, Jiang L (2008) Acid-catalyzed esterification of Zanthoxylum bungeanum seed oil with high free fatty acids for biodiesel production. Bioresour Technol 99:8995–8998

    Article  CAS  Google Scholar 

  46. Qian J, Wang F, Liu S, Yun Z (2008) In situ alkaline transesterification of cottonseed oil for production of biodiesel and nontoxic cottonseed meal. Bioresour Technol 99:9009–9012

    Article  CAS  Google Scholar 

  47. Shi H, Bao Z (2008) Direct preparation of biodiesel from rapeseed oil leached by two-phase solvent extraction. Bioresour Technol 99:9025–9028

    Article  CAS  Google Scholar 

  48. Wen Z, Yu X, Tu S-T, Yan J, Dahlquist E (2009) Intensification of biodiesel synthesis using zigzag micro-channel reactors. Bioresour Technol 100:3054–3060

    Article  CAS  Google Scholar 

  49. Liu X, Piao X, Wang Y, Zhu S, He H (2008) Calcium methoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel with methanol. Fuel 87:1076–1082

    Article  CAS  Google Scholar 

  50. Liu X, He H, Wang Y, Zhu S, Piao X (2008) Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel 87:216–221

    Article  CAS  Google Scholar 

  51. Xie W, Huang X, Li H (2007) Soybean oil methyl esters preparation using NaX zeolites loaded with KOH as a heterogeneous catalyst. Bioresour Technol 98:936–939

    Article  CAS  Google Scholar 

  52. He H, Wang T, Zhu S (2007) Continuous production of biodiesel fuel from vegetable oil using supercritical methanol process. Fuel 86:442–447

    Article  CAS  Google Scholar 

  53. Cao W, Han H, Zhang J (2005) Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent. Fuel 84:347–351

    Article  CAS  Google Scholar 

  54. Wang Y, Wu H, Zong MH (2008) Improvement of biodiesel production by lipozyme TL IM-catalyzed methanolysis using response surface methodology and acyl migration enhancer. Bioresour Technol 99:7232–7237

    Article  CAS  Google Scholar 

  55. Wang Y, Zhang L (2010) Ectoine improves yield of biodiesel catalyzed by immobilized lipase. J Mol Catal B Enzym 62:90–95

    Article  CAS  Google Scholar 

  56. Su E, You P, Wei D (2009) In situ lipase-catalyzed reactive extraction of oilseeds with short-chained dialkyl carbonates for biodiesel production. Bioresour Technol 100:5813–5817

    Article  CAS  Google Scholar 

  57. Wang L, Du W, Liu D, Li L, Dai N (2006) Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. J Mol Catal B Enzym 43:29–32

    Article  CAS  Google Scholar 

  58. Zhang L, Xian M, He Y, Li L, Yang J, Yu S, Xu X (2009) A Brønsted acidic ionic liquid as an efficient and environmentally benign catalyst for biodiesel synthesis from free fatty acids and alcohols. Bioresour Technol 100:4368–4373

    Article  CAS  Google Scholar 

  59. Liang X, Gong G, Wu H, Yang J (2009) Highly efficient procedure for the synthesis of biodiesel from soybean oil using chloroaluminate ionic liquid as catalyst. Fuel 88:613–616

    Article  CAS  Google Scholar 

  60. Wei Z, Xu C, Li B (2009) Application of waste eggshell as low-cost solid catalyst for biodiesel production. Bioresour Technol 100:2883–2885

    Article  CAS  Google Scholar 

  61. Feng Y, He B, Cao Y, Li J, Liu M, Yan F, Liang X (2010) Biodiesel production using cation-exchange resin as heterogeneous catalyst. Bioresour Technol 101:1518–1521

    Article  CAS  Google Scholar 

  62. Lou W-Y, Zong M-H, Duan Z-Q (2008) Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresour Technol 99:8752–8758

    Article  CAS  Google Scholar 

  63. Shi W, He B, Ding J, Li J, Yan F, Liang X (2010) Preparation and characterization of the organic-inorganic hybrid membrane for biodiesel production. Bioresour Technol 101:1501–1505

    Article  CAS  Google Scholar 

  64. Zhang S, Zu Y-G, Fu Y-J, Luo M, Zhang D-Y, Efferth T (2010) Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst. Bioresour Technol 101:931–936

    Article  CAS  Google Scholar 

  65. Silva C, Weschenfelder TA, Rovani S, Corazza FC, Corazza ML, Dariva C, Oliveira JV (2007) Continuous production of fatty acid ethyl esters from soybean oil in compressed ethanol. Ind Eng Chem Res 46:5304–5309

    Article  CAS  Google Scholar 

  66. Tamalampudi S, Talukder MR, Hama S, Numata T, Kondo A, Fukuda H (2008) Enzymatic production of biodiesel from Jatropha oil: a comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochem Eng J 39:185–189

    Article  CAS  Google Scholar 

  67. Talukder MMR, Puah SM, Wu JC, Won CJ, Chow Y (2006) Lipase-catalyzed methanolysis of palm oil in presence and absence of organic solvent for production of biodiesel. Biocatal Biotransformation 24:257–262

    Article  CAS  Google Scholar 

  68. Halim SFA, Kamaruddin AH, Fernando WJN (2009) Continuous biosynthesis of biodiesel from waste cooking palm oil in a packed bed reactor: optimization using response surface methodology (RSM) and mass transfer studies. Bioresour Technol 100:710–716

    Article  CAS  Google Scholar 

  69. Sim JH, Kamaruddin HA, Bhatia S (2009) Effect of mass transfer and enzyme loading on the biodiesel yield and reaction rate in the enzymatic transesterification of crude palm oil. Energy Fuels 23:4651–4658

    Article  CAS  Google Scholar 

  70. Wu Q, Chen H, Han M, Wang D, Wang J (2007) Transesterification of cottonseed oil catalyzed by Brønsted acidic ionic liquids. Ind Eng Chem Res 46:7955–7960

    Article  CAS  Google Scholar 

  71. Dizge N, Aydiner C, Imer DY, Bayramoglu M, Tanriseven A, Keskinler B (2009) Biodiesel production from sunflower, soybean, and waste cooking oils by transesterification using lipase immobilized onto a novel microporous polymer. Bioresour Technol 100:1983–1991

    Article  CAS  Google Scholar 

  72. Da Cunha ME, Krause LC, Moraes MSA, Faccini CS, Jacques RA, Almeida SR, Rodrigues MRA, Caramão EB (2009) Beef tallow biodiesel produced in a pilot scale. Fuel Process Technol 90:570–575

    Article  Google Scholar 

  73. Lee K-T, Foglia T, Chang K-S (2002) Production of alkyl ester as biodiesel from fractionated lard and restaurant grease. J Am Oil Chem Soc 79:191–195

    Article  CAS  Google Scholar 

  74. Ngo HLN, Zafiropoulos NA, Foglia TA, Samulski ET, Lin W (2008) Efficient two-step synthesis of biodiesel from greases. Energy Fuels 22:626–634

    Article  CAS  Google Scholar 

  75. Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    Article  CAS  Google Scholar 

  76. Min E, Zhang L (2006) Development of biodiesel industrial chain. China petro-chemical press, Beijing

    Google Scholar 

  77. Xue F, Zhang X, Luo H, Tan T (2006) A new method for preparing raw material for biodiesel production. Process Biochem 41:1699–1702

    Article  CAS  Google Scholar 

  78. Xue F, Miao J, Zhang X, Luo H, Tan T (2008) Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium. Bioresour Technol 99:5923–5927

    Article  CAS  Google Scholar 

  79. Um B-H, Kim Y-S (2009) Review: a chance for Korea to advance algal–biodiesel technology. J Ind Eng Chem 15:1–7

    Article  CAS  Google Scholar 

  80. Jones DT, Woods DR (1986) Acetone–butanol fermentation revisited. Microbiol Rev 50:484–524

    CAS  Google Scholar 

  81. Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J Rev 2:1–10

    Article  Google Scholar 

  82. Shao L, Hu S, Yang Y (2007) Targeted gene disruption by use of a group II intron vector in clostridium acetobutylicum. Cell Res 17(11):963–965

    Article  CAS  Google Scholar 

  83. Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto acid pathways. Metab Eng 10:312–320

    Article  CAS  Google Scholar 

  84. Wang FQ, Xie H, Chu L (2010) Screening and identification of a Bacillus strain producing butanol. Microbiology 37(1):7–11

    Google Scholar 

  85. Esteghlalian A, Hashimoto AG, Fenske JJ, Penner MH (1997) Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresour Technol 59:129–136

    Article  CAS  Google Scholar 

  86. Bower S, Wickramasinghe R, Nagle NJ, Schell DJ (2008) Modeling sucrose hydrolysis in dilute sulfuric acid solutions at pretreatment conditions for lignocellulosic biomass. Bioresour Technol 99:7354–7362

    Article  CAS  Google Scholar 

  87. Zaldivar J, Martinez A, Ingram LO (2000) Effect of alcohol compounds found in hemicellulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 68:524–530

    Article  CAS  Google Scholar 

  88. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification. Bioresour Technol 74:17–24

    Article  CAS  Google Scholar 

  89. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  90. Jönsson LJ, Palmqvist E, Nilvebrant N-O, Hahn-Hägerdal B (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol 49:691–697

    Article  Google Scholar 

  91. Zautsen RRM, Maugeri-Filho F, Vaz-Rossell CE, Straathof AJJ, van der Wielen LAM, de Bont JAM (2009) Liquid–liquid extraction of fermentation inhibiting compounds in lignocelluloses hydrolysate. Biotechnol Bioeng 102:1354–1360

    Article  CAS  Google Scholar 

  92. Palmqvist E, Grage H, Meinander NQ, Hahn-Hägerdal B (1999) Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol Bioeng 63:46–55

    Article  CAS  Google Scholar 

  93. Qureshi N, Ezeji TC, Ebener J, Dien BS, Cotta MA, Blaschek HP (2008) Butanol production by Clostridium beijerinckii. Part I: Use of acid and enzyme hydrolyzed corn fiber. Bioresour Technol 99:5915–5922

    Article  CAS  Google Scholar 

  94. Ezeji T, Blaschek HP (2008) Fermentation of dried distillers’ grains and soluble (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresour Technol 99:5232–5242

    Article  CAS  Google Scholar 

  95. Ezeji T, Qwureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97:1460–1469

    Article  CAS  Google Scholar 

  96. Li DM, Chen HZ (2007) Fermentation of acetone and butanol coupled with enzymatic hydrolysis of steam exploded corn stalk stover in a membrane reactor. Chin J Process Eng 7(6):1212–1216

    CAS  Google Scholar 

  97. Chen SW, Ma X, Wang LS (1998) Acetone and butanol fermentation of rice straw enzymatic hydrolysate. Industrial Microbiology, Industrial Microbiology 28(4):30–34

    CAS  Google Scholar 

  98. Asian Development Bank (2002) Report and recommendation of the President to the Board of Directors on a proposed loan to the efficient utilization of agricultural wastes project. (Available online)

    Google Scholar 

  99. Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32(8):1375–1380

    Article  CAS  Google Scholar 

  100. Qi ZH (2003) Construction of circle economy and eco-town. China Popul Resour Environ 13(5):111–114

    CAS  Google Scholar 

  101. Chen Y, Yang GH, Sweeney S, Feng YZ (2010) Household biogas use in rural China: a study of opportunities and constraints. Renew Sustain Energy Rev 14(1):545–549

    Article  Google Scholar 

  102. Yuan K, Lin WR (2009) Hydrogen in China: policy, program and progress. Int J Hydrogen Energy. International Journal of Hydrogen Energy 35(7):3110–3113

    Google Scholar 

Download references

Acknowledgments

The authors wish to express thanks for the support from the National Basic Research 973 Program of China (Grants Nos. 2007CB707804; 2007CB714304; 2009CB724703), the National High Technology Research and Development 863 Program of China (Grants Nos. 2009AA02Z207; 2009AA05Z436; 2009AA10Z404; 2009AA033001; 2009AA033002) and National Natural Science Foundation (Grants Nos. 20636010; 20876011; 20806006).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Tan, T., Yu, J., Lu, J., Zhang, T. (2010). Biofuels in China. In: Tsao, G., Ouyang, P., Chen, J. (eds) Biotechnology in China II. Advances in Biochemical Engineering / Biotechnology, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2010_73

Download citation

Publish with us

Policies and ethics