Skip to main content

Basic Science and Clinical Application of Stem Cells in Veterinary Medicine

  • Chapter
  • First Online:
Bioreactor Systems for Tissue Engineering II

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 123))

Abstract

Stem cells play an important role in veterinary medicine in different ways. Currently several stem cell therapies for animal patients are being developed and some, like the treatment of equine tendinopathies with mesenchymal stem cells (MSCs), have already successfully entered the market. Moreover, animal models are widely used to study the properties and potential of stem cells for possible future applications in human medicine. Therefore, in the young and emerging field of stem cell research, human and veterinary medicine are intrinsically tied to one another. Many of the pioneering innovations in the field of stem cell research are achieved by cooperating teams of human and veterinary medical scientists.

Embryonic stem (ES) cell research, for instance, is mainly performed in animals. Key feature of ES cells is their potential to contribute to any tissue type of the body (Reed and Johnson, J Cell Physiol 215:329–336, 2008). ES cells are capable of self-renewal and thus have the inherent potential for exceptionally prolonged culture (up to 1–2 years). So far, ES cells have been recovered and maintained from non-human primate, mouse (Fortier, Vet Surg 34:415–423, 2005) and horse blastocysts (Guest and Allen, Stem Cells Dev 16:789–796, 2007). In addition, bovine ES cells have been grown in primary culture and there are several reports of ES cells derived from mink, rat, rabbit, chicken and pigs (Fortier, Vet Surg 34:415–423, 2005). However, clinical applications of ES cells are not possible yet, due to their in vivo teratogenic degeneration. The potential to form a teratoma consisting of tissues from all three germ lines even serves as a definitive in vivo test for ES cells.

Stem cells obtained from any postnatal organism are defined as adult stem cells. Adult haematopoietic and MSCs, which can easily be recovered from extra embryonic or adult tissues, possess a more limited plasticity than their embryonic counterparts (Reed and Johnson, J Cell Physiol 215:329–336, 2008). It is believed that these stem cells serve as cell source to maintain tissue and organ mass during normal cell turnover in adult individuals. Therefore, the focus of attention in veterinary science is currently drawn to adult stem cells and their potential in regenerative medicine. Also experience gained from the treatment of animal patients provides valuable information for human medicine and serves as precursor to future stem cell use in human medicine.

Compared to human medicine, haematopoietic stem cells only play a minor role in veterinary medicine because medical conditions requiring myeloablative chemotherapy followed by haematopoietic stem cell induced recovery of the immune system are relatively rare and usually not being treated for monetary as well as animal welfare reasons.

In contrast, regenerative medicine utilising MSCs for the treatment of acute injuries as well as chronic disorders is gradually turning into clinical routine. Therefore, MSCs from either extra embryonic or adult tissues are in the focus of attention in veterinary medicine and research. Hence the purpose of this chapter is to offer an overview on basic science and clinical application of MSCs in veterinary medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agung M, Ochi M, Yanada S, Adachi N, Izuta Y, Yamasaki T, Toda K (2006) Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration. Knee Surg Sports Traumatol Arthrosc 14:1307–1314

    Article  Google Scholar 

  2. Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36:568–584

    Article  CAS  Google Scholar 

  3. Fortier LA, Nixon AJ, Williams J, Cable CS (1998) Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells. Am J Vet Res 59:1182–1187

    CAS  Google Scholar 

  4. Worster AA, Nixon AJ, Brower-Toland BD, Williams J (2000) Effect of transforming growth factor beta1 on chondrogenic differentiation of cultured equine mesenchymal stem cells. Am J Vet Res 61:1003–1010

    Article  CAS  Google Scholar 

  5. Fortier LA (2005) Stem cells: classifications, controversies, and clinical applications. Vet Surg 34:415–423

    Article  Google Scholar 

  6. Dahlgren LA (2009) Fat-derived mesenchymal stem cells for equine tendon repair. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol.4, No.6 (Suppl. 2), Nov 2009. Ref Type: Conference Proceeding

    Google Scholar 

  7. Prockop DJ, Gregory CA, Spees JL (2003) One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. Proc Natl Acad Sci USA 100(Suppl 1):11917–11923

    Article  CAS  Google Scholar 

  8. Ryan JM, Barry FP, Murphy JM, Mahon BP (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond) 2:8

    Article  CAS  Google Scholar 

  9. Csaki C, Matis U, Mobasheri A, Ye H, Shakibaei M (2007) Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells: a biochemical, morphological and ultrastructural study. Histochem Cell Biol 128:507–520

    Article  CAS  Google Scholar 

  10. Hoynowski SM, Fry MM, Gardner BM, Leming MT, Tucker JR, Black L, Sand T, Mitchell KE (2007) Characterization and differentiation of equine umbilical cord-derived matrix cells. Biochem Biophys Res Commun 362:347–353

    Article  CAS  Google Scholar 

  11. Koch TG, Berg LC, Betts DH (2008) Concepts for the clinical use of stem cells in equine medicine. Can Vet J 49:1009–1017

    Google Scholar 

  12. Fan J, Varshney RR, Ren L, Cai D, Wang DA (2009) Synovium-derived mesenchymal stem cells: a new cell source for musculoskeletal regeneration. Tissue Eng Part B Rev 15:75–86

    Article  CAS  Google Scholar 

  13. Koch TG, Heerkens T, Thomsen PD, Betts DH (2007) Isolation of mesenchymal stem cells from equine umbilical cord blood. BMC Biotechnol 7:26

    Article  CAS  Google Scholar 

  14. Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I (2007) Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 327:449–462

    Article  CAS  Google Scholar 

  15. Koerner J, Nesic D, Romero JD, Brehm W, Mainil-Varlet P, Grogan SP (2006) Equine peripheral blood-derived progenitors in comparison to bone marrow-derived mesenchymal stem cells. Stem Cells 24:1613–1619

    Article  CAS  Google Scholar 

  16. Vidal MA, Kilroy GE, Johnson JR, Lopez MJ, Moore RM, Gimble JM (2006) Cell growth characteristics and differentiation frequency of adherent equine bone marrow-derived mesenchymal stromal cells: adipogenic and osteogenic capacity. Vet Surg 35:601–610

    Article  Google Scholar 

  17. Vidal MA, Kilroy GE, Lopez MJ, Johnson JR, Moore RM, Gimble JM (2007) Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Vet Surg 36:613–622

    Article  Google Scholar 

  18. Giovannini S, Brehm W, Mainil-Varlet P, Nesic D (2008) Multilineage differentiation potential of equine blood-derived fibroblast-like cells. Differentiation 76:118–129

    Article  CAS  Google Scholar 

  19. Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6:125–134

    Article  CAS  Google Scholar 

  20. Martin DR, Cox NR, Hathcock TL, Niemeyer GP, Baker HJ (2002) Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp Hematol 30:879–886

    Article  CAS  Google Scholar 

  21. Ringe J, Kaps C, Schmitt B, Buscher K, Bartel J, Smolian H, Schultz O, Burmester GR, Haupl T, Sittinger M (2002) Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages. Cell Tissue Res 307:321–327

    Article  CAS  Google Scholar 

  22. Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T (2005) Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res 319:243–253

    Article  Google Scholar 

  23. Kulterer B, Friedl G, Jandrositz A, Sanchez-Cabo F, Prokesch A, Paar C, Scheideler M, Windhager R, Preisegger KH, Trajanoski Z (2007) Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation. BMC Genomics 8:70

    Article  CAS  Google Scholar 

  24. Smith RK, Korda M, Blunn GW, Goodship AE (2003) Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment. Equine Vet J 35:99–102

    Article  CAS  Google Scholar 

  25. Huss R, Lange C, Weissinger EM, Kolb HJ, Thalmeier K (2000) Evidence of peripheral blood-derived, plastic-adherent CD34(-low) hematopoietic stem cell clones with mesenchymal stem cell characteristics. Stem Cells 18:252–260

    Article  CAS  Google Scholar 

  26. Reed SA, Johnson SE (2008) Equine umbilical cord blood contains a population of stem cells that express Oct4 and differentiate into mesodermal and endodermal cell types. J Cell Physiol 215:329–336

    Article  CAS  Google Scholar 

  27. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52:2521–2529

    Article  Google Scholar 

  28. Reich CM, Raabe O, Wenisch S, Bridger PS, Kramer M, Arnhold S (2009) Comparison of canine adipose and bone marrow-derived mesenchymal stem cells. In: World Conference on Regenerative Medicine. Regen Med Suppl,Vol.4, No.6 (Suppl. 2), Nov 2009. Ref Type: Conference Proceeding

    Google Scholar 

  29. Colleoni S, Bottani E, Tessaro I, Mari G, Merlo B, Romagnoli N, Spadari A, Galli C, Lazzari G (2009) Isolation, growth and differentiation of equine mesenchymal stem cells: effect of donor, source, amount of tissue and supplementation with basic fibroblast growth factor. Vet Res Commun 33:811–821

    Article  Google Scholar 

  30. Conrad S, Nufer F, Mundle K, Ihring J, Seid K, Walliser U, Skutella T (2009) Mesenchymale Stammzellen aus dem Fettgewebe des Pferdes – Isolation, Expansion und Charakterisierung. 18. In: Tagung über Pferdekrankheiten im Rahmen der Equitana. 119. 2009, 20-3-2009. Ref Type: Conference Proceeding

    Google Scholar 

  31. Mundle K, Conrad S, Skutella T, Walliser U (2009) Mesenchymale Stammzellen aus Fettgewebe – Neue Anwendungsmöglichkeiten in der Orthopädie. 18. In: Tagung über Pferdekrankheiten im Rahmen der Equitana, pp. 120–121. Ref Type: Conference Proceeding

    Google Scholar 

  32. De Ugarte DA et al (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109

    Article  Google Scholar 

  33. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301

    Article  CAS  Google Scholar 

  34. Koga H, Muneta T, Nagase T, Nimura A, Ju YJ, Mochizuki T, Sekiya I (2008) Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res 333:207–215

    Article  Google Scholar 

  35. Vidal MA, Robinson SO, Lopez MJ, Paulsen DB, Borkhsenious O, Johnson JR, Moore RM, Gimble JM (2008) Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow. Vet Surg 37:713–724

    Article  Google Scholar 

  36. Passeri S et al (2009) Isolation and expansion of equine umbilical cord-derived matrix cells (EUCMCs). Cell Biol Int 33:100–105

    Article  CAS  Google Scholar 

  37. Mitchell KE et al (2003) Matrix cells from Wharton's jelly form neurons and glia. Stem Cells 21:50–60

    Article  CAS  Google Scholar 

  38. Weiss ML, Mitchell KE, Hix JE, Medicetty S, El-Zarkouny SZ, Grieger D, Troyer DL (2003) Transplantation of porcine umbilical cord matrix cells into the rat brain. Exp Neurol 182:288–299

    Article  CAS  Google Scholar 

  39. De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44:1928–1942

    Article  Google Scholar 

  40. Staszyk C, Mensing N, Hambruch N, Häger J-D, Pfarrer C, Gasse H (2009) Equine periodontal ligament: a source of mesenchymal stem cells for regenerative therapies in the horse? In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol. 4, No. 6 (Suppl.2), Nov 2009. Ref Type: Conference Proceeding

    Google Scholar 

  41. Warhonowicz M, Staszyk C, Rohn K, Gasse H (2006) The equine periodontium as a continuously remodeling system: morphometrical analysis of cell proliferation. Arch Oral Biol 51:1141–1149

    Article  CAS  Google Scholar 

  42. McCulloch CA (1985) Progenitor cell populations in the periodontal ligament of mice. Anat Rec 211:258–262

    Article  CAS  Google Scholar 

  43. Staszyk C, Gasse H (2007) Primary culture of fibroblasts and cementoblasts of the equine periodontium. Res Vet Sci 82:150–157

    Article  CAS  Google Scholar 

  44. Gould TR (1983) Ultrastructural characteristics of progenitor cell populations in the periodontal ligament. J Dent Res 62:873–876

    Article  CAS  Google Scholar 

  45. Gronthos S, Mrozik K, Shi S, Bartold PM (2006) Ovine periodontal ligament stem cells: isolation, characterization, and differentiation potential. Calcif Tissue Int 79:310–317

    Article  CAS  Google Scholar 

  46. Shirai K, Ishisaki A, Kaku T, Tamura M, Furuichi Y (2009) Multipotency of clonal cells derived from swine periodontal ligament and differential regulation by fibroblast growth factor and bone morphogenetic protein. J Periodontal Res 44:238–247

    Article  CAS  Google Scholar 

  47. Fujii S, Maeda H, Wada N, Tomokiyo A, Saito M, Akamine A (2008) Investigating a clonal human periodontal ligament progenitor/stem cell line in vitro and in vivo. J Cell Physiol 215:743–749

    Article  CAS  Google Scholar 

  48. Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, Miller FD (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778–784

    Article  CAS  Google Scholar 

  49. Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM (2002) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30:896–904

    Article  CAS  Google Scholar 

  50. Stewart A, Chen YJ, Caporali EH, Stewart A (2009) Isolation and chondrogenic differentiation of cells isolated from equine synovial fluid. In: World Conference on Regenerative Medicine. Regen Med Suppl Vol. 4, No. 6 (Suppl. 2), Nov 2009. Ref Type: Conference Proceeding

    Google Scholar 

  51. Durgam SS, Stewart AA, Caporali EH, Karlin WM, Stewart MC (2009) Effect of tendon-derived progenitor cells on a collagenase-induced model of tendinitis in horses. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol.4, No.6 (Suppl.2), Nov 2009. Ref Type: Conference Proceeding

    Google Scholar 

  52. da Silva ML, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213

    Article  CAS  Google Scholar 

  53. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101:3722–3729

    Article  CAS  Google Scholar 

  54. Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75:389–397

    Article  CAS  Google Scholar 

  55. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    Article  Google Scholar 

  56. Guest DJ, Smith MR, Allen WR (2008) Monitoring the fate of autologous and allogeneic mesenchymal progenitor cells injected into the superficial digital flexor tendon of horses: preliminary study. Equine Vet J 40:178–181

    Article  CAS  Google Scholar 

  57. Chong AK, Ang AD, Goh JC, Hui JH, Lim AY, Lee EH, Lim BH (2007) Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit Achilles tendon model. J Bone Joint Surg Am 89:74–81

    Article  Google Scholar 

  58. Brehm W (2006) Stammzellen, Stammzelltherapie – Begriffserklärung, Zusammenhänge und mögliche klinische Anwendungen. Pferdeheilkunde 22:259–267

    Google Scholar 

  59. Herthel DJ (2001) Enhanced suspensory ligament healing in 100 horses by stem cells and other bone marrow components. Proc Am Ass equine Practnrs 47:319–321

    Google Scholar 

  60. Richardson LE, Dudhia J, Clegg PD, Smith R (2007) Stem cells in veterinary medicine–attempts at regenerating equine tendon after injury. Trends Biotechnol 25:409–416

    Article  CAS  Google Scholar 

  61. Smith RK (2008) Mesenchymal stem cell therapy for equine tendinopathy. Disabil Rehabil 30:1752–1758

    Article  Google Scholar 

  62. Dowling BA, Dart AJ, Hodgson DR, Smith RK (2000) Superficial digital flexor tendonitis in the horse. Equine Vet J 32:369–378

    Article  CAS  Google Scholar 

  63. Taylor SE, Smith RK, Clegg PD (2007) Mesenchymal stem cell therapy in equine musculoskeletal disease: scientific fact or clinical fiction? Equine Vet J 39:172–180

    Article  CAS  Google Scholar 

  64. Nixon AJ, Dahlgren LA, Haupt JL, Yeager AE, Ward DL (2008) Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis. Am J Vet Res 69:928–937

    Article  CAS  Google Scholar 

  65. Leppänen M, Miettinen S, Mäkinen S, Wilpola P, Katiskalahti T, Heikkilä P, Tulamo R-M (2009) Management of equine tendon and ligament injuries with expanded autologous adipose-derived mesenchymal stem cells: a clinical study. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol.4, No.6 (Suppl. 2), Nov 2009. Ref Type: Conference Proceeding

    Google Scholar 

  66. Pacini S, Spinabella S, Trombi L, Fazzi R, Galimberti S, Dini F, Carlucci F, Petrini M (2007) Suspension of bone marrow-derived undifferentiated mesenchymal stromal cells for repair of superficial digital flexor tendon in race horses. Tissue Eng 13:2949–2955

    Article  Google Scholar 

  67. Schnabel LV, Lynch ME, van der Meulen MC, Yeager AE, Kornatowski MA, Nixon AJ (2009) Mesenchymal stem cells and insulin-like growth factor-I gene-enhanced mesenchymal stem cells improve structural aspects of healing in equine flexor digitorum superficialis tendons. J Orthop Res 27:1392–1398

    Article  CAS  Google Scholar 

  68. Smith RK, Webbon PM (2005) Harnessing the stem cell for the treatment of tendon injuries: heralding a new dawn? Br J Sports Med 39:582–584

    Article  CAS  Google Scholar 

  69. Crovace A, Lacitignola L, De SR, Rossi G, Francioso E (2007) Cell therapy for tendon repair in horses: an experimental study. Vet Res Commun 31(Suppl. 1):281–283

    Article  Google Scholar 

  70. Smith R, Young N, Dudhia J, Kasashima Y, Clegg PD, Goodship A (2009) Effectiveness of bone-marrow-derived mesenchymal progenitor cells for naturally occurring tendinopathy in the horse. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol. 4, No. 6 (Suppl. 2), Nov 2009. Ref Type: Conference Proceeding

    Google Scholar 

  71. Dyson SJ (2004) Medical management of superficial digital flexor tendonitis: a comparative study in 219 horses (1992–2000). Equine Vet J 36:415–419

    Article  CAS  Google Scholar 

  72. Brehm W (2008) Equine mesenchymal stem cells for the treatment of tendinous lesions in the horse – cellular, clinical and histologic features. In: International Bone-Tissue-Engineering Congress. bone-tec, 2008. Ref Type: Conference Proceeding

    Google Scholar 

  73. Mountford DR, Smith RK, Patterson-Kane JC (2006) Mesenchymal stem cell treatment of suspensory ligament branch desmitis; post mortem findings in a 10 year old Russian Warmblood gelding – a case report. Pferdeheilkunde 22:559–563

    Google Scholar 

  74. Crovace A, Lacitignola L, Francioso E, Rossi G (2008) Histology and immunohistochemistry study of ovine tendon grafted with cBMSCs and BMMNCs after collagenase-induced tendinitis. Vet Comp Orthop Traumatol 21:329–336

    CAS  Google Scholar 

  75. Taylor SE, Vaughan-Thomas A, Clements DN, Pinchbeck G, Macrory LC, Smith RK, Clegg PD (2009) Gene expression markers of tendon fibroblasts in normal and diseased tissue compared to monolayer and three dimensional culture systems. BMC Musculoskelet Disord 10:27

    Article  CAS  Google Scholar 

  76. Frisbie DD, Kawcak CE, McIlwraith CW (2006) Evaluation of Bone Marrow Derived Stem Cells and Adipose Derived Stromal Vascular Fraction for Treatment of Osteoarthitis Using an Equine Experimental Model. AAEP Proceedings 52:420–421

    Google Scholar 

  77. Ahern BJ, Parvizi J, Boston R, Schaer TP (2009) Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis Cartilage 17:705–713

    Article  CAS  Google Scholar 

  78. Koch TG, Betts DH (2007) Stem cell therapy for joint problems using the horse as a clinically relevant animal model. Expert Opin Biol Ther 7:1621–1626

    Article  CAS  Google Scholar 

  79. Brommer H, van Weeren PR, Brama PA (2003) New approach for quantitative assessment of articular cartilage degeneration in horses with osteoarthritis. Am J Vet Res 64:83–87

    Article  Google Scholar 

  80. Todhunter RJ (1992) Synovial joint anatomy, biology and pathobiology. In: Auer JA (ed) Equine surgery. Saunders, Philadelphia, pp 844–866

    Google Scholar 

  81. Alwan WH, Carter SD, Bennett D, Edwards GB (1991) Glycosaminoglycans in horses with osteoarthritis. Equine Vet J 23:44–47

    Article  CAS  Google Scholar 

  82. Chen FH, Tuan RS (2008) Mesenchymal stem cells in arthritic diseases. Arthritis Res Ther 10:223

    Article  CAS  Google Scholar 

  83. Goodrich LR, Nixon AJ (2006) Medical treatment of osteoarthritis in the horse – a review. Vet J 171:51–69

    Article  CAS  Google Scholar 

  84. Jouglin M, Robert C, Valette JP, Gavard F, Quintin-Colonna F, Denoix JM (2000) Metalloproteinases and tumor necrosis factor-alpha activities in synovial fluids of horses: correlation with articular cartilage alterations. Vet Res 31:507–515

    Article  CAS  Google Scholar 

  85. Trumble TN, Trotter GW, Oxford JR, McIlwraith CW, Cammarata S, Goodnight JL, Billinghurst RC, Frisbie DD (2001) Synovial fluid gelatinase concentrations and matrix metalloproteinase and cytokine expression in naturally occurring joint disease in horses. Am J Vet Res 62:1467–1477

    Article  CAS  Google Scholar 

  86. Jeffcott LB, Rossdale PD, Freestone J, Frank CJ, Towers-Clark PF (1982) An assessment of wastage in thoroughbred racing from conception to 4 years of age. Equine Vet J 14:185–198

    Article  CAS  Google Scholar 

  87. Pendleton A et al (2000) EULAR recommendations for the management of knee osteoarthritis: report of a task force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT). Ann Rheum Dis 59:936–944

    Article  CAS  Google Scholar 

  88. Felson DT et al (2000) Osteoarthritis: new insights. Part 2: treatment approaches. Ann Intern Med 133:726–737

    CAS  Google Scholar 

  89. Seddighi MR, Griffon DJ, Schaeffer DJ, Fadl-Alla BA, Eurell JA (2008) The effect of chondrocyte cryopreservation on cartilage engineering. Vet J 178:244–250

    Article  CAS  Google Scholar 

  90. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895

    Article  CAS  Google Scholar 

  91. Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M (2002) Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage 10:199–206

    Article  CAS  Google Scholar 

  92. Litzke LE, Wagner E, Baumgaertner W, Hetzel U, Josimovic-Alasevic O, Libera J (2004) Repair of extensive articular cartilage defects in horses by autologous chondrocyte transplantation. Ann Biomed Eng 32:57–69

    Article  CAS  Google Scholar 

  93. Murphy JM, Fink DJ, Hunziker EB, Barry FP (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48:3464–3474

    Article  Google Scholar 

  94. Hegewald AA, Ringe J, Bartel J, Kruger I, Notter M, Barnewitz D, Kaps C, Sittinger M (2004) Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells: a preliminary study. Tissue Cell 36:431–438

    Article  CAS  Google Scholar 

  95. Kuroda R, Usas A, Kubo S, Corsi K, Peng H, Rose T, Cummins J, Fu FH, Huard J (2006) Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum 54:433–442

    Article  CAS  Google Scholar 

  96. Jiang X, Cui PC, Chen WX, Zhang ZP (2003) In vivo chondrogenesis of induced human marrow mesenchymal stem cells in nude mice. Di Yi Jun Yi Da Xue Xue Bao 23:766–769, 773

    Google Scholar 

  97. Ferris D et al. (2009) Clinical evaluation of bone marrow-derived mesenchymal stem cells in naturally occurring joint disease. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol.4, No.6 (Suppl.2), Nov 2009. Ref Type: Conference Proceeding

    Google Scholar 

  98. Frisbie DD, Kisiday JD, Kawcak CE, Werpy NM, McIlwraith CW (2009) Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. J Orthop Res 27:1675–1680

    Article  Google Scholar 

  99. Oshima Y, Watanabe N, Matsuda K, Takai S, Kawata M, Kubo T (2005) Behavior of transplanted bone marrow-derived GFP mesenchymal cells in osteochondral defect as a simulation of autologous transplantation. J Histochem Cytochem 53:207–216

    Article  CAS  Google Scholar 

  100. Wilke MM, Nydam DV, Nixon AJ (2007) Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model. J Orthop Res 25:913–925

    Article  CAS  Google Scholar 

  101. Butnariu-Ephrat M, Robinson D, Mendes DG, Halperin N, Nevo Z (1996) Resurfacing of goat articular cartilage by chondrocytes derived from bone marrow. Clin Orthop Relat Res 330:234–243

    Article  Google Scholar 

  102. Frisbie DD (2005) Future directions in treatment of joint disease in horses. Vet Clin North Am Equine Pract 21:713–724, viii

    Article  Google Scholar 

  103. Chen YJ, Huang CH, Lee IC, Lee YT, Chen MH, Young TH (2008) Effects of cyclic mechanical stretching on the mRNA expression of tendon/ligament-related and osteoblast-specific genes in human mesenchymal stem cells. Connect Tissue Res 49:7–14

    Article  CAS  Google Scholar 

  104. Carter DR, Beaupre GS, Giori NJ, Helms JA (1998) Mechanobiology of skeletal regeneration. Clin Orthop Relat Res 355:S41–S55

    Article  Google Scholar 

  105. Kraus KH, Kirker-Head C (2006) Mesenchymal stem cells and bone regeneration. Vet Surg 35:232–242

    Article  Google Scholar 

  106. Bruder SP, Fox BS (1999) Tissue engineering of bone. Cell based strategies. Clin Orthop Relat Res 367:S68–S83

    Article  Google Scholar 

  107. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312

    Article  CAS  Google Scholar 

  108. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  Google Scholar 

  109. El Tamer MK, Reis RL (2009) Progenitor and stem cells for bone and cartilage regeneration. J Tissue Eng Regen Med 3:327–337

    Article  CAS  Google Scholar 

  110. Richards M, Huibregtse BA, Caplan AI, Goulet JA, Goldstein SA (1999) Marrow-derived progenitor cell injections enhance new bone formation during distraction. J Orthop Res 17:900–908

    Article  CAS  Google Scholar 

  111. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S (1998) The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 80:985–996

    CAS  Google Scholar 

  112. Kon E et al (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49:328–337

    Article  CAS  Google Scholar 

  113. Cui L, Liu B, Liu G, Zhang W, Cen L, Sun J, Yin S, Liu W, Cao Y (2007) Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials 28:5477–5486

    Article  CAS  Google Scholar 

  114. Yuan J, Cui L, Zhang WJ, Liu W, Cao Y (2007) Repair of canine mandibular bone defects with bone marrow stromal cells and porous beta-tricalcium phosphate. Biomaterials 28:1005–1013

    Article  CAS  Google Scholar 

  115. Weng Y, Wang M, Liu W, Hu X, Chai G, Yan Q, Zhu L, Cui L, Cao Y (2006) Repair of experimental alveolar bone defects by tissue-engineered bone. Tissue Eng 12:1503–1513

    Article  CAS  Google Scholar 

  116. Muschler GF, Matsukura Y, Nitto H, Boehm CA, Valdevit AD, Kambic HE, Davros WJ, Easley KA, Powell KA (2005) Selective retention of bone marrow-derived cells to enhance spinal fusion. Clin Orthop Relat Res 432:242–251

    Article  Google Scholar 

  117. Crovace A (2009) Experimental and clinical application of BMSCs for the treatment of large bone defects in animals. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol.4, No.6 (Suppl.2), Nov 2009. Ref Type: Conference Proceeding

    Google Scholar 

  118. Gardel L, Frias C, Afonso M, Serra L, Rada T, Gomes M, Reis R (2009) Autologous stem cell therapy for the treatment of bone fractures in cat: a case report. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol.4, No.6 (Suppl.2), Nov 2009. Ref Type: Conference Proceeding

    Google Scholar 

  119. McDuffee L (2009) Osteoprogenitors in bone repair. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol.4, No.6 (Suppl.2), Nov 2009. Ref Type: Conference Proceeding

    Google Scholar 

  120. Crovace A, Staffieri F, Rossi G, Francioso E (2009) Implantation of autologous bone marrow mononuclear cells as a minimal invasive therapy of Legg-Calvé-Perthes’ disease in the dog. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol.4, No.6 (Suppl.2), Nov 2009. Ref Type: Conference Proceeding

    Google Scholar 

  121. Webb AA, Jeffery ND, Olby NJ, Muir GD (2004) Behavioural analysis of the efficacy of treatments for injuries to the spinal cord in animals. Vet Rec 155:225–230

    Article  CAS  Google Scholar 

  122. Dasari VR, Spomar DG, Gondi CS, Sloffer CA, Saving KL, Gujrati M, Rao JS, Dinh DH (2007) Axonal remyelination by cord blood stem cells after spinal cord injury. J Neurotrauma 24:391–410

    Article  Google Scholar 

  123. Lim JH, Byeon YE, Ryu HH, Jeong YH, Lee YW, Kim WH, Kang KS, Kweon OK (2007) Transplantation of canine umbilical cord blood-derived mesenchymal stem cells in experimentally induced spinal cord injured dogs. J Vet Sci 8:275–282

    Article  Google Scholar 

  124. Jeffery ND, Lakatos A, Franklin RJ (2005) Autologous olfactory glial cell transplantation is reliable and safe in naturally occurring canine spinal cord injury. J Neurotrauma 22:1282–1293

    Article  Google Scholar 

  125. Adel N, Gabr H (2007) Stem cell therapy of acute spinal cord injury in dogs. Third World Congress of Renerative Medicine. Regen Med 2(5):523, Ref Type: Conference Proceeding

    Google Scholar 

  126. Deng YB, Liu XG, Liu ZG, Liu XL, Liu Y, Zhou GQ (2006) Implantation of BM mesenchymal stem cells into injured spinal cord elicits de novo neurogenesis and functional recovery: evidence from a study in rhesus monkeys. Cytotherapy 8:210–214

    Article  Google Scholar 

  127. Penning LC, Schotanus BA, Spee B, Rothuizen J (2009) Increased Wnt and Notch signaling in activated canine liver progenitor cells. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol.4, No.6 (Suppl.2), 23, Nov 2009. Ref Type: Conference Proceeding

    Google Scholar 

  128. Arends B, Spee B, Schotanus BA, Roskams T, van den Ingh TS, Penning LC, Rothuizen J (2009) In vitro differentiation of liver progenitor cells derived from healthy dog livers. Stem Cells Dev 18:351–358

    Article  CAS  Google Scholar 

  129. Arends B, Vankelecom H, Vander BS, Roskams T, Penning LC, Rothuizen J, Spee B (2009) The dog liver contains a “side population” of cells with hepatic progenitor-like characteristics. Stem Cells Dev 18:343–350

    Article  CAS  Google Scholar 

  130. Kallis YN, Alison MR, Forbes SJ (2007) Bone marrow stem cells and liver disease. Gut 56:716–724

    Article  CAS  Google Scholar 

  131. Russo FP, Alison MR, Bigger BW, Amofah E, Florou A, Amin F, Bou-Gharios G, Jeffery R, Iredale JP, Forbes SJ (2006) The bone marrow functionally contributes to liver fibrosis. Gastroenterology 130:1807–1821

    Article  Google Scholar 

  132. Guest DJ, Allen WR (2007) Expression of cell-surface antigens and embryonic stem cell pluripotency genes in equine blastocysts. Stem Cells Dev 16:789–796

    Article  CAS  Google Scholar 

  133. Fortier LA (2009) Equine embryonic stem and induced pluripotent stem cells. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol. 4, No. 6 (Suppl. 2), Nov 2009. Ref Type: Conference Proceeding

    Google Scholar 

  134. Guest DJ, Li X, Allen WR (2009) Establishing an equine embryonic stem cell line. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol. 4, No. 6 (Suppl. 2), Nov 2009. Ref Type: Conference Proceeding

    Google Scholar 

  135. Donadeu X, Breton A, Diaz C (2009) Transgene-induced reprogramming of equine fibroblasts. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol. 4, No. 6 (Suppl. 2), Nov 2009. Ref Type: Conference Proceeding

    Google Scholar 

  136. Giorgetti A et al (2009) Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell 5:353–357

    Article  CAS  Google Scholar 

  137. Ende N, Chen R, Ende-Harris D (2001) Human umbilical cord blood cells ameliorate Alzheimer’s disease in transgenic mice. J Med 32:241–247

    CAS  Google Scholar 

  138. Jacobs VR, Schneider KTM (2009) Steigende klinische Anwendung von Stammzellen aus Nabelschnurblut und Konsequenzen für den Umgang mit diesem Biomaterial. Zeitschrift für Geburtshilfe und Neonatologie 213:49–55

    Article  CAS  Google Scholar 

  139. Chen R, Ende N (2000) The potential for the use of mononuclear cells from human umbilical cord blood in the treatment of amyotrophic lateral sclerosis in SOD1 mice. J Med 31:21–30

    CAS  Google Scholar 

  140. Cao FJ, Feng SQ (2009) Human umbilical cord mesenchymal stem cells and the treatment of spinal cord injury. Chin Med J (Engl) 122:225–231

    Google Scholar 

  141. Lee SH et al (2009) Effects of human neural stem cell transplantation in canine spinal cord hemisection. Neurol Res 31(9):996–1002

    Article  Google Scholar 

  142. Yang CC, Shih YH, Ko MH, Hsu SY, Cheng H, Fu YS (2008) Transplantation of human umbilical mesenchymal stem cells from Wharton's jelly after complete transection of the rat spinal cord. PLoS One 3:e3336

    Article  CAS  Google Scholar 

  143. Ma N, Stamm C, Kaminski A, Li W, Kleine HD, Muller-Hilke B, Zhang L, Ladilov Y, Egger D, Steinhoff G (2005) Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc Res 66:45–54

    Article  CAS  Google Scholar 

  144. Shake JG, Gruber PJ, Baumgartner WA, Senechal G, Meyers J, Redmond JM, Pittenger MF, Martin BJ (2002) Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg 73:1919–1925

    Article  Google Scholar 

  145. www.evostem.com, http://www.evostem.com/owners.php?lang=en, 01.12.2009

  146. Fritz J, Gaissmaier B, Weise K (2006) Biologische Knorpelrekonstruktion im Kniegelenk WHO-Definition der Arthrose Der Unfallchirurg 7:563–574

    Google Scholar 

  147. Black LL, Gaynor J, Gahring D, Adams C, Aron D, Harman S, Gingerich DA, Harman R (2007) Effect of adipose-derived mesenchymal stem and regenerative cells on lameness in dogs with chronic osteoarthritis of the coxofemoral joints: a randomized, double-blinded, multicenter, controlled trial. Vet Ther 8(4):272–284

    Google Scholar 

  148. Black LL, Gaynor J, Adams C, Dhupa S, Sams AE, Taylor R, Harman S, Gingerich DA, Harman R (2008) Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Vet Ther 9(3):192–200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ribitsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ribitsch, I. et al. (2010). Basic Science and Clinical Application of Stem Cells in Veterinary Medicine. In: Kasper, C., van Griensven, M., Pörtner, R. (eds) Bioreactor Systems for Tissue Engineering II. Advances in Biochemical Engineering / Biotechnology, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2010_66

Download citation

Publish with us

Policies and ethics