Abstract
Stem cells play an important role in veterinary medicine in different ways. Currently several stem cell therapies for animal patients are being developed and some, like the treatment of equine tendinopathies with mesenchymal stem cells (MSCs), have already successfully entered the market. Moreover, animal models are widely used to study the properties and potential of stem cells for possible future applications in human medicine. Therefore, in the young and emerging field of stem cell research, human and veterinary medicine are intrinsically tied to one another. Many of the pioneering innovations in the field of stem cell research are achieved by cooperating teams of human and veterinary medical scientists.
Embryonic stem (ES) cell research, for instance, is mainly performed in animals. Key feature of ES cells is their potential to contribute to any tissue type of the body (Reed and Johnson, J Cell Physiol 215:329–336, 2008). ES cells are capable of self-renewal and thus have the inherent potential for exceptionally prolonged culture (up to 1–2 years). So far, ES cells have been recovered and maintained from non-human primate, mouse (Fortier, Vet Surg 34:415–423, 2005) and horse blastocysts (Guest and Allen, Stem Cells Dev 16:789–796, 2007). In addition, bovine ES cells have been grown in primary culture and there are several reports of ES cells derived from mink, rat, rabbit, chicken and pigs (Fortier, Vet Surg 34:415–423, 2005). However, clinical applications of ES cells are not possible yet, due to their in vivo teratogenic degeneration. The potential to form a teratoma consisting of tissues from all three germ lines even serves as a definitive in vivo test for ES cells.
Stem cells obtained from any postnatal organism are defined as adult stem cells. Adult haematopoietic and MSCs, which can easily be recovered from extra embryonic or adult tissues, possess a more limited plasticity than their embryonic counterparts (Reed and Johnson, J Cell Physiol 215:329–336, 2008). It is believed that these stem cells serve as cell source to maintain tissue and organ mass during normal cell turnover in adult individuals. Therefore, the focus of attention in veterinary science is currently drawn to adult stem cells and their potential in regenerative medicine. Also experience gained from the treatment of animal patients provides valuable information for human medicine and serves as precursor to future stem cell use in human medicine.
Compared to human medicine, haematopoietic stem cells only play a minor role in veterinary medicine because medical conditions requiring myeloablative chemotherapy followed by haematopoietic stem cell induced recovery of the immune system are relatively rare and usually not being treated for monetary as well as animal welfare reasons.
In contrast, regenerative medicine utilising MSCs for the treatment of acute injuries as well as chronic disorders is gradually turning into clinical routine. Therefore, MSCs from either extra embryonic or adult tissues are in the focus of attention in veterinary medicine and research. Hence the purpose of this chapter is to offer an overview on basic science and clinical application of MSCs in veterinary medicine.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agung M, Ochi M, Yanada S, Adachi N, Izuta Y, Yamasaki T, Toda K (2006) Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration. Knee Surg Sports Traumatol Arthrosc 14:1307–1314
Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36:568–584
Fortier LA, Nixon AJ, Williams J, Cable CS (1998) Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells. Am J Vet Res 59:1182–1187
Worster AA, Nixon AJ, Brower-Toland BD, Williams J (2000) Effect of transforming growth factor beta1 on chondrogenic differentiation of cultured equine mesenchymal stem cells. Am J Vet Res 61:1003–1010
Fortier LA (2005) Stem cells: classifications, controversies, and clinical applications. Vet Surg 34:415–423
Dahlgren LA (2009) Fat-derived mesenchymal stem cells for equine tendon repair. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol.4, No.6 (Suppl. 2), Nov 2009. Ref Type: Conference Proceeding
Prockop DJ, Gregory CA, Spees JL (2003) One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues. Proc Natl Acad Sci USA 100(Suppl 1):11917–11923
Ryan JM, Barry FP, Murphy JM, Mahon BP (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond) 2:8
Csaki C, Matis U, Mobasheri A, Ye H, Shakibaei M (2007) Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells: a biochemical, morphological and ultrastructural study. Histochem Cell Biol 128:507–520
Hoynowski SM, Fry MM, Gardner BM, Leming MT, Tucker JR, Black L, Sand T, Mitchell KE (2007) Characterization and differentiation of equine umbilical cord-derived matrix cells. Biochem Biophys Res Commun 362:347–353
Koch TG, Berg LC, Betts DH (2008) Concepts for the clinical use of stem cells in equine medicine. Can Vet J 49:1009–1017
Fan J, Varshney RR, Ren L, Cai D, Wang DA (2009) Synovium-derived mesenchymal stem cells: a new cell source for musculoskeletal regeneration. Tissue Eng Part B Rev 15:75–86
Koch TG, Heerkens T, Thomsen PD, Betts DH (2007) Isolation of mesenchymal stem cells from equine umbilical cord blood. BMC Biotechnol 7:26
Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I (2007) Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res 327:449–462
Koerner J, Nesic D, Romero JD, Brehm W, Mainil-Varlet P, Grogan SP (2006) Equine peripheral blood-derived progenitors in comparison to bone marrow-derived mesenchymal stem cells. Stem Cells 24:1613–1619
Vidal MA, Kilroy GE, Johnson JR, Lopez MJ, Moore RM, Gimble JM (2006) Cell growth characteristics and differentiation frequency of adherent equine bone marrow-derived mesenchymal stromal cells: adipogenic and osteogenic capacity. Vet Surg 35:601–610
Vidal MA, Kilroy GE, Lopez MJ, Johnson JR, Moore RM, Gimble JM (2007) Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Vet Surg 36:613–622
Giovannini S, Brehm W, Mainil-Varlet P, Nesic D (2008) Multilineage differentiation potential of equine blood-derived fibroblast-like cells. Differentiation 76:118–129
Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6:125–134
Martin DR, Cox NR, Hathcock TL, Niemeyer GP, Baker HJ (2002) Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp Hematol 30:879–886
Ringe J, Kaps C, Schmitt B, Buscher K, Bartel J, Smolian H, Schultz O, Burmester GR, Haupl T, Sittinger M (2002) Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages. Cell Tissue Res 307:321–327
Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T (2005) Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res 319:243–253
Kulterer B, Friedl G, Jandrositz A, Sanchez-Cabo F, Prokesch A, Paar C, Scheideler M, Windhager R, Preisegger KH, Trajanoski Z (2007) Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation. BMC Genomics 8:70
Smith RK, Korda M, Blunn GW, Goodship AE (2003) Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment. Equine Vet J 35:99–102
Huss R, Lange C, Weissinger EM, Kolb HJ, Thalmeier K (2000) Evidence of peripheral blood-derived, plastic-adherent CD34(-low) hematopoietic stem cell clones with mesenchymal stem cell characteristics. Stem Cells 18:252–260
Reed SA, Johnson SE (2008) Equine umbilical cord blood contains a population of stem cells that express Oct4 and differentiate into mesodermal and endodermal cell types. J Cell Physiol 215:329–336
Sakaguchi Y, Sekiya I, Yagishita K, Muneta T (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52:2521–2529
Reich CM, Raabe O, Wenisch S, Bridger PS, Kramer M, Arnhold S (2009) Comparison of canine adipose and bone marrow-derived mesenchymal stem cells. In: World Conference on Regenerative Medicine. Regen Med Suppl,Vol.4, No.6 (Suppl. 2), Nov 2009. Ref Type: Conference Proceeding
Colleoni S, Bottani E, Tessaro I, Mari G, Merlo B, Romagnoli N, Spadari A, Galli C, Lazzari G (2009) Isolation, growth and differentiation of equine mesenchymal stem cells: effect of donor, source, amount of tissue and supplementation with basic fibroblast growth factor. Vet Res Commun 33:811–821
Conrad S, Nufer F, Mundle K, Ihring J, Seid K, Walliser U, Skutella T (2009) Mesenchymale Stammzellen aus dem Fettgewebe des Pferdes – Isolation, Expansion und Charakterisierung. 18. In: Tagung über Pferdekrankheiten im Rahmen der Equitana. 119. 2009, 20-3-2009. Ref Type: Conference Proceeding
Mundle K, Conrad S, Skutella T, Walliser U (2009) Mesenchymale Stammzellen aus Fettgewebe – Neue Anwendungsmöglichkeiten in der Orthopädie. 18. In: Tagung über Pferdekrankheiten im Rahmen der Equitana, pp. 120–121. Ref Type: Conference Proceeding
De Ugarte DA et al (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174:101–109
Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301
Koga H, Muneta T, Nagase T, Nimura A, Ju YJ, Mochizuki T, Sekiya I (2008) Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res 333:207–215
Vidal MA, Robinson SO, Lopez MJ, Paulsen DB, Borkhsenious O, Johnson JR, Moore RM, Gimble JM (2008) Comparison of chondrogenic potential in equine mesenchymal stromal cells derived from adipose tissue and bone marrow. Vet Surg 37:713–724
Passeri S et al (2009) Isolation and expansion of equine umbilical cord-derived matrix cells (EUCMCs). Cell Biol Int 33:100–105
Mitchell KE et al (2003) Matrix cells from Wharton's jelly form neurons and glia. Stem Cells 21:50–60
Weiss ML, Mitchell KE, Hix JE, Medicetty S, El-Zarkouny SZ, Grieger D, Troyer DL (2003) Transplantation of porcine umbilical cord matrix cells into the rat brain. Exp Neurol 182:288–299
De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44:1928–1942
Staszyk C, Mensing N, Hambruch N, Häger J-D, Pfarrer C, Gasse H (2009) Equine periodontal ligament: a source of mesenchymal stem cells for regenerative therapies in the horse? In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol. 4, No. 6 (Suppl.2), Nov 2009. Ref Type: Conference Proceeding
Warhonowicz M, Staszyk C, Rohn K, Gasse H (2006) The equine periodontium as a continuously remodeling system: morphometrical analysis of cell proliferation. Arch Oral Biol 51:1141–1149
McCulloch CA (1985) Progenitor cell populations in the periodontal ligament of mice. Anat Rec 211:258–262
Staszyk C, Gasse H (2007) Primary culture of fibroblasts and cementoblasts of the equine periodontium. Res Vet Sci 82:150–157
Gould TR (1983) Ultrastructural characteristics of progenitor cell populations in the periodontal ligament. J Dent Res 62:873–876
Gronthos S, Mrozik K, Shi S, Bartold PM (2006) Ovine periodontal ligament stem cells: isolation, characterization, and differentiation potential. Calcif Tissue Int 79:310–317
Shirai K, Ishisaki A, Kaku T, Tamura M, Furuichi Y (2009) Multipotency of clonal cells derived from swine periodontal ligament and differential regulation by fibroblast growth factor and bone morphogenetic protein. J Periodontal Res 44:238–247
Fujii S, Maeda H, Wada N, Tomokiyo A, Saito M, Akamine A (2008) Investigating a clonal human periodontal ligament progenitor/stem cell line in vitro and in vivo. J Cell Physiol 215:743–749
Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, Miller FD (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778–784
Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM (2002) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30:896–904
Stewart A, Chen YJ, Caporali EH, Stewart A (2009) Isolation and chondrogenic differentiation of cells isolated from equine synovial fluid. In: World Conference on Regenerative Medicine. Regen Med Suppl Vol. 4, No. 6 (Suppl. 2), Nov 2009. Ref Type: Conference Proceeding
Durgam SS, Stewart AA, Caporali EH, Karlin WM, Stewart MC (2009) Effect of tendon-derived progenitor cells on a collagenase-induced model of tendinitis in horses. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol.4, No.6 (Suppl.2), Nov 2009. Ref Type: Conference Proceeding
da Silva ML, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204–2213
Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, Dazzi F (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101:3722–3729
Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75:389–397
Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843
Guest DJ, Smith MR, Allen WR (2008) Monitoring the fate of autologous and allogeneic mesenchymal progenitor cells injected into the superficial digital flexor tendon of horses: preliminary study. Equine Vet J 40:178–181
Chong AK, Ang AD, Goh JC, Hui JH, Lim AY, Lee EH, Lim BH (2007) Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit Achilles tendon model. J Bone Joint Surg Am 89:74–81
Brehm W (2006) Stammzellen, Stammzelltherapie – Begriffserklärung, Zusammenhänge und mögliche klinische Anwendungen. Pferdeheilkunde 22:259–267
Herthel DJ (2001) Enhanced suspensory ligament healing in 100 horses by stem cells and other bone marrow components. Proc Am Ass equine Practnrs 47:319–321
Richardson LE, Dudhia J, Clegg PD, Smith R (2007) Stem cells in veterinary medicine–attempts at regenerating equine tendon after injury. Trends Biotechnol 25:409–416
Smith RK (2008) Mesenchymal stem cell therapy for equine tendinopathy. Disabil Rehabil 30:1752–1758
Dowling BA, Dart AJ, Hodgson DR, Smith RK (2000) Superficial digital flexor tendonitis in the horse. Equine Vet J 32:369–378
Taylor SE, Smith RK, Clegg PD (2007) Mesenchymal stem cell therapy in equine musculoskeletal disease: scientific fact or clinical fiction? Equine Vet J 39:172–180
Nixon AJ, Dahlgren LA, Haupt JL, Yeager AE, Ward DL (2008) Effect of adipose-derived nucleated cell fractions on tendon repair in horses with collagenase-induced tendinitis. Am J Vet Res 69:928–937
Leppänen M, Miettinen S, Mäkinen S, Wilpola P, Katiskalahti T, Heikkilä P, Tulamo R-M (2009) Management of equine tendon and ligament injuries with expanded autologous adipose-derived mesenchymal stem cells: a clinical study. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol.4, No.6 (Suppl. 2), Nov 2009. Ref Type: Conference Proceeding
Pacini S, Spinabella S, Trombi L, Fazzi R, Galimberti S, Dini F, Carlucci F, Petrini M (2007) Suspension of bone marrow-derived undifferentiated mesenchymal stromal cells for repair of superficial digital flexor tendon in race horses. Tissue Eng 13:2949–2955
Schnabel LV, Lynch ME, van der Meulen MC, Yeager AE, Kornatowski MA, Nixon AJ (2009) Mesenchymal stem cells and insulin-like growth factor-I gene-enhanced mesenchymal stem cells improve structural aspects of healing in equine flexor digitorum superficialis tendons. J Orthop Res 27:1392–1398
Smith RK, Webbon PM (2005) Harnessing the stem cell for the treatment of tendon injuries: heralding a new dawn? Br J Sports Med 39:582–584
Crovace A, Lacitignola L, De SR, Rossi G, Francioso E (2007) Cell therapy for tendon repair in horses: an experimental study. Vet Res Commun 31(Suppl. 1):281–283
Smith R, Young N, Dudhia J, Kasashima Y, Clegg PD, Goodship A (2009) Effectiveness of bone-marrow-derived mesenchymal progenitor cells for naturally occurring tendinopathy in the horse. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol. 4, No. 6 (Suppl. 2), Nov 2009. Ref Type: Conference Proceeding
Dyson SJ (2004) Medical management of superficial digital flexor tendonitis: a comparative study in 219 horses (1992–2000). Equine Vet J 36:415–419
Brehm W (2008) Equine mesenchymal stem cells for the treatment of tendinous lesions in the horse – cellular, clinical and histologic features. In: International Bone-Tissue-Engineering Congress. bone-tec, 2008. Ref Type: Conference Proceeding
Mountford DR, Smith RK, Patterson-Kane JC (2006) Mesenchymal stem cell treatment of suspensory ligament branch desmitis; post mortem findings in a 10 year old Russian Warmblood gelding – a case report. Pferdeheilkunde 22:559–563
Crovace A, Lacitignola L, Francioso E, Rossi G (2008) Histology and immunohistochemistry study of ovine tendon grafted with cBMSCs and BMMNCs after collagenase-induced tendinitis. Vet Comp Orthop Traumatol 21:329–336
Taylor SE, Vaughan-Thomas A, Clements DN, Pinchbeck G, Macrory LC, Smith RK, Clegg PD (2009) Gene expression markers of tendon fibroblasts in normal and diseased tissue compared to monolayer and three dimensional culture systems. BMC Musculoskelet Disord 10:27
Frisbie DD, Kawcak CE, McIlwraith CW (2006) Evaluation of Bone Marrow Derived Stem Cells and Adipose Derived Stromal Vascular Fraction for Treatment of Osteoarthitis Using an Equine Experimental Model. AAEP Proceedings 52:420–421
Ahern BJ, Parvizi J, Boston R, Schaer TP (2009) Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis Cartilage 17:705–713
Koch TG, Betts DH (2007) Stem cell therapy for joint problems using the horse as a clinically relevant animal model. Expert Opin Biol Ther 7:1621–1626
Brommer H, van Weeren PR, Brama PA (2003) New approach for quantitative assessment of articular cartilage degeneration in horses with osteoarthritis. Am J Vet Res 64:83–87
Todhunter RJ (1992) Synovial joint anatomy, biology and pathobiology. In: Auer JA (ed) Equine surgery. Saunders, Philadelphia, pp 844–866
Alwan WH, Carter SD, Bennett D, Edwards GB (1991) Glycosaminoglycans in horses with osteoarthritis. Equine Vet J 23:44–47
Chen FH, Tuan RS (2008) Mesenchymal stem cells in arthritic diseases. Arthritis Res Ther 10:223
Goodrich LR, Nixon AJ (2006) Medical treatment of osteoarthritis in the horse – a review. Vet J 171:51–69
Jouglin M, Robert C, Valette JP, Gavard F, Quintin-Colonna F, Denoix JM (2000) Metalloproteinases and tumor necrosis factor-alpha activities in synovial fluids of horses: correlation with articular cartilage alterations. Vet Res 31:507–515
Trumble TN, Trotter GW, Oxford JR, McIlwraith CW, Cammarata S, Goodnight JL, Billinghurst RC, Frisbie DD (2001) Synovial fluid gelatinase concentrations and matrix metalloproteinase and cytokine expression in naturally occurring joint disease in horses. Am J Vet Res 62:1467–1477
Jeffcott LB, Rossdale PD, Freestone J, Frank CJ, Towers-Clark PF (1982) An assessment of wastage in thoroughbred racing from conception to 4 years of age. Equine Vet J 14:185–198
Pendleton A et al (2000) EULAR recommendations for the management of knee osteoarthritis: report of a task force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT). Ann Rheum Dis 59:936–944
Felson DT et al (2000) Osteoarthritis: new insights. Part 2: treatment approaches. Ann Intern Med 133:726–737
Seddighi MR, Griffon DJ, Schaeffer DJ, Fadl-Alla BA, Eurell JA (2008) The effect of chondrocyte cryopreservation on cartilage engineering. Vet J 178:244–250
Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895
Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M (2002) Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage 10:199–206
Litzke LE, Wagner E, Baumgaertner W, Hetzel U, Josimovic-Alasevic O, Libera J (2004) Repair of extensive articular cartilage defects in horses by autologous chondrocyte transplantation. Ann Biomed Eng 32:57–69
Murphy JM, Fink DJ, Hunziker EB, Barry FP (2003) Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum 48:3464–3474
Hegewald AA, Ringe J, Bartel J, Kruger I, Notter M, Barnewitz D, Kaps C, Sittinger M (2004) Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells: a preliminary study. Tissue Cell 36:431–438
Kuroda R, Usas A, Kubo S, Corsi K, Peng H, Rose T, Cummins J, Fu FH, Huard J (2006) Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum 54:433–442
Jiang X, Cui PC, Chen WX, Zhang ZP (2003) In vivo chondrogenesis of induced human marrow mesenchymal stem cells in nude mice. Di Yi Jun Yi Da Xue Xue Bao 23:766–769, 773
Ferris D et al. (2009) Clinical evaluation of bone marrow-derived mesenchymal stem cells in naturally occurring joint disease. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol.4, No.6 (Suppl.2), Nov 2009. Ref Type: Conference Proceeding
Frisbie DD, Kisiday JD, Kawcak CE, Werpy NM, McIlwraith CW (2009) Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. J Orthop Res 27:1675–1680
Oshima Y, Watanabe N, Matsuda K, Takai S, Kawata M, Kubo T (2005) Behavior of transplanted bone marrow-derived GFP mesenchymal cells in osteochondral defect as a simulation of autologous transplantation. J Histochem Cytochem 53:207–216
Wilke MM, Nydam DV, Nixon AJ (2007) Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model. J Orthop Res 25:913–925
Butnariu-Ephrat M, Robinson D, Mendes DG, Halperin N, Nevo Z (1996) Resurfacing of goat articular cartilage by chondrocytes derived from bone marrow. Clin Orthop Relat Res 330:234–243
Frisbie DD (2005) Future directions in treatment of joint disease in horses. Vet Clin North Am Equine Pract 21:713–724, viii
Chen YJ, Huang CH, Lee IC, Lee YT, Chen MH, Young TH (2008) Effects of cyclic mechanical stretching on the mRNA expression of tendon/ligament-related and osteoblast-specific genes in human mesenchymal stem cells. Connect Tissue Res 49:7–14
Carter DR, Beaupre GS, Giori NJ, Helms JA (1998) Mechanobiology of skeletal regeneration. Clin Orthop Relat Res 355:S41–S55
Kraus KH, Kirker-Head C (2006) Mesenchymal stem cells and bone regeneration. Vet Surg 35:232–242
Bruder SP, Fox BS (1999) Tissue engineering of bone. Cell based strategies. Clin Orthop Relat Res 367:S68–S83
Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147
El Tamer MK, Reis RL (2009) Progenitor and stem cells for bone and cartilage regeneration. J Tissue Eng Regen Med 3:327–337
Richards M, Huibregtse BA, Caplan AI, Goulet JA, Goldstein SA (1999) Marrow-derived progenitor cell injections enhance new bone formation during distraction. J Orthop Res 17:900–908
Bruder SP, Kraus KH, Goldberg VM, Kadiyala S (1998) The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 80:985–996
Kon E et al (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49:328–337
Cui L, Liu B, Liu G, Zhang W, Cen L, Sun J, Yin S, Liu W, Cao Y (2007) Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials 28:5477–5486
Yuan J, Cui L, Zhang WJ, Liu W, Cao Y (2007) Repair of canine mandibular bone defects with bone marrow stromal cells and porous beta-tricalcium phosphate. Biomaterials 28:1005–1013
Weng Y, Wang M, Liu W, Hu X, Chai G, Yan Q, Zhu L, Cui L, Cao Y (2006) Repair of experimental alveolar bone defects by tissue-engineered bone. Tissue Eng 12:1503–1513
Muschler GF, Matsukura Y, Nitto H, Boehm CA, Valdevit AD, Kambic HE, Davros WJ, Easley KA, Powell KA (2005) Selective retention of bone marrow-derived cells to enhance spinal fusion. Clin Orthop Relat Res 432:242–251
Crovace A (2009) Experimental and clinical application of BMSCs for the treatment of large bone defects in animals. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol.4, No.6 (Suppl.2), Nov 2009. Ref Type: Conference Proceeding
Gardel L, Frias C, Afonso M, Serra L, Rada T, Gomes M, Reis R (2009) Autologous stem cell therapy for the treatment of bone fractures in cat: a case report. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol.4, No.6 (Suppl.2), Nov 2009. Ref Type: Conference Proceeding
McDuffee L (2009) Osteoprogenitors in bone repair. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol.4, No.6 (Suppl.2), Nov 2009. Ref Type: Conference Proceeding
Crovace A, Staffieri F, Rossi G, Francioso E (2009) Implantation of autologous bone marrow mononuclear cells as a minimal invasive therapy of Legg-Calvé-Perthes’ disease in the dog. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol.4, No.6 (Suppl.2), Nov 2009. Ref Type: Conference Proceeding
Webb AA, Jeffery ND, Olby NJ, Muir GD (2004) Behavioural analysis of the efficacy of treatments for injuries to the spinal cord in animals. Vet Rec 155:225–230
Dasari VR, Spomar DG, Gondi CS, Sloffer CA, Saving KL, Gujrati M, Rao JS, Dinh DH (2007) Axonal remyelination by cord blood stem cells after spinal cord injury. J Neurotrauma 24:391–410
Lim JH, Byeon YE, Ryu HH, Jeong YH, Lee YW, Kim WH, Kang KS, Kweon OK (2007) Transplantation of canine umbilical cord blood-derived mesenchymal stem cells in experimentally induced spinal cord injured dogs. J Vet Sci 8:275–282
Jeffery ND, Lakatos A, Franklin RJ (2005) Autologous olfactory glial cell transplantation is reliable and safe in naturally occurring canine spinal cord injury. J Neurotrauma 22:1282–1293
Adel N, Gabr H (2007) Stem cell therapy of acute spinal cord injury in dogs. Third World Congress of Renerative Medicine. Regen Med 2(5):523, Ref Type: Conference Proceeding
Deng YB, Liu XG, Liu ZG, Liu XL, Liu Y, Zhou GQ (2006) Implantation of BM mesenchymal stem cells into injured spinal cord elicits de novo neurogenesis and functional recovery: evidence from a study in rhesus monkeys. Cytotherapy 8:210–214
Penning LC, Schotanus BA, Spee B, Rothuizen J (2009) Increased Wnt and Notch signaling in activated canine liver progenitor cells. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol.4, No.6 (Suppl.2), 23, Nov 2009. Ref Type: Conference Proceeding
Arends B, Spee B, Schotanus BA, Roskams T, van den Ingh TS, Penning LC, Rothuizen J (2009) In vitro differentiation of liver progenitor cells derived from healthy dog livers. Stem Cells Dev 18:351–358
Arends B, Vankelecom H, Vander BS, Roskams T, Penning LC, Rothuizen J, Spee B (2009) The dog liver contains a “side population” of cells with hepatic progenitor-like characteristics. Stem Cells Dev 18:343–350
Kallis YN, Alison MR, Forbes SJ (2007) Bone marrow stem cells and liver disease. Gut 56:716–724
Russo FP, Alison MR, Bigger BW, Amofah E, Florou A, Amin F, Bou-Gharios G, Jeffery R, Iredale JP, Forbes SJ (2006) The bone marrow functionally contributes to liver fibrosis. Gastroenterology 130:1807–1821
Guest DJ, Allen WR (2007) Expression of cell-surface antigens and embryonic stem cell pluripotency genes in equine blastocysts. Stem Cells Dev 16:789–796
Fortier LA (2009) Equine embryonic stem and induced pluripotent stem cells. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol. 4, No. 6 (Suppl. 2), Nov 2009. Ref Type: Conference Proceeding
Guest DJ, Li X, Allen WR (2009) Establishing an equine embryonic stem cell line. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol. 4, No. 6 (Suppl. 2), Nov 2009. Ref Type: Conference Proceeding
Donadeu X, Breton A, Diaz C (2009) Transgene-induced reprogramming of equine fibroblasts. In: World Conference on Regenerative Medicine. Regen Med Suppl, Vol. 4, No. 6 (Suppl. 2), Nov 2009. Ref Type: Conference Proceeding
Giorgetti A et al (2009) Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell 5:353–357
Ende N, Chen R, Ende-Harris D (2001) Human umbilical cord blood cells ameliorate Alzheimer’s disease in transgenic mice. J Med 32:241–247
Jacobs VR, Schneider KTM (2009) Steigende klinische Anwendung von Stammzellen aus Nabelschnurblut und Konsequenzen für den Umgang mit diesem Biomaterial. Zeitschrift für Geburtshilfe und Neonatologie 213:49–55
Chen R, Ende N (2000) The potential for the use of mononuclear cells from human umbilical cord blood in the treatment of amyotrophic lateral sclerosis in SOD1 mice. J Med 31:21–30
Cao FJ, Feng SQ (2009) Human umbilical cord mesenchymal stem cells and the treatment of spinal cord injury. Chin Med J (Engl) 122:225–231
Lee SH et al (2009) Effects of human neural stem cell transplantation in canine spinal cord hemisection. Neurol Res 31(9):996–1002
Yang CC, Shih YH, Ko MH, Hsu SY, Cheng H, Fu YS (2008) Transplantation of human umbilical mesenchymal stem cells from Wharton's jelly after complete transection of the rat spinal cord. PLoS One 3:e3336
Ma N, Stamm C, Kaminski A, Li W, Kleine HD, Muller-Hilke B, Zhang L, Ladilov Y, Egger D, Steinhoff G (2005) Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice. Cardiovasc Res 66:45–54
Shake JG, Gruber PJ, Baumgartner WA, Senechal G, Meyers J, Redmond JM, Pittenger MF, Martin BJ (2002) Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg 73:1919–1925
www.evostem.com, http://www.evostem.com/owners.php?lang=en, 01.12.2009
Fritz J, Gaissmaier B, Weise K (2006) Biologische Knorpelrekonstruktion im Kniegelenk WHO-Definition der Arthrose Der Unfallchirurg 7:563–574
Black LL, Gaynor J, Gahring D, Adams C, Aron D, Harman S, Gingerich DA, Harman R (2007) Effect of adipose-derived mesenchymal stem and regenerative cells on lameness in dogs with chronic osteoarthritis of the coxofemoral joints: a randomized, double-blinded, multicenter, controlled trial. Vet Ther 8(4):272–284
Black LL, Gaynor J, Adams C, Dhupa S, Sams AE, Taylor R, Harman S, Gingerich DA, Harman R (2008) Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Vet Ther 9(3):192–200
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Ribitsch, I. et al. (2010). Basic Science and Clinical Application of Stem Cells in Veterinary Medicine. In: Kasper, C., van Griensven, M., Pörtner, R. (eds) Bioreactor Systems for Tissue Engineering II. Advances in Biochemical Engineering / Biotechnology, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2010_66
Download citation
DOI: https://doi.org/10.1007/10_2010_66
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-16050-9
Online ISBN: 978-3-642-16051-6
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)