Skip to main content

Regeneration of Nicotinamide Coenzymes: Principles and Applications for the Synthesis of Chiral Compounds

Part of the Advances in Biochemical Engineering / Biotechnology book series (ABE,volume 120)

Abstract

Dehydrogenases which depend on nicotinamide coenzymes are of increasing interest for the preparation of chiral compounds, either by reduction of a prochiral precursor or by oxidative resolution of their racemate. The regeneration of oxidized and reduced nicotinamide cofactors is a very crucial step because the use of these cofactors in stoichiometric amounts is too expensive for application. There are several possibilities to regenerate nicotinamide cofactors: established methods such as formate/formate dehydrogenase (FDH) for the regeneration of NADH, recently developed electrochemical methods based on new mediator structures, or the application of gene cloning methods for the construction of “designed” cells by heterologous expression of appropriate genes.

A very promising approach is enzymatic cofactor regeneration. Only a few enzymes are suitable for the regeneration of oxidized nicotinamide cofactors. Glutamate dehydrogenase can be used for the oxidation of NADH as well as NADPH while l-lactate dehydrogenase is able to oxidize NADH only. The reduction of NAD+ is carried out by formate and FDH. Glucose-6-phosphate dehydrogenase and glucose dehydrogenase are able to reduce both NAD+ and NADP+. Alcohol dehydrogenases (ADHs) are either NAD+- or NADP+-specific. ADH from horse liver, for example, reduces NAD+ while ADHs from Lactobacillus strains catalyze the reduction of NADP+. These enzymes can be applied by their inclusion in whole cell biotransformations with an NAD(P)+-dependent primary reaction to achieve in situ the regeneration of the consumed cofactor.

Another efficient method for the regeneration of nicotinamide cofactors is the electrochemical approach. Cofactors can be regenerated directly, for example at a carbon anode, or indirectly involving mediators such as redox catalysts based on transition-metal complexes.

An increasing number of examples in technical scale applications are known where nicotinamide dependent enzymes were used together with cofactor regenerating enzymes.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   245.03
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   316.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   316.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ADH:

Alcohol dehydrogenase

FDH:

Formate dehydrogenase

GDH:

Glucose dehydrogenase

GluDH:

Glutamate dehydrogenase

HLADH:

Horse liver alcohol dehydrogenase

LDH:

Lactate dehydrogenase

LeuDH:

Leucine dehydrogenase

PTDH:

Phosphite dehydrogenase

TBADH:

Alcohol dehydrogenase from Thermoanaerobacter brockii

References

  1. Chenault HK, Whitesides GM (1987) Appl Biochem Biotechnol 14:147–197

    CAS  Google Scholar 

  2. Hummel W, Kula MR (1989) Eur J Biochem 184:1–13

    CAS  Google Scholar 

  3. Schütte H, Flossdorf J, Sahm H, Kula M-R (1976) Eur J Biochem 62:151–160

    Google Scholar 

  4. Allen SJ, Holbrook JJ (1995) Gene 162:99–104

    CAS  Google Scholar 

  5. Avilova TV, Egorova OA, Ioanesyan LS, Egorov AM (1985) Eur J Biochem 152:657–662

    CAS  Google Scholar 

  6. Kato N, Sahm H, Wagner F (1979) Biochim Biophys Acta 566:12–20

    CAS  Google Scholar 

  7. Gul-Karaguler N, Sessions RB, Clarke AR, Holbrook JJ (2001) Biotechnol Lett 23:283–287

    CAS  Google Scholar 

  8. Izumi Y, Kanzaki H, Morita S, Futazuka H, Yamada H (1989) Eur J Biochem 182:333–341

    CAS  Google Scholar 

  9. Izumi Y, Kanzaki H, Morita S, Yamada H (1987) FEMS Microbiol Lett 48:139–142

    CAS  Google Scholar 

  10. Karzanov VV, Bogatsky YA, Tishkov VI, Egorov AM (1989) FEMS Microbiol Lett 51:197–200

    CAS  Google Scholar 

  11. Müller U, Willnow P, Ruschig U, Hopner T (1978) Eur J Biochem 83:485–498

    Google Scholar 

  12. Tishkov VI, Galkin AG, Marchenko GN, Tsygankov YD, Egorov AM (1993) Biotechnol Appl Biochem 18:201–207

    CAS  Google Scholar 

  13. Nanba H, Takaoka Y, Hasegawa J (2003) Biosci Biotechnol Biochem 67:2145–2153

    CAS  Google Scholar 

  14. Yamamoto H, Mitsuhashi K, Kimoto N, Kobayashi Y, Esaki N (2005) Appl Microbiol Biotechnol 67:33–39

    CAS  Google Scholar 

  15. Yamamoto H, Mitsuhashi K, Kimoto N, Matsuyama A, Esaki N, Kobayashi Y (2004) Biosci Biotechnol Biochem 68:638–649

    CAS  Google Scholar 

  16. Cosgrove MS, Naylor C, Paludan S, Adams MJ, Levy HR (1998) Biochemistry 37:2759–2767

    CAS  Google Scholar 

  17. Wong CH, Gordon J, Cooney CL, Whitesides GM (1981) J Org Chem 46:4676–4679

    CAS  Google Scholar 

  18. Okuno H, Nagata K, Nakajima H (1985) J Appl Biochem 7:192–201

    CAS  Google Scholar 

  19. Bright JR, Byrom D, Danson MJ, Hough DW, Towner P (1993) Eur J Biochem 211:549–554

    CAS  Google Scholar 

  20. Smith LD, Budgen N, Bungard SJ, Danson MJ, Hough DW (1989) Biochem J 261:973–977

    CAS  Google Scholar 

  21. Mitamura T, Urabe I, Okada H (1989) Eur J Biochem 186:389–393

    CAS  Google Scholar 

  22. Nagao T, Mitamura T, Wang XH, Negoro S, Yomo T, Urabe I, Okada H (1992) J Bacteriol 174:5013–5020

    CAS  Google Scholar 

  23. Pauly HE, Pfleiderer G (1975) Hoppe Seylers Z Physiol Chem 356:1613–1623

    CAS  Google Scholar 

  24. Hilt W, Pfleiderer G, Fortnagel P (1991) Biochim Biophys Acta 1076:298–304

    CAS  Google Scholar 

  25. Drewke C, Ciriacy M (1988) Biochim Biophys Acta 950:54–60

    CAS  Google Scholar 

  26. Adolph HW, Maurer P, Schneiderbernlohr H, Sartorius C, Zeppezauer M (1991) Eur J Biochem 201:615–625

    CAS  Google Scholar 

  27. van Iersel M, Eppink M, van Berkel W, Rombouts F, Abee T (1997) Appl Environ Microbiol 63:4079–4082

    Google Scholar 

  28. Keinan E, Hafeli EK, Seth KK, Lamed R (1986) J Am Chem Soc 108:162–169

    CAS  Google Scholar 

  29. Korkhin Y, Kalb Gilboa AJ, Peretz M, Bogin O, Burstein Y, Frolow F (1998) J Mol Biol 278:967–981

    CAS  Google Scholar 

  30. Hummel W (1997) Adv Biochem Eng Biotechnol 58:145–184

    CAS  Google Scholar 

  31. Niefind K, Muller J, Riebel B, Hummel W, Schomburg D (2003) J Mol Biol 327:317–328

    CAS  Google Scholar 

  32. Niefind K, Riebel B, Mueller J, Hummel W, Schomburg D (2000) Acta Crystallogr D Biol Crystallogr 56:1696–1698

    CAS  Google Scholar 

  33. Hummel W (1990) Biotechnol Lett 12:403–408

    CAS  Google Scholar 

  34. Bradshaw CW, Hummel W, Wong C-H (1992) J Org Chem 57:1532–1536

    CAS  Google Scholar 

  35. Hummel W (1990) Appl Microbiol Biotechnol 34:15–19

    CAS  Google Scholar 

  36. Danielsson B, Winqvist F, Malpote JY, Mosbach K (1982) Biotechnol Lett 4:673–678

    CAS  Google Scholar 

  37. Andersson M, Holmberg H, Adlercreutz P (1998) Biotechnol Bioeng 57:79–86

    CAS  Google Scholar 

  38. Hasumi F, Nakamura S, Nakada N (1991) Mem Numazu Coll Technol 25:63–65

    Google Scholar 

  39. Pfitzner J, Linke HAB, Schlegel HG (1970) Arch Mikrobiol 71:67–70

    CAS  Google Scholar 

  40. Bryant F, Adams M (1989) J Biol Chem 264:5070–5079

    CAS  Google Scholar 

  41. Shaked Z, Whitesides GM (1980) J Am Chem Soc 102:7104–7105

    CAS  Google Scholar 

  42. Kruse W, Hummel W, Kragl U (1996) Recl Trav Chim Pays Bas 115:239–243

    CAS  Google Scholar 

  43. Wong C-H, Whitesides GM (1981) J Am Chem Soc 103:4890–4899

    CAS  Google Scholar 

  44. Lampel KA, Uratani B, Chaudhry GR, Ramaley RF, Rudikoff S (1986) J Bacteriol 166:238–243

    CAS  Google Scholar 

  45. Yun H, Yang YH, Cho BK, Hwang BY, Kim BG (2003) Biotechnol Lett 25:809–814

    CAS  Google Scholar 

  46. Lin S-S, Miyawaki O, Nakamura K (1999) J Biosci Bioeng 87:361–364

    CAS  Google Scholar 

  47. Wada M, Yoshizumi A, Noda Y, Kataoka M, Shimizu S, Takagi H, Nakamori S (2003) Appl Environ Microbiol 69:933–937

    CAS  Google Scholar 

  48. Eguchi T, Kuge Y, Inoue K, Yoshikawa N, Mochida K, Uwajima T (1992) Biosci Biotechnol Biochem 56:701–703

    CAS  Google Scholar 

  49. Benach J, Atrian S, Gonzalez-Duarte R, Ladenstein R (1999) J Mol Biol 289:335–355

    CAS  Google Scholar 

  50. Smilda T, Kamminga AH, Reinders P, Baron W, van Hylckama Vlieg JE, Beintema JJ (2001) J Mol Evol 52:457–466

    CAS  Google Scholar 

  51. Winberg JO, McKinley-McKee JS (1998) Biochem J 329:561–570

    CAS  Google Scholar 

  52. Abokitse K, Hummel W (2003) Appl Microbiol Biotechnol 62:380–386

    CAS  Google Scholar 

  53. Gröger H, Hummel W, Buchholz S, Drauz K, Van Nguyen T, Rollmann C, Husken H, Abokitse K (2003) Org Lett 5:173–176

    Google Scholar 

  54. Hummel W, Abokitse K, Drauz K, Rollmann C, Gröger H (2003) Adv Synth Catal 345:A34

    CAS  Google Scholar 

  55. Kelemen-Horvath I, Nemestothy N, Belafi-Bako K, Gubicza L (2002) Chem Pap Chem Zvesti 56:52–56

    CAS  Google Scholar 

  56. Hirakawa H, Kamiya N, Yata T, Nagamune T (2003) Biochem Eng J 16:35–40

    CAS  Google Scholar 

  57. Zambianchi F, Pasta P, Carrea G, Colonna S, Gaggero N, Woodley JM (2002) Biotechnol Bioeng 78:489–496

    CAS  Google Scholar 

  58. Schneider K, Schlegel HG (1976) Biochim Biophys Acta 452:66–80

    CAS  Google Scholar 

  59. Mertens R, Greiner L, van den Ban ECD, Haaker HBCM, Liese A (2003) J Mol Catal B Enzym 24–25:39–52

    Google Scholar 

  60. Vrtis JM, White AK, Metcalf WW, van der Donk WA (2001) J Am Chem Soc 123:2672–2673

    CAS  Google Scholar 

  61. Vrtis JM, White AK, Metcalf WW, van der Donk WA (2002) Angew Chem Int Ed 41:3257–3259

    CAS  Google Scholar 

  62. Woodyer R, van der Donk WA, Zhao HM (2003) Biochemistry 42:11604–11614

    CAS  Google Scholar 

  63. Johannes TW, Woodyer RD, Zhao HM (2005) Appl Environ Microbiol 71:5728–5734

    CAS  Google Scholar 

  64. Johannes TW, Woodyer RD, Zhao HM (2007) Biotechnol Bioeng 96:18–26

    CAS  Google Scholar 

  65. Gu KF, Chang TM (1990) Appl Biochem Biotechnol 26:115–124

    CAS  Google Scholar 

  66. Veronese FM, Nyc JF, Degani Y, Brown DM, Smith EL (1974) J Biol Chem 249:7922–7928

    CAS  Google Scholar 

  67. Sakamoto N, Kotre AM, Savageau MA (1975) J Bacteriol 124:775–783

    CAS  Google Scholar 

  68. Veronese FM, Boccu E, Conventi L (1975) Biochim Biophys Acta 377:217–228

    CAS  Google Scholar 

  69. Graham LD, Griffin TO, Beatty RE, McCarthy AD, Tipton KF (1985) Biochim Biophys Acta 828:266–269

    CAS  Google Scholar 

  70. Peterson PE, Pierce J, Smith TJ (1997) J Struct Biol 120:73–77

    CAS  Google Scholar 

  71. Garvie EI (1980) Microbiol Rev 44:106–139

    CAS  Google Scholar 

  72. Hensel R, Mayr U, Fujiki H, Kandler O (1977) Eur J Biochem 80:83–92

    CAS  Google Scholar 

  73. Gordon GL, Doelle HW (1976) Eur J Biochem 67:543–555

    CAS  Google Scholar 

  74. Hummel W, Riebel B (2003) Biotechnol Lett 25:51–54

    CAS  Google Scholar 

  75. Riebel BR, Gibbs PR, Wellborn WB, Bommarius AS (2002) Adv Synth Catal 344:1156–1168

    CAS  Google Scholar 

  76. Park HJ, Kreutzer R, Reiser COA, Sprinzl M (1992) Eur J Biochem 205:875–879

    CAS  Google Scholar 

  77. Park HJ, Reiser COA, Kondruweit S, Erdmann H, Schmid RD, Sprinzl M (1992) Eur J Biochem 205:887–893

    Google Scholar 

  78. Lee LG, Whitesides GM (1986) J Org Chem 51:25–36

    CAS  Google Scholar 

  79. Carrea G, Bovara R, Cremonesi P, Lodi R (1984) Biotechnol Bioeng 26:560–563

    CAS  Google Scholar 

  80. Kim M-J, Whitesides GM (1988) J Am Chem Soc 110:2959–2964

    CAS  Google Scholar 

  81. Chenault HK, Whitesides GM (1989) Bioorg Chem 17:400–409

    CAS  Google Scholar 

  82. Lemiere GL, Lepoivre JA, Alderweireldt FC (1985) Tetrahedron Lett 26:4527–4528

    CAS  Google Scholar 

  83. Higuchi M, Yamamoto Y, Poole LB, Shimada M, Sato Y, Takahashi N, Kamio Y (1999) J Bacteriol 181:5940–5947

    CAS  Google Scholar 

  84. Poole LB, Higuchi M, Shimada M, Li Calzi M, Kamio Y (2000) Free Radic Biol Med 28:108–120

    CAS  Google Scholar 

  85. Matsumoto J, Higuchi M, Shimada M, Yamamoto Y, Kamio Y (1996) Biosci Biotechnol Biochem 60:39–43

    CAS  Google Scholar 

  86. Ross RP, Claiborne A (1992) J Mol Biol 227:658–671

    CAS  Google Scholar 

  87. Kengen SWM, van der Oost J, de Vos WM (2003) Eur J Biochem 270:2885–2894

    CAS  Google Scholar 

  88. Geueke B, Riebel B, Hummel W (2003) Enzyme Microb Technol 32:205–211

    CAS  Google Scholar 

  89. Hummel W, Kuzu M, Geueke B (2003) Org Lett 5:3649–3650

    CAS  Google Scholar 

  90. Steckhan E (1994) Electrochem V 170:83–111

    CAS  Google Scholar 

  91. Komoschinski J, Steckhan E (1988) Tetrahedron Lett 29:3299–3300

    CAS  Google Scholar 

  92. Hilt G, Jarbawi T, Heineman WR, Steckhan E (1997) Chemistry 3:79–88

    CAS  Google Scholar 

  93. Hilt G, Steckhan E (1993) J Chem Soc Chem Commun:1706–1707

    Google Scholar 

  94. Steckhan E, Brielbeck B, Frede M, Hilt G (1996) Power Electrochem:230–253

    Google Scholar 

  95. Delecouls-Servat K, Bergel A, Basseguy R (2001) J Appl Electrochem 31:1095–1101

    CAS  Google Scholar 

  96. Schröder I, Steckhan E, Liese A (2003) J Electroanal Chem 541:109–115

    Google Scholar 

  97. DiCosimo R, Wong C-H, Daniels L, Whitesides GM (1981) J Org Chem 46:4622–4623

    CAS  Google Scholar 

  98. Ito M, Kuwana T (1971) J Electroanal Chem 32:415

    CAS  Google Scholar 

  99. Simon H (1992) Pure Appl Chem 64:1181–1186

    CAS  Google Scholar 

  100. Simon H, Bader J, Gunther H, Neumann S, Thanos J (1985) Angew Chem Int Ed 24:539–553

    Google Scholar 

  101. Thanos ICG, Simon H (1987) J Biotechnol 6:13–29

    CAS  Google Scholar 

  102. Günther H, Paxinos AS, Schulz M, Vandijk C, Simon H (1990) Angew Chem Int Ed 29:1053–1055

    Google Scholar 

  103. Nagata S, Gunther H, Bader J, Simon H (1987) FEBS Lett 210:66–70

    CAS  Google Scholar 

  104. Günther H, Walter K, Kohler P, Simon H (2000) J Biotechnol 83:253–267

    Google Scholar 

  105. Schulz M, Leichmann H, Gunther H, Simon H (1995) Appl Microbiol Biotechnol 42:916–922

    CAS  Google Scholar 

  106. Shaked Z, Barber JJ, Whitesides GM (1981) J Org Chem 46:4100–4101

    CAS  Google Scholar 

  107. Kano K, Takagi K, Ogino Y, Ikeda T (1995) Chem Lett:589–590

    Google Scholar 

  108. Yuan R, Watanabe S, Kuwabata S, Yoneyama H (1997) J Org Chem 62:2494–2499

    CAS  Google Scholar 

  109. Franke M, Steckhan E (1988) Angew Chem Int Ed 27:265–267

    Google Scholar 

  110. Wienkamp R, Steckhan E (1982) Angew Chem Int Ed 21:782–783

    Google Scholar 

  111. Steckhan E, Herrmann S, Ruppert R, Dietz E, Frede M, Spika E (1991) Organometallics 10:1568–1577

    CAS  Google Scholar 

  112. Ruppert R, Herrmann S, Steckhan E (1987) Tetrahedron Lett 28:6583–6586

    CAS  Google Scholar 

  113. Westerhausen D, Herrmann S, Hummel W, Steckhan E (1992) Angew Chem Int Ed 31:1592–1531

    Google Scholar 

  114. Shimizu Y, Kitani A, Ito S, Sasaki K (1993) Denki Kagaku 61:872–873

    CAS  Google Scholar 

  115. Voivodov KI, Sobolov SB, Leonida MD, Fry AJ (1995) Bioorg Med Chem Lett 5:681–686

    CAS  Google Scholar 

  116. Leonida MD, Fry AJ, Sobolov SB, Voivodov KI (1996) Bioorg Med Chem Lett 6:1663–1666

    CAS  Google Scholar 

  117. Leonida MD, Sobolov SB, Fry AJ (1998) Bioorg Med Chem Lett 8:2819–2824

    CAS  Google Scholar 

  118. Long Y-T, Chen H-Y (1997) J Electroanal Chem 440:239–242

    CAS  Google Scholar 

  119. Baik SH, Kang C, Jeon IC, Yun S-E (1999) Biotechnol Tech 13:1–5

    CAS  Google Scholar 

  120. Hollmann F, Schmid A, Steckhan E (2001) Angew Chem Int Ed 40:169–171

    CAS  Google Scholar 

  121. Hollmann F, Witholt B, Schmid A (2003) J Mol Catal B Enzym 19:167–176

    Google Scholar 

  122. Cantet J, Bergel A, Comtat M (1996) Enzyme Microb Technol 18:72–79

    CAS  Google Scholar 

  123. Ruppert R, Steckhan E (1989) J Chem Soc Perkin Trans 2:811–814

    Google Scholar 

  124. Ruppert R, Herrmann S, Steckhan E (1988) J Chem Soc Chem Commun:1150–1151

    Google Scholar 

  125. Wagenknecht PS, Penney JM, Hembre RT (2003) Organometallics 22:1180–1182

    CAS  Google Scholar 

  126. Wilms B, Wiese A, Syldatk C, Mattes R, Altenbuchner J (2001) J Biotechnol 86:19–30

    CAS  Google Scholar 

  127. Cheesman MJ, Kneller MB, Kelly EJ, Thompson SJ, Yeung CK, Eaton DL, Rettie AE (2001) Protein Expr Purif 21:81–86

    CAS  Google Scholar 

  128. Stewart JD (1998) Curr Org Chem 2:195–216

    CAS  Google Scholar 

  129. Stewart JD, Reed KW, Kayser MM (1996) J Chem Soc Perkin Trans 1:755–757

    Google Scholar 

  130. Chen YC, Peoples OP, Walsh CT (1988) J Bacteriol 170:781–789

    CAS  Google Scholar 

  131. Doig SD, O'Sullivan LM, Patel S, Ward JM, Woodley JM (2001) Enzyme Microb Technol 28:265–274

    CAS  Google Scholar 

  132. Iwaki H, Hasegawa Y, Teraoka M, Tokuyama T, Bergeron H, Lau PCK (1999) Appl Environ Microbiol 65:5158–5162

    CAS  Google Scholar 

  133. Gutierrez MC, Furstoss R, Alphand V (2005) Adv Synth Catal 347:1051–1059

    CAS  Google Scholar 

  134. Hilker I, Alphand V, Wohlgemuth R, Furstoss R (2004) Adv Synth Catal 346:203–214

    CAS  Google Scholar 

  135. Hilker I, Gutierrez MC, Furstoss R, Ward J, Wohlgemuth R, Alphand V (2008) Nat Protoc 3:546–554

    CAS  Google Scholar 

  136. Law HEM, Baldwin CVF, Chen BH, Woodley JM (2006) Chem Eng Sci 61:6646–6652

    CAS  Google Scholar 

  137. Hilker I, Baldwin C, Alphand W, Furstoss R, Woodley J, Wohlgemuth R (2006) Biotechnol Bioeng 93:1138–1144

    CAS  Google Scholar 

  138. Carrea G, Riva S (2000) Angew Chem Int Ed 39:2226–2254

    CAS  Google Scholar 

  139. Grunwald J, Wirz B, Scollar MP, Klibanov AM (1986) J Am Chem Soc 108:6732–6734

    CAS  Google Scholar 

  140. Nakamura K, Kondo S, Kawai Y, Ohno A (1993) Bull Chem Soc Jpn 66:2738–2743

    CAS  Google Scholar 

  141. Manosroi J, Sripalakit P, Manosroi A (1998) J Chem Technol Biotechnol 73:203–210

    CAS  Google Scholar 

  142. Jonsson A, van Breukelen W, Wehtje E, Adlercreutz P, Mattiasson B (1998) J Mol Catal B Enzym 5:273–276

    CAS  Google Scholar 

  143. Lutz J, Mozhaev VV, Khmelnitsky YL, Witholt B, Schmid A (2002) J Mol Catal B Enzym 19–20:177–187

    Google Scholar 

  144. Luo DH, Zong MH, Xu JH (2003) J Mol Catal B Enzym 24–25:83–88

    Google Scholar 

  145. Mittl PR, Perham RN, Schulz GE, Berry A, Scrutton NS (1995) Protein Sci 3:1504–1514

    Google Scholar 

  146. Rosell A, Valencia E, Ochoa WF, Fita I, Pares X, Farres J (2003) J Biol Chem 278:40573–40580

    CAS  Google Scholar 

  147. Bellamacina CR (1996) FASEB J 10:1257–1269

    CAS  Google Scholar 

  148. Bubner P, Klimacek M, Nidetzky B (2008) FEBS Lett 582:233–237

    CAS  Google Scholar 

  149. Leitgeb S, Petschacher B, Wilson DK, Nidetzky B (2005) FEBS Lett 579:763–767

    CAS  Google Scholar 

  150. Petschacher B, Leitgeb S, Kavanagh KL, Wilson DK, Nidetzky B (2005) Biochem J 385:75–83

    CAS  Google Scholar 

  151. Petschacher B, Nidetzky B (2005) Appl Environ Microbiol 71:6390–6393

    CAS  Google Scholar 

  152. Watanabe S, Makino K, Kodaki T (2005) J Biol Chem 280:10340–10349

    CAS  Google Scholar 

  153. Drauz K, Eils S, Schwarm M (2002) Chim Oggi Chem Today 20:15–21

    Google Scholar 

  154. Bommarius AS, Schwarm M, Stingl K, Kottenhahn M, Huthmacher K, Drauz K (1995) Tetrahedron Asymmetry 6:2851–2888

    CAS  Google Scholar 

  155. Hanson RL, Schwinden MD, Banerjee A, Brzozowski DB, Chen BC, Patel BP, McNamee CG, Kodersha GA, Kronenthal DR, Patel RN, Szarka LJ (1999) Bioorg Med Chem 7:2247–2252

    CAS  Google Scholar 

  156. Gröger H, Hummel W, Rollmann C, Chamouleau F, Huesken H, Werner H, Wunderlich C, Abokitse K, Drauz K, Buchholz S (2004) Tetrahedron 60:633–640

    Google Scholar 

  157. Gröger H, Chamouleau F, Orologas N, Rollmann C, Drauz K, Hummel W, Weckbecker A, May O (2006) Angew Chem Int Ed 45:5677–5681

    Google Scholar 

  158. Gröger H, Rollmann C, Chamouleau F, Sebastien I, May O, Wienand W, Drauz K (2007) Adv Synth Catal 349:709–712

    Google Scholar 

  159. Berkessel A, Rollmann C, Chamouleau F, Labs S, May O, Gröger H (2007) Adv Synth Catal 349:2697–2704

    CAS  Google Scholar 

  160. Richter N, Neumann M, Liese A, Wohlgemuth R, Eggert T, Hummel W (2009) Chembiochem 10:1888–1896

    CAS  Google Scholar 

  161. Kataoka M, Sakai H, Morikawa T, Katoh M, Miyoshi T, Shimizu S, Yamada H (1992) Biochim Biophys Acta 1122:57–62

    CAS  Google Scholar 

  162. Wada M, Kataoka M, Kawabata H, Yasohara Y, Kizaki N, Hasegawa J, Shimizu S (1998) Biotechnol Biochem 62:280–285

    CAS  Google Scholar 

  163. Kataoka M, Rohani LP, Yamamoto K, Wada M, Kawabata H, Kita K, Yanase H, Shimizu S (1997) Appl Microbiol Biotechnol 48:699–703

    CAS  Google Scholar 

  164. Kita K, Matsuzaki K, Hashimoto T, Yanase H, Kato N, Chung MC, Kataoka M, Shimizu S (1996) Appl Environ Microbiol 62:2303–2310

    CAS  Google Scholar 

  165. Shimizu S, Kataoka M, Katoh M, Morikawa T, Miyoshi T, Yamada H (1990) Appl Environ Microbiol 56:2374–2377

    CAS  Google Scholar 

  166. Kataoka M, Rohani LPS, Wada M, Kita K, Yanase H, Urabe I, Shimizu S (1998) Biosci Biotechnol Biochem 62:167–169

    CAS  Google Scholar 

  167. Kataoka M, Yamamoto K, Kawabata H, Wada M, Kita K, Yanase H, Shimizu S (1999) Appl Microbiol Biotechnol 51:486–490

    CAS  Google Scholar 

  168. Ogawa J, Shimizu S (2002) Curr Opin Biotechnol 13:367–375

    CAS  Google Scholar 

  169. Müller M, Wolberg M, Schubert T, Hummel W (2005) Adv Biochem Eng Biotechnol 92:261–287

    Google Scholar 

  170. Wolberg M, Villela M, Bode S, Geilenkirchen P, Feldmann R, Liese A, Hummel W, Müller M (2008) Bioprocess Biosyst Eng 31:183–191

    CAS  Google Scholar 

  171. Wolberg M, Hummel W, Wandrey C, Müller M (2000) Angew Chem 112:4476–4478

    Google Scholar 

  172. Wolberg M, Ji AG, Hummel W, Müller M (2001) Synthesis 2001:937–942

    Google Scholar 

  173. Krix G, Bommarius AS, Drauz K, Kottenhahn M, Schwarm M, Kula M-R (1997) J Biotechnol 53:29–39

    CAS  Google Scholar 

  174. Kallwass HK (1992) Enzyme Microb Technol 14:28–35

    CAS  Google Scholar 

  175. Ema T, Okita N, Ide S, Sakai T (2007) Org Biomol Chem 5:1175–1176

    CAS  Google Scholar 

  176. Ema T, Sugiyama Y, Fukumoto M, Moriya H, Cui JN, Sakai T, Utaka M (1998) J Org Chem 63:4996–5000

    CAS  Google Scholar 

  177. Ema T, Yagasaki H, Okita N, Nishikawa K, Korenaga T, Sakai T (2005) Tetrahedron Asymmetry 16:1075–1078

    CAS  Google Scholar 

  178. Ema T, Ide S, Okita N, Sakai T (2008) Adv Synth Catal 350:2039–2044

    CAS  Google Scholar 

  179. Krausser M, Hummel W, Gröger H (2007) Eur J Org Chem:5175–5179

    Google Scholar 

  180. Burda E, Hummel W, Gröger H (2008) Angew Chem Int Ed 47:9551–9554

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Hummel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Weckbecker, A., Gröger, H., Hummel, W. (2010). Regeneration of Nicotinamide Coenzymes: Principles and Applications for the Synthesis of Chiral Compounds. In: Wittmann, C., Krull, R. (eds) Biosystems Engineering I. Advances in Biochemical Engineering / Biotechnology, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2009_55

Download citation

Publish with us

Policies and ethics