Abstract
Dehydrogenases which depend on nicotinamide coenzymes are of increasing interest for the preparation of chiral compounds, either by reduction of a prochiral precursor or by oxidative resolution of their racemate. The regeneration of oxidized and reduced nicotinamide cofactors is a very crucial step because the use of these cofactors in stoichiometric amounts is too expensive for application. There are several possibilities to regenerate nicotinamide cofactors: established methods such as formate/formate dehydrogenase (FDH) for the regeneration of NADH, recently developed electrochemical methods based on new mediator structures, or the application of gene cloning methods for the construction of “designed” cells by heterologous expression of appropriate genes.
A very promising approach is enzymatic cofactor regeneration. Only a few enzymes are suitable for the regeneration of oxidized nicotinamide cofactors. Glutamate dehydrogenase can be used for the oxidation of NADH as well as NADPH while l-lactate dehydrogenase is able to oxidize NADH only. The reduction of NAD+ is carried out by formate and FDH. Glucose-6-phosphate dehydrogenase and glucose dehydrogenase are able to reduce both NAD+ and NADP+. Alcohol dehydrogenases (ADHs) are either NAD+- or NADP+-specific. ADH from horse liver, for example, reduces NAD+ while ADHs from Lactobacillus strains catalyze the reduction of NADP+. These enzymes can be applied by their inclusion in whole cell biotransformations with an NAD(P)+-dependent primary reaction to achieve in situ the regeneration of the consumed cofactor.
Another efficient method for the regeneration of nicotinamide cofactors is the electrochemical approach. Cofactors can be regenerated directly, for example at a carbon anode, or indirectly involving mediators such as redox catalysts based on transition-metal complexes.
An increasing number of examples in technical scale applications are known where nicotinamide dependent enzymes were used together with cofactor regenerating enzymes.
Keywords
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsAbbreviations
- ADH:
-
Alcohol dehydrogenase
- FDH:
-
Formate dehydrogenase
- GDH:
-
Glucose dehydrogenase
- GluDH:
-
Glutamate dehydrogenase
- HLADH:
-
Horse liver alcohol dehydrogenase
- LDH:
-
Lactate dehydrogenase
- LeuDH:
-
Leucine dehydrogenase
- PTDH:
-
Phosphite dehydrogenase
- TBADH:
-
Alcohol dehydrogenase from Thermoanaerobacter brockii
References
Chenault HK, Whitesides GM (1987) Appl Biochem Biotechnol 14:147–197
Hummel W, Kula MR (1989) Eur J Biochem 184:1–13
Schütte H, Flossdorf J, Sahm H, Kula M-R (1976) Eur J Biochem 62:151–160
Allen SJ, Holbrook JJ (1995) Gene 162:99–104
Avilova TV, Egorova OA, Ioanesyan LS, Egorov AM (1985) Eur J Biochem 152:657–662
Kato N, Sahm H, Wagner F (1979) Biochim Biophys Acta 566:12–20
Gul-Karaguler N, Sessions RB, Clarke AR, Holbrook JJ (2001) Biotechnol Lett 23:283–287
Izumi Y, Kanzaki H, Morita S, Futazuka H, Yamada H (1989) Eur J Biochem 182:333–341
Izumi Y, Kanzaki H, Morita S, Yamada H (1987) FEMS Microbiol Lett 48:139–142
Karzanov VV, Bogatsky YA, Tishkov VI, Egorov AM (1989) FEMS Microbiol Lett 51:197–200
Müller U, Willnow P, Ruschig U, Hopner T (1978) Eur J Biochem 83:485–498
Tishkov VI, Galkin AG, Marchenko GN, Tsygankov YD, Egorov AM (1993) Biotechnol Appl Biochem 18:201–207
Nanba H, Takaoka Y, Hasegawa J (2003) Biosci Biotechnol Biochem 67:2145–2153
Yamamoto H, Mitsuhashi K, Kimoto N, Kobayashi Y, Esaki N (2005) Appl Microbiol Biotechnol 67:33–39
Yamamoto H, Mitsuhashi K, Kimoto N, Matsuyama A, Esaki N, Kobayashi Y (2004) Biosci Biotechnol Biochem 68:638–649
Cosgrove MS, Naylor C, Paludan S, Adams MJ, Levy HR (1998) Biochemistry 37:2759–2767
Wong CH, Gordon J, Cooney CL, Whitesides GM (1981) J Org Chem 46:4676–4679
Okuno H, Nagata K, Nakajima H (1985) J Appl Biochem 7:192–201
Bright JR, Byrom D, Danson MJ, Hough DW, Towner P (1993) Eur J Biochem 211:549–554
Smith LD, Budgen N, Bungard SJ, Danson MJ, Hough DW (1989) Biochem J 261:973–977
Mitamura T, Urabe I, Okada H (1989) Eur J Biochem 186:389–393
Nagao T, Mitamura T, Wang XH, Negoro S, Yomo T, Urabe I, Okada H (1992) J Bacteriol 174:5013–5020
Pauly HE, Pfleiderer G (1975) Hoppe Seylers Z Physiol Chem 356:1613–1623
Hilt W, Pfleiderer G, Fortnagel P (1991) Biochim Biophys Acta 1076:298–304
Drewke C, Ciriacy M (1988) Biochim Biophys Acta 950:54–60
Adolph HW, Maurer P, Schneiderbernlohr H, Sartorius C, Zeppezauer M (1991) Eur J Biochem 201:615–625
van Iersel M, Eppink M, van Berkel W, Rombouts F, Abee T (1997) Appl Environ Microbiol 63:4079–4082
Keinan E, Hafeli EK, Seth KK, Lamed R (1986) J Am Chem Soc 108:162–169
Korkhin Y, Kalb Gilboa AJ, Peretz M, Bogin O, Burstein Y, Frolow F (1998) J Mol Biol 278:967–981
Hummel W (1997) Adv Biochem Eng Biotechnol 58:145–184
Niefind K, Muller J, Riebel B, Hummel W, Schomburg D (2003) J Mol Biol 327:317–328
Niefind K, Riebel B, Mueller J, Hummel W, Schomburg D (2000) Acta Crystallogr D Biol Crystallogr 56:1696–1698
Hummel W (1990) Biotechnol Lett 12:403–408
Bradshaw CW, Hummel W, Wong C-H (1992) J Org Chem 57:1532–1536
Hummel W (1990) Appl Microbiol Biotechnol 34:15–19
Danielsson B, Winqvist F, Malpote JY, Mosbach K (1982) Biotechnol Lett 4:673–678
Andersson M, Holmberg H, Adlercreutz P (1998) Biotechnol Bioeng 57:79–86
Hasumi F, Nakamura S, Nakada N (1991) Mem Numazu Coll Technol 25:63–65
Pfitzner J, Linke HAB, Schlegel HG (1970) Arch Mikrobiol 71:67–70
Bryant F, Adams M (1989) J Biol Chem 264:5070–5079
Shaked Z, Whitesides GM (1980) J Am Chem Soc 102:7104–7105
Kruse W, Hummel W, Kragl U (1996) Recl Trav Chim Pays Bas 115:239–243
Wong C-H, Whitesides GM (1981) J Am Chem Soc 103:4890–4899
Lampel KA, Uratani B, Chaudhry GR, Ramaley RF, Rudikoff S (1986) J Bacteriol 166:238–243
Yun H, Yang YH, Cho BK, Hwang BY, Kim BG (2003) Biotechnol Lett 25:809–814
Lin S-S, Miyawaki O, Nakamura K (1999) J Biosci Bioeng 87:361–364
Wada M, Yoshizumi A, Noda Y, Kataoka M, Shimizu S, Takagi H, Nakamori S (2003) Appl Environ Microbiol 69:933–937
Eguchi T, Kuge Y, Inoue K, Yoshikawa N, Mochida K, Uwajima T (1992) Biosci Biotechnol Biochem 56:701–703
Benach J, Atrian S, Gonzalez-Duarte R, Ladenstein R (1999) J Mol Biol 289:335–355
Smilda T, Kamminga AH, Reinders P, Baron W, van Hylckama Vlieg JE, Beintema JJ (2001) J Mol Evol 52:457–466
Winberg JO, McKinley-McKee JS (1998) Biochem J 329:561–570
Abokitse K, Hummel W (2003) Appl Microbiol Biotechnol 62:380–386
Gröger H, Hummel W, Buchholz S, Drauz K, Van Nguyen T, Rollmann C, Husken H, Abokitse K (2003) Org Lett 5:173–176
Hummel W, Abokitse K, Drauz K, Rollmann C, Gröger H (2003) Adv Synth Catal 345:A34
Kelemen-Horvath I, Nemestothy N, Belafi-Bako K, Gubicza L (2002) Chem Pap Chem Zvesti 56:52–56
Hirakawa H, Kamiya N, Yata T, Nagamune T (2003) Biochem Eng J 16:35–40
Zambianchi F, Pasta P, Carrea G, Colonna S, Gaggero N, Woodley JM (2002) Biotechnol Bioeng 78:489–496
Schneider K, Schlegel HG (1976) Biochim Biophys Acta 452:66–80
Mertens R, Greiner L, van den Ban ECD, Haaker HBCM, Liese A (2003) J Mol Catal B Enzym 24–25:39–52
Vrtis JM, White AK, Metcalf WW, van der Donk WA (2001) J Am Chem Soc 123:2672–2673
Vrtis JM, White AK, Metcalf WW, van der Donk WA (2002) Angew Chem Int Ed 41:3257–3259
Woodyer R, van der Donk WA, Zhao HM (2003) Biochemistry 42:11604–11614
Johannes TW, Woodyer RD, Zhao HM (2005) Appl Environ Microbiol 71:5728–5734
Johannes TW, Woodyer RD, Zhao HM (2007) Biotechnol Bioeng 96:18–26
Gu KF, Chang TM (1990) Appl Biochem Biotechnol 26:115–124
Veronese FM, Nyc JF, Degani Y, Brown DM, Smith EL (1974) J Biol Chem 249:7922–7928
Sakamoto N, Kotre AM, Savageau MA (1975) J Bacteriol 124:775–783
Veronese FM, Boccu E, Conventi L (1975) Biochim Biophys Acta 377:217–228
Graham LD, Griffin TO, Beatty RE, McCarthy AD, Tipton KF (1985) Biochim Biophys Acta 828:266–269
Peterson PE, Pierce J, Smith TJ (1997) J Struct Biol 120:73–77
Garvie EI (1980) Microbiol Rev 44:106–139
Hensel R, Mayr U, Fujiki H, Kandler O (1977) Eur J Biochem 80:83–92
Gordon GL, Doelle HW (1976) Eur J Biochem 67:543–555
Hummel W, Riebel B (2003) Biotechnol Lett 25:51–54
Riebel BR, Gibbs PR, Wellborn WB, Bommarius AS (2002) Adv Synth Catal 344:1156–1168
Park HJ, Kreutzer R, Reiser COA, Sprinzl M (1992) Eur J Biochem 205:875–879
Park HJ, Reiser COA, Kondruweit S, Erdmann H, Schmid RD, Sprinzl M (1992) Eur J Biochem 205:887–893
Lee LG, Whitesides GM (1986) J Org Chem 51:25–36
Carrea G, Bovara R, Cremonesi P, Lodi R (1984) Biotechnol Bioeng 26:560–563
Kim M-J, Whitesides GM (1988) J Am Chem Soc 110:2959–2964
Chenault HK, Whitesides GM (1989) Bioorg Chem 17:400–409
Lemiere GL, Lepoivre JA, Alderweireldt FC (1985) Tetrahedron Lett 26:4527–4528
Higuchi M, Yamamoto Y, Poole LB, Shimada M, Sato Y, Takahashi N, Kamio Y (1999) J Bacteriol 181:5940–5947
Poole LB, Higuchi M, Shimada M, Li Calzi M, Kamio Y (2000) Free Radic Biol Med 28:108–120
Matsumoto J, Higuchi M, Shimada M, Yamamoto Y, Kamio Y (1996) Biosci Biotechnol Biochem 60:39–43
Ross RP, Claiborne A (1992) J Mol Biol 227:658–671
Kengen SWM, van der Oost J, de Vos WM (2003) Eur J Biochem 270:2885–2894
Geueke B, Riebel B, Hummel W (2003) Enzyme Microb Technol 32:205–211
Hummel W, Kuzu M, Geueke B (2003) Org Lett 5:3649–3650
Steckhan E (1994) Electrochem V 170:83–111
Komoschinski J, Steckhan E (1988) Tetrahedron Lett 29:3299–3300
Hilt G, Jarbawi T, Heineman WR, Steckhan E (1997) Chemistry 3:79–88
Hilt G, Steckhan E (1993) J Chem Soc Chem Commun:1706–1707
Steckhan E, Brielbeck B, Frede M, Hilt G (1996) Power Electrochem:230–253
Delecouls-Servat K, Bergel A, Basseguy R (2001) J Appl Electrochem 31:1095–1101
Schröder I, Steckhan E, Liese A (2003) J Electroanal Chem 541:109–115
DiCosimo R, Wong C-H, Daniels L, Whitesides GM (1981) J Org Chem 46:4622–4623
Ito M, Kuwana T (1971) J Electroanal Chem 32:415
Simon H (1992) Pure Appl Chem 64:1181–1186
Simon H, Bader J, Gunther H, Neumann S, Thanos J (1985) Angew Chem Int Ed 24:539–553
Thanos ICG, Simon H (1987) J Biotechnol 6:13–29
Günther H, Paxinos AS, Schulz M, Vandijk C, Simon H (1990) Angew Chem Int Ed 29:1053–1055
Nagata S, Gunther H, Bader J, Simon H (1987) FEBS Lett 210:66–70
Günther H, Walter K, Kohler P, Simon H (2000) J Biotechnol 83:253–267
Schulz M, Leichmann H, Gunther H, Simon H (1995) Appl Microbiol Biotechnol 42:916–922
Shaked Z, Barber JJ, Whitesides GM (1981) J Org Chem 46:4100–4101
Kano K, Takagi K, Ogino Y, Ikeda T (1995) Chem Lett:589–590
Yuan R, Watanabe S, Kuwabata S, Yoneyama H (1997) J Org Chem 62:2494–2499
Franke M, Steckhan E (1988) Angew Chem Int Ed 27:265–267
Wienkamp R, Steckhan E (1982) Angew Chem Int Ed 21:782–783
Steckhan E, Herrmann S, Ruppert R, Dietz E, Frede M, Spika E (1991) Organometallics 10:1568–1577
Ruppert R, Herrmann S, Steckhan E (1987) Tetrahedron Lett 28:6583–6586
Westerhausen D, Herrmann S, Hummel W, Steckhan E (1992) Angew Chem Int Ed 31:1592–1531
Shimizu Y, Kitani A, Ito S, Sasaki K (1993) Denki Kagaku 61:872–873
Voivodov KI, Sobolov SB, Leonida MD, Fry AJ (1995) Bioorg Med Chem Lett 5:681–686
Leonida MD, Fry AJ, Sobolov SB, Voivodov KI (1996) Bioorg Med Chem Lett 6:1663–1666
Leonida MD, Sobolov SB, Fry AJ (1998) Bioorg Med Chem Lett 8:2819–2824
Long Y-T, Chen H-Y (1997) J Electroanal Chem 440:239–242
Baik SH, Kang C, Jeon IC, Yun S-E (1999) Biotechnol Tech 13:1–5
Hollmann F, Schmid A, Steckhan E (2001) Angew Chem Int Ed 40:169–171
Hollmann F, Witholt B, Schmid A (2003) J Mol Catal B Enzym 19:167–176
Cantet J, Bergel A, Comtat M (1996) Enzyme Microb Technol 18:72–79
Ruppert R, Steckhan E (1989) J Chem Soc Perkin Trans 2:811–814
Ruppert R, Herrmann S, Steckhan E (1988) J Chem Soc Chem Commun:1150–1151
Wagenknecht PS, Penney JM, Hembre RT (2003) Organometallics 22:1180–1182
Wilms B, Wiese A, Syldatk C, Mattes R, Altenbuchner J (2001) J Biotechnol 86:19–30
Cheesman MJ, Kneller MB, Kelly EJ, Thompson SJ, Yeung CK, Eaton DL, Rettie AE (2001) Protein Expr Purif 21:81–86
Stewart JD (1998) Curr Org Chem 2:195–216
Stewart JD, Reed KW, Kayser MM (1996) J Chem Soc Perkin Trans 1:755–757
Chen YC, Peoples OP, Walsh CT (1988) J Bacteriol 170:781–789
Doig SD, O'Sullivan LM, Patel S, Ward JM, Woodley JM (2001) Enzyme Microb Technol 28:265–274
Iwaki H, Hasegawa Y, Teraoka M, Tokuyama T, Bergeron H, Lau PCK (1999) Appl Environ Microbiol 65:5158–5162
Gutierrez MC, Furstoss R, Alphand V (2005) Adv Synth Catal 347:1051–1059
Hilker I, Alphand V, Wohlgemuth R, Furstoss R (2004) Adv Synth Catal 346:203–214
Hilker I, Gutierrez MC, Furstoss R, Ward J, Wohlgemuth R, Alphand V (2008) Nat Protoc 3:546–554
Law HEM, Baldwin CVF, Chen BH, Woodley JM (2006) Chem Eng Sci 61:6646–6652
Hilker I, Baldwin C, Alphand W, Furstoss R, Woodley J, Wohlgemuth R (2006) Biotechnol Bioeng 93:1138–1144
Carrea G, Riva S (2000) Angew Chem Int Ed 39:2226–2254
Grunwald J, Wirz B, Scollar MP, Klibanov AM (1986) J Am Chem Soc 108:6732–6734
Nakamura K, Kondo S, Kawai Y, Ohno A (1993) Bull Chem Soc Jpn 66:2738–2743
Manosroi J, Sripalakit P, Manosroi A (1998) J Chem Technol Biotechnol 73:203–210
Jonsson A, van Breukelen W, Wehtje E, Adlercreutz P, Mattiasson B (1998) J Mol Catal B Enzym 5:273–276
Lutz J, Mozhaev VV, Khmelnitsky YL, Witholt B, Schmid A (2002) J Mol Catal B Enzym 19–20:177–187
Luo DH, Zong MH, Xu JH (2003) J Mol Catal B Enzym 24–25:83–88
Mittl PR, Perham RN, Schulz GE, Berry A, Scrutton NS (1995) Protein Sci 3:1504–1514
Rosell A, Valencia E, Ochoa WF, Fita I, Pares X, Farres J (2003) J Biol Chem 278:40573–40580
Bellamacina CR (1996) FASEB J 10:1257–1269
Bubner P, Klimacek M, Nidetzky B (2008) FEBS Lett 582:233–237
Leitgeb S, Petschacher B, Wilson DK, Nidetzky B (2005) FEBS Lett 579:763–767
Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B (2005) Biochem J 385:75–83
Petschacher B, Nidetzky B (2005) Appl Environ Microbiol 71:6390–6393
Watanabe S, Makino K, Kodaki T (2005) J Biol Chem 280:10340–10349
Drauz K, Eils S, Schwarm M (2002) Chim Oggi Chem Today 20:15–21
Bommarius AS, Schwarm M, Stingl K, Kottenhahn M, Huthmacher K, Drauz K (1995) Tetrahedron Asymmetry 6:2851–2888
Hanson RL, Schwinden MD, Banerjee A, Brzozowski DB, Chen BC, Patel BP, McNamee CG, Kodersha GA, Kronenthal DR, Patel RN, Szarka LJ (1999) Bioorg Med Chem 7:2247–2252
Gröger H, Hummel W, Rollmann C, Chamouleau F, Huesken H, Werner H, Wunderlich C, Abokitse K, Drauz K, Buchholz S (2004) Tetrahedron 60:633–640
Gröger H, Chamouleau F, Orologas N, Rollmann C, Drauz K, Hummel W, Weckbecker A, May O (2006) Angew Chem Int Ed 45:5677–5681
Gröger H, Rollmann C, Chamouleau F, Sebastien I, May O, Wienand W, Drauz K (2007) Adv Synth Catal 349:709–712
Berkessel A, Rollmann C, Chamouleau F, Labs S, May O, Gröger H (2007) Adv Synth Catal 349:2697–2704
Richter N, Neumann M, Liese A, Wohlgemuth R, Eggert T, Hummel W (2009) Chembiochem 10:1888–1896
Kataoka M, Sakai H, Morikawa T, Katoh M, Miyoshi T, Shimizu S, Yamada H (1992) Biochim Biophys Acta 1122:57–62
Wada M, Kataoka M, Kawabata H, Yasohara Y, Kizaki N, Hasegawa J, Shimizu S (1998) Biotechnol Biochem 62:280–285
Kataoka M, Rohani LP, Yamamoto K, Wada M, Kawabata H, Kita K, Yanase H, Shimizu S (1997) Appl Microbiol Biotechnol 48:699–703
Kita K, Matsuzaki K, Hashimoto T, Yanase H, Kato N, Chung MC, Kataoka M, Shimizu S (1996) Appl Environ Microbiol 62:2303–2310
Shimizu S, Kataoka M, Katoh M, Morikawa T, Miyoshi T, Yamada H (1990) Appl Environ Microbiol 56:2374–2377
Kataoka M, Rohani LPS, Wada M, Kita K, Yanase H, Urabe I, Shimizu S (1998) Biosci Biotechnol Biochem 62:167–169
Kataoka M, Yamamoto K, Kawabata H, Wada M, Kita K, Yanase H, Shimizu S (1999) Appl Microbiol Biotechnol 51:486–490
Ogawa J, Shimizu S (2002) Curr Opin Biotechnol 13:367–375
Müller M, Wolberg M, Schubert T, Hummel W (2005) Adv Biochem Eng Biotechnol 92:261–287
Wolberg M, Villela M, Bode S, Geilenkirchen P, Feldmann R, Liese A, Hummel W, Müller M (2008) Bioprocess Biosyst Eng 31:183–191
Wolberg M, Hummel W, Wandrey C, Müller M (2000) Angew Chem 112:4476–4478
Wolberg M, Ji AG, Hummel W, Müller M (2001) Synthesis 2001:937–942
Krix G, Bommarius AS, Drauz K, Kottenhahn M, Schwarm M, Kula M-R (1997) J Biotechnol 53:29–39
Kallwass HK (1992) Enzyme Microb Technol 14:28–35
Ema T, Okita N, Ide S, Sakai T (2007) Org Biomol Chem 5:1175–1176
Ema T, Sugiyama Y, Fukumoto M, Moriya H, Cui JN, Sakai T, Utaka M (1998) J Org Chem 63:4996–5000
Ema T, Yagasaki H, Okita N, Nishikawa K, Korenaga T, Sakai T (2005) Tetrahedron Asymmetry 16:1075–1078
Ema T, Ide S, Okita N, Sakai T (2008) Adv Synth Catal 350:2039–2044
Krausser M, Hummel W, Gröger H (2007) Eur J Org Chem:5175–5179
Burda E, Hummel W, Gröger H (2008) Angew Chem Int Ed 47:9551–9554
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer
About this chapter
Cite this chapter
Weckbecker, A., Gröger, H., Hummel, W. (2010). Regeneration of Nicotinamide Coenzymes: Principles and Applications for the Synthesis of Chiral Compounds. In: Wittmann, C., Krull, R. (eds) Biosystems Engineering I. Advances in Biochemical Engineering / Biotechnology, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2009_55
Download citation
DOI: https://doi.org/10.1007/10_2009_55
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-14230-7
Online ISBN: 978-3-642-14231-4
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)
