Skip to main content

Cell-Based Genotoxicity Testing

Genetically Modified and Genetically Engineered Bacteria in Environmental Genotoxicology

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 118))

Abstract

Genotoxicity test systems that are based on bacteria display an important role in the detection and assessment of DNA damaging chemicals. They belong to the basic line of test systems due to their easy realization, rapidness, broad applicability, high sensitivity and good reproducibility. Since the development of the Salmonella microsomal mutagenicity assay by Ames and coworkers in the early 1970s, significant development in bacterial genotoxicity assays was achieved and is still a subject matter of research. The basic principle of the mutagenicity assay is a reversion of a growth inhibited bacterial strain, e.g., due to auxotrophy, back to a fast growing phenotype (regain of prototrophy). Deeper knowledge of the ­mutation events allows a mechanistic understanding of the induced DNA-damage by the utilization of base specific tester strains. Collections of such specific tester strains were extended by genetic engineering. Beside the reversion assays, test systems utilizing the bacterial SOS-response were invented. These methods are based on the fusion of various SOS-responsive promoters with a broad variety of reporter genes facilitating numerous methods of signal detection. A very important aspect of genotoxicity testing is the bioactivation of ­xenobiotics to DNA-damaging compounds. Most widely used is the extracellular metabolic activation by making use of rodent liver homogenates. Again, genetic engineering allows the construction of highly sophisticated bacterial tester strains with significantly enhanced sensitivity due to overexpression of enzymes that are involved in the metabolism of xenobiotics. This provides mechanistic insights into the toxification and detoxification pathways of xenobiotics and helps explaining the chemical nature of hazardous substances in unknown mixtures. In summary, beginning with “natural” tester strains the rational design of bacteria led to highly specific and sensitive tools for a rapid, reliable and cost effective ­genotoxicity testing that is of outstanding importance in the risk assessment of compounds (REACH) and in ecotoxicology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. OECD (1997) Bacterial reverse mutation test. Guideline for Testing of Chemicals 471. OECD, Paris

    Google Scholar 

  2. Müller L, Kikuchi Y, Probst G, Schechtman L, Shimada H, Sofuni T, Tweats D (1999) ICH-Harmonised guidances on genotoxicity testing of pharmaceuticals: evolution, reasoning and impact. Mutat Res 436(3):195–225

    Google Scholar 

  3. OSPAR Commission (2002) Survey on genotoxicity test methods for the evaluation of waste water within whole effluent assessment. OSPAR, London, UK

    Google Scholar 

  4. ISO (2000) Water quality – determination of the genotoxicity of water and waste water using the umu-test. ISO 13829, ISO, Geneva

    Google Scholar 

  5. ISO (2005) Water quality – determination of the genotoxicity of water and waste water – Salmonella/microsome test (Ames test). ISO 16240, ISO, Geneva

    Google Scholar 

  6. International Conference on Harmonization (1997) Guidance for industry. S2B genotoxicity: a standard battery for genotoxicity testing of pharmaceuticals. Brussels, Belgium, March 1997

    Google Scholar 

  7. Hartman PE, Hartman Z, Stahl RC (1971) Classification and mapping of spontaneous and induced mutations in the histidine operon of Salmonella. Adv Genet 16:1–34

    CAS  Google Scholar 

  8. Ames BN, Gurney EG, Miller JA, Bartsch H (1972) Carcinogens as frameshift mutagens: metabolites and derivatives of 2-acetylaminofluorene and other aromatic amine carcinogens. Proc Natl Acad Sci U S A 69(11):3128–3132

    CAS  Google Scholar 

  9. Ames BN, Durston WE, Yamasaki E, Lee FD (1973) Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci U S A 70(8):2281–2285

    CAS  Google Scholar 

  10. McCann J, Ames BN (1976) Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals: discussion. Proc Natl Acad Sci U S A 73(3):950–954

    CAS  Google Scholar 

  11. Jurado J, Alejandre-Durán E, Pueyo C (1993) Genetic differences between the standard Ames tester strains TA100 and TA98. Mutagenesis. 8(6):527-32

    Google Scholar 

  12. McCann J, Spingarn NE, Kobori J, Ames BN (1975) Detection of carcinogens as mutagens: bacterial tester strains with R factor plasmids. Proc Natl Acad Sci U S A 72(3):979–983

    CAS  Google Scholar 

  13. Mortelmans K (2006) Isolation of plasmid pKM101 in the Stocker laboratory. Mutat Res 612(3):151–164

    CAS  Google Scholar 

  14. Cebula TA, Koch WH (1990) Sequence analysis of Salmonella typhimurium revertants. Prog Clin Biol Res. 340D:367–77. Review

    Google Scholar 

  15. Hartman PE, Ames BN, Roth JR, Barnes WM, Levin DE (1986) Target sequences for mutagenesis in Salmonella histidine-requiring mutants. Environ Mutagen 8(4):631–641

    CAS  Google Scholar 

  16. Walker GC (1977) Plasmid (pKM101)-mediated enhancement of repair and mutagenesis: dependence on chromosomal genes in Escherichia coli K-12. Mol Gen Genet 152(1):93–103

    CAS  Google Scholar 

  17. Marsh L, Walker GC (1987) New phenotypes associated with mucAB: alteration of a MucA sequence homologous to the LexA cleavage site. J Bacteriol 169(5):1818–1823

    CAS  Google Scholar 

  18. Perry KL, Elledge SJ, Mitchell BB, Marsh L, Walker GC (1985) umuDC and mucAB operons whose products are required for UV light- and chemical-induced mutagenesis: UmuD, MucA, and LexA proteins share homology. Proc Natl Acad Sci U S A 82(13):4331–4335

    CAS  Google Scholar 

  19. Levin DE, Hollstein M, Christman MF, Schwiers EA, Ames BN (1982) A new Salmonella tester strain (TA102) with A:T base pairs at the site of mutation detects oxidative mutagens. Proc Natl Acad Sci U S A 79(23):7445–7449

    CAS  Google Scholar 

  20. Albertini S, Gocke E (1988) Plasmid copy number and mutant frequencies in S. typhimurium TA102. Environ Mol Mutagen 12(4):353–363

    CAS  Google Scholar 

  21. Levin DE, Yamasaki E, Ames BN (1982) A new Salmonella tester strain, TA97, for the detection of frameshift mutagens. A run of cytosines as a mutational hot-spot. Mutat Res 94(2):315–330

    CAS  Google Scholar 

  22. Bridges BA, Dennis RE, Munson RJ (1967) Differential induction and repair of ultraviolet damage leading to true revesions and external suppressor mutations of an ochre codon in Escherichia coli B-r WP2. Genetics 57(4):897–908

    CAS  Google Scholar 

  23. Venturini S, Monti-Bragadin C (1978) R plasmid-mediated enhancement of mutagenesis in strains of Escherichia coli deficient is known repair functions. Mutat Res 50(1):1–8

    CAS  Google Scholar 

  24. Prival MJ, King VD, Sheldon AT Jr (1979) The mutagenicity of dialkyl nitrosamines in the Salmonella plate assay. Environ Mutagen 1(2):95–104

    CAS  Google Scholar 

  25. Agurell E, Stensman C (1992) Salmonella mutagenicity of three complex mixtures assayed with the microsuspension technique. A WHO/IPCS/CSCM study. Mutat Res 276(1/2):87–91

    CAS  Google Scholar 

  26. Bagley ST, Stoltz SL, Becker DM, Keen RE (1992) Characterization of organic extracts from standard reference materials 1649, ‘urban dust/organics,’ and 1650, ‘diesel particulate matter’, using a microsuspension assay. A WHO/IPCS/CSCM study. Mutat Res 276(1/2):81–86

    CAS  Google Scholar 

  27. Azuma S, Kishino S, Katayama S, Akahori Y, Matsushita H (1997) Highly sensitive mutation assay for mutagenicity monitoring of indoor air using Salmonella typhimurium YG1041 and a microsuspension method. Mutagenesis 12(5):373–377

    CAS  Google Scholar 

  28. Gatehouse DG, Paes DJ (1983) A demonstration of the in vitro bacterial mutagenicity of procarbazine, using the microtitre fluctuation test and large concentrations of S9 fraction. Carcinogenesis 4(3):347–352

    CAS  Google Scholar 

  29. Flückiger-Isler S, Baumeister M, Braun K, Gervais V, Hasler-Nguyen N, Reimann R, Van Gompel J, Wunderlich HG, Engelhardt G (2004) Assessment of the performance of the Ames II assay: a collaborative study with 19 coded compounds. Mutat Res 558(1/2):181–197

    Google Scholar 

  30. Reifferscheid G, Arndt C, Schmid C (2005) Further development of the beta-lactamase MutaGen assay and evaluation by comparison with Ames fluctuation tests and the umu test. Environ Mol Mutagen 46(2):126–139

    CAS  Google Scholar 

  31. Gee P, Maron DM, Ames BN (1994) Detection and classification of mutagens: a set of base-specific Salmonella tester strains. Proc Natl Acad Sci U S A 91(24):11606–11610

    CAS  Google Scholar 

  32. Cupples CG, Miller JH (1989) A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci U S A 86(14):5345–5349

    CAS  Google Scholar 

  33. Miller JE, Vlasakova K, Glaab WE, Skopek TR (2005) A low volume, high-throughput forward mutation assay in Salmonella typhimurium based on fluorouracil resistance. Mutat Res 578(1/2):210–224

    CAS  Google Scholar 

  34. Dorado G, Pueyo C (1988) l-Arabinose resistance test with Salmonella typhimurium as a primary tool for carcinogen screening. Cancer Res 48(4):907–912

    CAS  Google Scholar 

  35. Schmid C, Arndt C, Reifferscheid G (2003) Mutagenicity test system based on a reporter gene assay for short-term detection of mutagens (MutaGen assay). Mutat Res 535(1):55–72

    Google Scholar 

  36. Tomasz A (1979) From penicillin-binding proteins to the lysis and death of bacteria: a 1979 view. Rev Infect Dis 1(3):434–467

    CAS  Google Scholar 

  37. Tomasz A (1979) The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol 33:113–137

    CAS  Google Scholar 

  38. Hillen W, Berens C (1994) Mechanisms underlying expression of TN10 encoded tetracycline resistance. Annu Rev Microbiol 48:345–369

    CAS  Google Scholar 

  39. Degenkolb J, Takahashi M, Ellestad GA, Hillen W (1991) Structural requirements of tetracycline-tet repressor interaction: determination of equilibrium binding constants for tetracycline analogs with the tet repressor. Antimicrob Agents Chemother 35:1591–1595

    CAS  Google Scholar 

  40. Radman M (1975) SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Basic Life Sci 5A:355–367

    CAS  Google Scholar 

  41. Brent R, Ptashne M (1980) The lexA gene product represses its own promoter. Proc Natl Acad Sci U S A 77(4):1932–1936

    CAS  Google Scholar 

  42. Little JW, Mount DW, Yanisch-Perron CR (1981) Purified lexA protein is a repressor of the recA and lexA genes. Proc Natl Acad Sci U S A 78(7):4199–4203

    CAS  Google Scholar 

  43. Little JW (1983) The SOS regulatory system: control of its state by the level of RecA protease. J Mol Biol 167(4):791–808

    CAS  Google Scholar 

  44. Little JW, Edmiston SH, Pacelli LZ, Mount DW (1980) Cleavage of the Escherichia coli lexA protein by the recA protease. Proc Natl Acad Sci U S A 77(6):3225–3229

    CAS  Google Scholar 

  45. Giese KC, Michalowski CB, Little JW (2008) RecA-dependent cleavage of LexA dimers. J Mol Biol 377(1):148–161

    CAS  Google Scholar 

  46. Huisman O, D’Ari R, George J (1980) Further characterization of sfiA and sfiB mutations in Escherichia coli. J Bacteriol 144(1):185–191

    CAS  Google Scholar 

  47. Schendel PF, Fogliano M, Strausbaugh LD (1982) Regulation of the Escherichia coli K-12 uvrB operon. J Bacteriol 150(2):676–685

    CAS  Google Scholar 

  48. Frey J, Ghersa P, Palacios PG, Belet M (1986) Physical and genetic analysis of the ColD plasmid. J Bacteriol. 166(1):15–9

    Google Scholar 

  49. Tomita K, Ogawa T, Uozumi T, Watanabe K, Masaki H (2000) A cytotoxic ribonuclease which specifically cleaves four isoaccepting arginine tRNAs at their anticodon loops. Proc Natl Acad Sci U S A 97(15):8278–8283

    CAS  Google Scholar 

  50. de Zamaroczy M, Mora L, Lecuyer A, Géli V, Buckingham RH (2001) Cleavage of colicin D is necessary for cell killing and requires the inner membrane peptidase LepB. Mol Cell 8(1):159–168

    CAS  Google Scholar 

  51. Quillardet P, Huisman O, D’Ari R, Hofnung M (1982) SOS chromotest, a direct assay of induction of an SOS function in Escherichia coli K-12 to measure genotoxicity. Proc Natl Acad Sci U S A 79(19):5971–5975

    CAS  Google Scholar 

  52. da Y, Nakamura S, Oki I, Kato T, Shinagawa H (1985) Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens. Mutat Res 147(5):219–229

    CAS  Google Scholar 

  53. Ptitsyn LR, Horneck G, Komova O, Kozubek S, Krasavin EA, Bonev M, Rettberg P (1997) A biosensor for environmental genotoxin screening based on an SOS lux assay in recombinant Escherichia coli cells. Appl Environ Microbiol. 63(11):4377–84

    Google Scholar 

  54. Norman A, Hestbjerg Hansen L, Sørensen SJ (2005) Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sulA promoters. Appl Environ Microbiol 71(5):2338–2346

    CAS  Google Scholar 

  55. Nunoshiba T, Nishioka H (1991) ‘Rec-lac test’ for detecting SOS-inducing activity of environmental genotoxic substance. Mutat Res 254(1):71–77

    CAS  Google Scholar 

  56. Verschaeve L, Van Gompel J, Thilemans L, Regniers L, Vanparys P, van der Lelie D (1999) VITOTOX bacterial genotoxicity and toxicity test for the rapid screening of chemicals. Environ Mol Mutagen 33(3):240–248

    CAS  Google Scholar 

  57. Vollmer AC, Belkin S, Smulski DR, Van Dyk TK, LaRossa RA (1997) Detection of DNA damage by use of Escherichia coli carrying recA’::lux, uvrA’::lux or alkA’::lux reporter plasmids. Appl Environ Microbiol 63:2566–2571

    CAS  Google Scholar 

  58. Davidov Y, Rozen R, Smulski DR, van Dyk TK, Vollmer AC, Elsemore DA, LaRossa RA, Belkin S (2000) Improved bacterial SOS promoter: lux fusions for genotoxicity detection. Mutat Res 466:97–107

    CAS  Google Scholar 

  59. Chalfie M, Tu G, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–804

    CAS  Google Scholar 

  60. Crameri A, Whitehorn EA, Tate E, Stemmer WPC (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14:315–319

    CAS  Google Scholar 

  61. Arkady FF, Ying C, Li D, Ekaterina VB, Mikhail VM, Sergey AL (2000) Novel fluorescent protein from Discosoma coral and its mutants possesses a unique far-red fluorescence. FEBS Lett 479:127–130

    Google Scholar 

  62. Shaner NC, Patterson GH, Davidson MW (2007) Advances in fluorescent protein technology. J Cell Sci 120:4247–4260

    CAS  Google Scholar 

  63. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    CAS  Google Scholar 

  64. Blokpoel MC, O’Toole R, Smeulders MJ, Williams HD (2003) Development and application of unstable GFP variants to kinetic studies of mycobacterial gene expression. J Microbiol Methods 54:203–211

    CAS  Google Scholar 

  65. Justus T, Thomas SM (1999) Evaluation of transcriptional fusions with green fluorescent protein versus luciferase as reporters in bacterial mutagenicity tests. Mutagenesis 14:351–356

    CAS  Google Scholar 

  66. Arai R, Makita Y, Oda Y, Nagamune T (2001) Construction of green fluorescent protein reporter genes for genotoxicity test (SOS/umu-test) and improvement of mutagen-sensitivity. J Biosci Bioeng 92:301–304

    CAS  Google Scholar 

  67. Kostrzynska M, Leung KT, Lee H, Trevors JT (2002) Green fluorescent protein-based biosensor for detecting SOS-inducing activity of genotoxic compounds. J Microbiol Methods 48:43–51

    CAS  Google Scholar 

  68. Sagi E, Hever N, Rosen R, Bartolome AJ, Rajan Premkumar J, Ulber R, Lev O, Scheper T, Belkin S (2003) Fluorescence and bioluminescence reporter functions in genetically modified bacterial sensor strains. Sens Actuators B Chem 90:2–8

    Google Scholar 

  69. Hakkila K, Maksimow M, Karp M, Virta M (2002) Reporter genes lucFF, luxCDABE, gfp, and dsred have different characteristics in whole-cell bacterial sensors. Anal Biochem 301:235–242

    CAS  Google Scholar 

  70. Norman A, Hansen LH, Sorensen SJ (2006) A flow cytometry-optimized assay using an SOS-green fluorescent protein (SOS-GFP) whole-cell biosensor for the detection of genotoxins in complex environments. Mutat Res 603(2):164–172

    CAS  Google Scholar 

  71. Ostergaard TG, Hansen LH, Binderup ML, Norman A, Sørensen SJ (2007) The cda GenoTox assay: a new and sensitive method for detection of environmental genotoxins, including nitroarenes and aromatic amines. Mutat Res 631(2):77–84

    CAS  Google Scholar 

  72. von der Hude W, Behm C, Gürtler R, Basler A (1988) Evaluation of the SOS chromotest. Mutat Res 203(2):81–94

    CAS  Google Scholar 

  73. Dipple A (1995) DNA adducts of chemical carcinogens. Carcinogenesis 16(3):437–441

    CAS  Google Scholar 

  74. Seidegard J, Ekstrom G (1997) The role of human glutathione transferases and epoxide hydrolases in the metabolism of xenobiotics. Environ Health Perspect 105(4):791–799

    CAS  Google Scholar 

  75. Kranendonk M, Laires A, Rueff J, Estabrook WR, Vermeulen NP (2000) Heterologous expression of xenobiotic mammalian-metabolizing enzymes in mutagenicity tester bacteria: an update and practical considerations. Crit Rev Toxicol 30:287–306

    CAS  Google Scholar 

  76. Shimada T, Yamazaki H, Oda Y, Hiratsuka A, Watabe T, Guengerich FP (1996) Activation and inactivation of carcinogenic dihaloalkanes and other compounds by glutathione S-transferase 5-5 in Salmonella typhimurium tester strain NM5004. Chem Res Toxicol 9:333–340

    CAS  Google Scholar 

  77. Martignoni M, Groothuis GM, de Kanter R (2006) Species differences between mouse, rat, dog, monkey and human CYP-mediated drug metabolism, inhibition and induction. Expert Opin Drug Metab Toxicol 2(6):875–894

    CAS  Google Scholar 

  78. Gundert-Remy U, Sonich-Mullin C (2002) IPCS uncertainty and variability planning workgroup and drafting group (International program on chemical safetys). The use of toxicokinetic and toxicodynamic data in risk assessment: an international perspective. Sci Total Environ 288(1/2):3–11

    CAS  Google Scholar 

  79. Malling HV (1967) The mutagenicity of the acridine mustard (ICR-170) and the structurally related compounds in Neurospora. Mutat Res 4(3):265–274

    CAS  Google Scholar 

  80. Glatt H (1997) Sulfation and sulfotransferases 4: bioactivation of mutagens via sulfation. FASEB J 11(5):314–321

    CAS  Google Scholar 

  81. Guengerich FP (2006) Cytochrome P450s and other enzymes in drug metabolism and toxicity. AAPS J 8(1):101–111

    Google Scholar 

  82. Roberts GA, Grogan G, Greter A, Flitsch SL, Turner NJ (2002) Identification of a new class of cytochrome P450 from a Rhodococcus sp. J Bacteriol 184(14):3898–3908

    CAS  Google Scholar 

  83. Agematu H, Matsumoto N, Fujii Y, Kabumoto H, Doi S, Machida K, Ishikawa J, Arisawa A (2006) Hydroxylation of testosterone by bacterial cytochromes P450 using the Escherichia coli expression system. Biosci Biotechnol Biochem 70(1):307–311

    CAS  Google Scholar 

  84. Dong J, Porter TD (1996) Coexpression of mammalian cytochrome P450 and reductase in Escherichia coli. Arch Biochem Biophys 327(2):254–259

    CAS  Google Scholar 

  85. Blake JA, Pritchard M, Ding S, Smith GC, Burchell B, Wolf CR, Friedberg T (1996) Coexpression of a human P450 (CYP3A4) and P450 reductase generates a highly functional monooxygenase system in Escherichia coli. FEBS Lett 397(2/3):210–214

    CAS  Google Scholar 

  86. Shet MS, Fisher CW, Estabrook RW (1997) The function of recombinant cytochrome P450s in intact Escherichia coli cells: the 17 alpha-hydroxylation of progesterone and pregnenolone by P450c17. Arch Biochem Biophys 339(1):218–225

    CAS  Google Scholar 

  87. Parikh A, Gillam EM, Guengerich FP (1997) Drug metabolism by Escherichia coli expressing human cytochromes P450. Nat Biotechnol 15(8):784–788

    CAS  Google Scholar 

  88. Emmert B, Bünger J, Keuch K, Müller M, Emmert S, Hallier E, Westphal GA (2006) Mutagenicity of cytochrome P450 2E1 substrates in the Ames test with the metabolic competent S. typhimurium strain YG7108pin3ERb5. Toxicology 228(1):66–76

    CAS  Google Scholar 

  89. Aryal P, Yoshikawa K, Terashita T, Guengerich FP, Shimada T, Oda Y (1999) Development of a new genotoxicity test system with Salmonella typhimurium OY1001/1A2 expressing human CYP1A2 and NADPH-P450 reductase. Mutat Res 442(2):113–120

    CAS  Google Scholar 

  90. Oda Y, Aryal P, Terashita T, Gillam EM, Guengerich FP, Shimada T (2001) Metabolic activation of heterocyclic amines and other procarcinogens in Salmonella typhimurium umu tester strains expressing human cytochrome P4501A1, 1A2, 1B1, 2C9, 2D6, 2E1, and 3A4 and human NADPH-P450 reductase and bacterial O-acetyltransferase. Mutat Res 492(1/2):81–90

    CAS  Google Scholar 

  91. Aryal P, Terashita T, Guengerich FP, Shimada T, Oda Y (2000) Use of genetically engineered Salmonella typhimurium OY1002/1A2 strain coexpressing human cytochrome P450 1A2 and NADPH-cytochrome P450 reductase and bacterial O-acetyltransferase in SOS/umu assay. Environ Mol Mutagen 36(2):121–126

    CAS  Google Scholar 

  92. Sugimura T (1997) Overview of carcinogenic heterocyclic amines. Mutat Res 376(1/2):211–219

    CAS  Google Scholar 

  93. Kataoka H (1997) Methods for the determination of mutagenic heterocyclic amines and their applications in environmental analysis. J Chromatogr A 774(1/2):121–142

    CAS  Google Scholar 

  94. Oda Y, Shimada T, Watanabe M, Ishidate M Jr, Nohmi T (1992) A sensitive umu test system for the detection of mutagenic nitroarenes in Salmonella typhimurium NM1011 having a high nitroreductase activity. Mutat Res 272(2):91–99

    CAS  Google Scholar 

  95. Oda Y, Yamazaki H, Watanabe M, Nohmi T, Shimada T (1995) Development of high sensitive umu test system: rapid detection of genotoxicity of promutagenic aromatic amines by Salmonella typhimurium strain NM2009 possessing high O-acetyltransferase activity. Mutat Res 334(2):145–156

    CAS  Google Scholar 

  96. Oda Y, Yamazaki H, Shimada T (1999) Role of human N-acetyltransferases, NAT1 or NAT2, in genotoxicity of nitroarenes and aromatic amines in Salmonella typhimurium NM6001 and NM6002. Carcinogenesis 20(6):1079–1083

    CAS  Google Scholar 

  97. Oda Y, Yamazaki H, Thier R, Ketterer B, Guengerich FP, Shimada T (1996) A new Salmonella typhimurium NM5004 strain expressing rat glutathione S-transferase 5-5: use in detection of genotoxicity of dihaloalkanes using an SOS/umu test system. Carcinogenesis 17(2):297–302

    CAS  Google Scholar 

  98. Watanabe M, Ishidate M Jr, Nohmi T (1989) A sensitive method for the detection of mutagenic nitroarenes: construction of nitroreductase-overproducing derivatives of Salmonella typhimurium strains TA98 and TA100. Mutat Res 216(4):211–220

    CAS  Google Scholar 

  99. Watanabe M, Ishidate M Jr, Nohmi T (1990) Sensitive method for the detection of mutagenic nitroarenes and aromatic amines: new derivatives of Salmonella typhimurium tester strains possessing elevated O-acetyltransferase levels. Mutat Res 234(5):337–348

    CAS  Google Scholar 

  100. Hagiwara Y, Watanabe M, Oda Y, Sofuni T, Nohmi T (1993) Specificity and sensitivity of Salmonella typhimurium YG1041 and YG1042 strains possessing elevated levels of both nitroreductase and acetyltransferase activity. Mutat Res 291(3):171–180

    CAS  Google Scholar 

  101. Chasseaud LF (1997) The role of glutathione ans glutathione transferases in the metabolism of chemical carcinogens and other electrophilic reagents. Adv Cancer Res 29:175–274

    Google Scholar 

  102. Coles B, Ketterer B (1990) The role of glutathione and glutathione transfersase in chemical carcinogenesis. Crit Rev Biochem Mol Biol 25:47–70.

    CAS  Google Scholar 

  103. Decant W, Vamvakas S, Anders MW (1989) Bioactivation of nephrotoxic haloalkenes by glutathiuone conjugation: formation of toxic and mutagenic intermediates by cysteine conjugate ß-lyase. Drug Metab Rev 20:43–83

    Google Scholar 

  104. Monks TJ, Lau SS (1994) Glutathione conjugate mediated toxicities. In: Kauffman FC (ed) Handbook of experimental pharmacology. Springer, Berlin Heidelberg New York, pp 459–509

    Google Scholar 

  105. Thier R, Taylor JB, Pemble SE, Humphreys WG, Persmark M, Ketterer B, Guengerich FP (1993) Expression of mammalian glutathione S-transferase 5-5 in Salmonella typhimurium TA1535 leads to base-pair mutations upon exposure to dihalomethanes. Proc Natl Acad Sci U S A 90(18):8576–8580

    CAS  Google Scholar 

  106. Guengerich FP, Wheeler JB, Chun YJ, Kim D, Shimada T, Aryal P, Oda Y, Gillam EM (2002) Use of beterologously-expressed cytochrome P450 and glutathione transferase enzymes in toxicity assays. Toxicology 181–182:261–4

    Google Scholar 

  107. Pemble S, Schroeder KR, Spencer SR, Meyer DJ, Hallier E, Bolt HM, Ketterer B, Taylor JB (1994) Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J 300(1):271–276

    CAS  Google Scholar 

  108. Yamazaki H, Oda Y, Shimada T (1992) Use of a newly developed tester strain Salmonella typhimurium NM2009 for the study of metabolic activation of carcinogenic aromatic amines by rat liver microsomal cytochrome P-450 enzymes. Mutat Res 272(2):183–192

    CAS  Google Scholar 

  109. Lotlikar PD, Hong YS (1981) Microsomal N- and C-oxidations of carcinogenic aromatic amines and amides. Natl Cancer Inst Monogr 58:101–107

    CAS  Google Scholar 

  110. McCoy EC, Anders M, Rosenkranz HS (1983) The basis of the insensitivity of Salmonella typhimurium strain TA98/1,8-DNP6 to the mutagenic action of nitroarenes. Mutat Res 121(1):17–23

    CAS  Google Scholar 

  111. Heflich RH, Djurić Z, Zhuo Z, Fullerton NF, Casciano DA, Beland FA (1988) Metabolism of 2-acetylaminofluorene in the Chinese hamster ovary cell mutation assay. Environ Mol Mutagen 11(2):167–181

    CAS  Google Scholar 

  112. Lower GM Jr, Nilsson T, Nelson CE, Wolf H, Gamsky TE, Bryan GT (1979) N-Acetyltransferase phenotype and risk in urinary bladder cancer: approaches in molecular epidemiology. Preliminary results in Sweden and Denmark. Environ Health Perspect 29:71–79

    CAS  Google Scholar 

  113. Lang NP, Chu DZ, Hunter CF, Kendall DC, Flammang TJ, Kadlubar FF (1986) Role of aromatic amine acetyltransferase in human colorectal cancer. Arch Surg 121(11):1259–1261

    CAS  Google Scholar 

  114. Glatt H, Meinl W (2005) Sulfotransferases and acetyltransferases in mutagenicity testing: technical aspects. Methods Enzymol 400:230–249

    CAS  Google Scholar 

  115. Miller JA, Surh YJ (1994) Sulfonation in chemical carcinogenes. In: Kauffman FC (ed) Handbook of pharmacology, vol 112: Conjugation-deconjugation reactions in drug metabolism and toxicity. Springer, Berlin Heidelberg New York, pp 429–458

    Google Scholar 

  116. Suzuki H, Morris JS, Li Y, Doll MA, Hein DW, Liu J, Jiao L, Hassan MM, Day RS, Bondy ML, Abbruzzese JL, Li D (2008) Interaction of the cytochrome P4501A2, SULT1A1 and NAT gene polymorphisms with smoking and dietary mutagen intake in modification of the risk of pancreatic cancer. Carcinogenesis 29(6):1184–1191

    Google Scholar 

  117. Glatt H (2005) Activation and inactivation of carcinogens by human sulfotransferases. In: Pacifici GM, Coughtrie MWH (eds) Human sulfotransferases. Taylor & Francis, London

    Google Scholar 

  118. Glatt H, Meinl W (2004) Use of genetically manipulated Salmonella typhimurium strains to evaluate the role of sulfotransferases and acetyltransferases in nitrofen mutagenicity. Carcinogenesis 25(5):779–786

    Google Scholar 

  119. Tokiwa H, Ohnishi Y (1986) Mutagenicity and carcinogenicity of nitroarenes and their sources in the environment. Crit Rev Toxicol 17(1):23–60

    CAS  Google Scholar 

  120. Wild D (1990) A novel pathway to the ultimate mutagens of aromatic amino and nitro compounds. Environ Health Perspect 88:27–31

    CAS  Google Scholar 

  121. Oda Y, Yamazaki H, Watanabe M, Nohmi T, Shimada T (1993) Highly sensitive umu test system for the detection of mutagenic nitroarenes in Salmonella typhimurium NM3009 having high O-acetyltransferase and nitroreductase activities. Environ Mol Mutagen 21(4):357–364

    CAS  Google Scholar 

  122. Guengerich FP, Wheeler JB, Chun YJ, Kim D, Shimada T, Aryal P, Oda Y, Gillam EM (2002) Use of heterologously-expressed cytochrome P450 and glutathione transferase enzymes in toxicity assays. Toxicology 181/182:261–264

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Reifferscheid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reifferscheid, G., Buchinger, S. (2009). Cell-Based Genotoxicity Testing. In: Belkin, S., Gu, M. (eds) Whole Cell Sensing System II. Advances in Biochemical Engineering / Biotechnology, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2009_8

Download citation

Publish with us

Policies and ethics