Skip to main content

Extending Synthetic Routes for Oligosaccharides by Enzyme, Substrate and Reaction Engineering

  • Chapter
  • First Online:
Biosystems Engineering I

Abstract

The integration of all relevant tools for bioreaction engineering has been a recent challenge. This approach should notably favor the production of oligo- and polysaccharides, which is highly complex due to the requirements of regio- and stereoselectivity. Oligosaccharides (OS) and polysaccharides (PS) have found many interests in the fields of food, pharmaceuticals, and cosmetics due to different specific properties. Food, sweeteners, and food ingredients represent important sectors where OS are used in major amounts. Increasing attention has been devoted to the sophisticated roles of OS and glycosylated compounds, at cell or membrane surfaces, and their function, e.g., in infection and cancer proliferation. The challenge for synthesis is obvious, and convenient approaches using cheap and readily available substrates and enzymes will be discussed. We report on new routes for the synthesis of oligosaccharides (OS), with emphasis on enzymatic reactions, since they offer unique properties, proceeding highly regio- and stereoselective in water solution, and providing for high yields in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

I:

Inulosucrase

L:

Liter(s)

LS:

Levansucrase

min:

Minute(s)

mol:

Mole(s)

OS:

Oligosaccharide

PS:

Polysaccharide

rt:

Room temperature

Ts:

Tosyl, 4-toluenesulfonyl

References

  1. Deckwer W-D, Jahn D, Hempel D, Zeng A-D (2006) Systems biology approaches to bioprocess development. Eng Life Sci 6:455–469

    CAS  Google Scholar 

  2. Hempel DC (2006) Development of biotechnological processes by integrating genetic and engineering methods. Eng Life Sci 5:443–447

    Google Scholar 

  3. Jördening H-J, Erhardt FA, Holtkamp M, Buchholz K, Scholl S (2008) Verfahrens- und Katalysatordesign als Aufarbeitungsstrategie für die enzymatische Darstellung von Isomaltose. Chem Ing Tech 80:867–874

    Google Scholar 

  4. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130

    CAS  Google Scholar 

  5. Wong CH (2005) Protein glycosylation: new challenges and opportunities. J Org Chem 70:4219–4225

    CAS  Google Scholar 

  6. Seibel J, Buchholz K, Jördening HJ (2006) Glycosylation with activated sugars using glycosyltransferases and transglycosidases. Biocatal Biotrans 24:311–342

    CAS  Google Scholar 

  7. Beine R, Moraru R, Nimtz M, Na’amnieh S, Pawlowski A, Buchholz K, Seibel J (2008) Synthesis of novel fructooligosaccharides by substrate and enzyme engineering. J Biotechnol 138:33–41

    CAS  Google Scholar 

  8. Robyt JF, Walseth TF (1978) The mechanism of acceptor reactions of Leuconostoc mesenteroides B-512F dextransucrase. Carbohydr Res 61:433–445

    CAS  Google Scholar 

  9. Robyt JF, Eklund SH (1982) Stereochemistry involved in the mechanism of action of dextransucrase in the synthesis of dextran and the formation of acceptor products. Bioorg Chem 11:115–132

    CAS  Google Scholar 

  10. Shamala TR, Prasad MS (1995) Preliminary studies on the production of high and low viscosity dextran by Leuconostoc spp. Proc Biochem 30:237–241

    Google Scholar 

  11. Quirasco M, Lopez-Munguia A, Pelenc V, Remaud M, Paul F, Monsan P (1995) Enzymatic production of glucooligosaccharides containing alpha-(1,2) glycosidic bonds. Potential application in nutrition. Ann N Y Acad Sci 750:317–320

    CAS  Google Scholar 

  12. Remaud-Simeon M, Lopez-Munguia A, Pelenc V, Paul F, Monsan P (1994) Production and use of glucosyltransferases from Leuconostoc mesenteroides NRRL B-1299 for the synthesis of oligosaccharides containing alpha-(1,2) linkages. Appl Biochem Biotech 44:101–117

    CAS  Google Scholar 

  13. Olano-Martin E, Mountzouris KC, Gibson GR, Rastall RA (2000) In vitro fermentability of dextran, oligodextran and maltodextrin by human gut bacteria. Brit J Nutr 83:247–255

    CAS  Google Scholar 

  14. Dols M, Remaud-Siméon M, Willemot RM, Vignon M, Monsan P (1998) Structural characterization of the maltose acceptor products synthesized by Leuconostoc mesenteroides NRRL B-1299 dextransucrase. Carbohydr Res 305:549–559

    Google Scholar 

  15. Berensmeier S, Jördening H-J, Buchholz K (2006) Isomaltose formation by free and immobilised dextransucrase. Biocata Biotrans 24:280–290

    CAS  Google Scholar 

  16. Ebert KH, Schenk G, Stricker H (1964) Ueber den Mechanismus des Aufbauschrtittes der enzymatischen Dextran- und Laevanbildung. Ber Bunsenges 68:765–767

    CAS  Google Scholar 

  17. Ebert KH, Patat F (1962) Kinetische Betrachtungen ueber die enzymatische Dextransynthese. Z Naturforschung 17b:738–748

    Google Scholar 

  18. Hehre EJ, Hamilton DM (1946) Bacterial synthesis of an amylopectin-like polysacchride from sucrose. J Biol Chem 166:77–78

    Google Scholar 

  19. Mayer RM, Matthews MM, Futerman CL, Parnaik VK, Jung SM (1981) Dextransucrase: acceptor substrate reactions. Arch Biochem Biophys 208:278–287

    CAS  Google Scholar 

  20. Demuth B, Jordening HJ, Buchholz K (1999) Modelling of oligosaccharide synthesis by dextransucrase. Biotechnol Bioeng 62:583–592

    CAS  Google Scholar 

  21. Boker M, Jordening HJ, Buchholz K (1994) Kinetics of leucrose formation from sucrose by dextransucrase. Biotechnol Bioeng 43:856–864

    CAS  Google Scholar 

  22. Heincke K, Demuth B, Joerdening H-J, Buchholz K (1999) Kinetics of the dextransucrase acceptor reaction with maltose: experimental results and modeling. Enz Microb Technol 24:523–534

    CAS  Google Scholar 

  23. Reh K-D, Noll-Borchers M, Buchholz K (1996) Productivity of immobilized dextransucrase for leucrose formation. Enz Microb Technol 19:518–524

    CAS  Google Scholar 

  24. Schwengers D (1991) Leucrose, a ketodisaccharide of industrial design. In: Lichtenthaler FW (ed) Carbohydrates as organic raw materials. VCH, Weinheim, pp 183–195

    Google Scholar 

  25. Buchholz K, Noll-Borchers M, Schwengers D (1998) Production of leucrose by dextransucrase. Starch/Stärke 50:164–172

    CAS  Google Scholar 

  26. Dols M, Remaud-Simeon M, Willemot RM, Demuth B, Jördening HJ, Buchholz K, Monsan P (1999) Kinetic modeling of oligosaccharide synthesis catalyzed by Leuconostoc mesenteroides NRRL B-1299 dextransucrase. Biotechnol Bioeng 63:308–315

    CAS  Google Scholar 

  27. Robyt JF (1995) Mechanism in the glucansucrase synthesis of polysaccharides and oligosaccharides from sucrose. Adv Carbohydr Chem Biochem 51:133–168

    CAS  Google Scholar 

  28. Demuth K, Jördening H-J, Buchholz K (2000) Oligosaccharide synthesis with dextransucrase. Bielecki S, Tramper J, Polak J (eds) Food Biotechnology. Elsevier Science, Amsterdam, pp 123–135

    Google Scholar 

  29. Reischwitz A, Reh K-D, Buchholz K (1995) Unconventional immobilization of dextransucrase with alginate. Enzyme Microb Technol 17:457–461

    CAS  Google Scholar 

  30. Berensmeier S, Ergezinger M, Bohnet M, Buchholz K (2004) Design of immobilised dextransucrase for fluidised bed application. J Biotechnol 114:255–267

    CAS  Google Scholar 

  31. Monchois V, Willemot RM, Monsan P (1999) Glucansucrases: mechanism of action and structure-function relationships. FEMS Microbiol Rev 23:131–151

    CAS  Google Scholar 

  32. Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280(Pt 2):309–316

    CAS  Google Scholar 

  33. van Hijum SA, Kralj S, Ozimek LK, Dijkhuizen L, van Geel-Schutten IG (2006) Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev 70:157–176

    Google Scholar 

  34. MacGregor EA, Jespersen HM, Svensson B (1996) A circularly permuted alpha-amylase-type alpha/beta-barrel structure in glucan-synthesizing glucosyltransferases. FEBS Lett 378:263–266

    CAS  Google Scholar 

  35. Pijning T, Vujicic-Zagar A, Kralj S, Eeuwema W, Dijkhuizen L, Dijkstra BW (2008) Biochemical and crystallographic characterization of a glucansucrase from Lactobacillus reuteri 180. Biocatal Biotrans 26:12–17

    CAS  Google Scholar 

  36. Buchholz K (2008) Introduction: the spirit of carbohydrates – carbohydrate bioengineering. Biocatal Biotransform 26:3–11

    CAS  Google Scholar 

  37. Lacaze G, Wick M, Cappelle S (2007) Emerging fermentation technologies: development of novel sourdoughs. Food Microbiol 24:155–160

    CAS  Google Scholar 

  38. Coviello T, Matricardi P, Alhaique F (2006) Drug delivery strategies using polysaccharidic gels. Expert opinion on drug delivery 3:395–404

    CAS  Google Scholar 

  39. Mooser G, Hefta SA, Paxton RJ, Shively JE, Lee TD (1991) Isolation and sequence of an active-site peptide containing a catalytic aspartic acid from two Streptococcus sobrinus alpha-glucosyltransferases. J Biol Chem 266:8916–8922

    CAS  Google Scholar 

  40. Kato C, Nakano Y, Lis M, Kuramitsu HK (1992) Molecular genetic analysis of the catalytic site of Streptococcus mutans glucosyltransferases. Biochem Biophys Res Commun 189:1184–1188

    CAS  Google Scholar 

  41. Monchois V, Remaud-Simeon M, Russell RR, Monsan P, Willemot RM (1997) Characterization of Leuconostoc mesenteroides NRRL B-512F dextransucrase (DSRS) and identification of amino-acid residues playing a key role in enzyme activity. Appl Microbiol Biotechnol 48:465–472

    CAS  Google Scholar 

  42. Kralj S, van Geel-Schutten GH, van der Maarel MJ, Dijkhuizen L (2004) Biochemical and molecular characterization of Lactobacillus reuteri 121 reuteransucrase. Microbiology (Reading, England) 150:2099–2112

    Google Scholar 

  43. Devulapalle KS, Goodman SD, Gao Q, Hemsley A, Mooser G (1997) Knowledge-based model of a glucosyltransferase from the oral bacterial group of mutans streptococci. Protein Sci 6:2489–2493

    CAS  Google Scholar 

  44. Seibel J, Hellmuth H, Hofer B, Kicinska AM, Schmalbruch B (2006) Identification of new acceptor specificities of glycosyltransferase R with the aid of substrate microarrays. Chembiochem 7:310–320

    CAS  Google Scholar 

  45. Swistowska AM, Gronert S, Wittrock S, Collisi W, Hecht HJ, Hofer B (2007) Identification of structural determinants for substrate binding and turnover by glucosyltransferase R supports the permutation hypothesis. FEBS Lett 581:4036–4042

    CAS  Google Scholar 

  46. Seibel J, Moraru R, Gotze S (2005) Biocatalytic and chemical investigations in the synthesis of sucrose analogues. Tetrahedron 61:7081–7086

    CAS  Google Scholar 

  47. Monchois V, Vignon M, Russell RR (2000) Mutagenesis of asp-569 of glucosyltransferase I glucansucrase modulates glucan and oligosaccharide synthesis. Appl Environ Microbiol 66:1923–1927

    CAS  Google Scholar 

  48. Shimamura A, Nakano YJ, Mukasa H, Kuramitsu HK (1994) Identification of amino acid residues in Streptococcus mutans glucosyltransferases influencing the structure of the glucan product. J Bacteriol 176:4845–4850

    CAS  Google Scholar 

  49. Remaud-Simeon M, Willemot R, Sarcabal P, Potocki de Montalk G, Monsan P (2000) Glucansucrases: molecular engineering and oligosaccharide synthesis. J Mol Catal B Enzym 10:117–128

    CAS  Google Scholar 

  50. Kralj S, van Geel-Schutten IG, Faber EJ, van der Maarel MJ, Dijkhuizen L (2005) Rational transformation of Lactobacillus reuteri 121 reuteransucrase into a dextransucrase. Biochemistry 44:9206–9216

    CAS  Google Scholar 

  51. Kralj S, Eeuwema W, Eckhardt TH, Dijkhuizen L (2006) Role of asparagine 1134 in glucosidic bond and transglycosylation specificity of reuteransucrase from Lactobacillus reuteri 121. FEBS J 273:3735–3742

    CAS  Google Scholar 

  52. Hellmuth H, Wittrock S, Kralj S, Dijkhuizen L, Hofer B, Seibel J (2008) Engineering the glucansucrase GTFR enzyme reaction and glycosidic bond specificity: toward tailor-made polymer and oligosaccharide products. Biochemistry 47:6678–6684

    CAS  Google Scholar 

  53. Ferretti JJ, Gilpin ML, Russell RR (1987) Nucleotide sequence of a glucosyltransferase gene from Streptococcus sobrinus MFe28. J Bacteriol 169:4271–4278

    CAS  Google Scholar 

  54. Kralj S, van Geel-Schutten GH, Rahaoui H, Leer RJ, Faber EJ, van der Maarel MJ, Dijkhuizen L (2002) Molecular characterization of a novel glucosyltransferase from Lactobacillus reuteri strain 121 synthesizing a unique, highly branched glucan with alpha-(1,4) and alpha-(1,6) glucosidic bonds. Appl Environ Microbiol 68:4283–4291

    CAS  Google Scholar 

  55. Fujiwara T, Hoshino T, Ooshima T, Sobue S, Hamada S (2000) Purification, characterization, and molecular analysis of the gene encoding glucosyltransferase from Streptococcus oralis. Infec Immun 68:2475–2483

    CAS  Google Scholar 

  56. Hellmuth H, Hillringhaus L, Hobbel S, Kralj S, Dijkhuizen L, Seibel J (2007) Highly efficient chemoenzymatic synthesis of novel branched thiooligosaccharides by substrate direction with glucansucrases. Chembiochem 8:273–276

    CAS  Google Scholar 

  57. Cerning J (1990) Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Rev 7:113–130

    CAS  Google Scholar 

  58. Yun JW (1996) Fructooligosaccharides – occurence, preparation and application. Enz Microb Technol 19:107–117

    CAS  Google Scholar 

  59. van Hijum SA, Bonting K, van der Maarel MJ, Dijkhuizen L (2001) Purification of a novel fructosyltransferase from Lactobacillus reuteri strain 121 and characterization of the levan produced. FEMS Microbiol Lett 205:323–328

    Google Scholar 

  60. Chambert R, Treboule G, Dedonder R (1974) Kinetic studies of levansucrase of Bacillus subtilis. Eur J Biochem 41:285–300

    CAS  Google Scholar 

  61. van Hijum SAFT, Kralj S, Ozimek LK, Dijkhuizen L, van Geel-Schutten IGH (2006) Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev 70:157–176

    Google Scholar 

  62. van Hijum SA, van Geel-Schutten GH, Rahaoui H, van der Maarel MJ, Dijkhuizen L (2002) Characterization of a novel fructosyltransferase from Lactobacillus reuteri that synthesizes high-molecular-weight inulin and inulin oligosaccharides. Appl Environ Microbiol 68:4390–4398

    Google Scholar 

  63. Chambert R, Gonzy-Treboul G (1976) Levansucrase of Bacillus subtilis: kinetic and thermodynamic aspects of transfructosylation processes. FEBS 62:55–64

    CAS  Google Scholar 

  64. Ouarne F, Guibert A (1995) Fructo-oligosaccharides: enzymatic synthesis from sucrose. Zuckerindustrie 120:793–798

    CAS  Google Scholar 

  65. CAZy (2009) Carbohydrate-active enzymes, online database, http://www.cazy.org. 7 Sep

  66. Meng G, Fütterer K (2003) Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nat Struc Biol 10:935–941

    CAS  Google Scholar 

  67. Meng G, Futterer K (2008) Donor substrate recognition in the raffinose-bound E342A mutant of fructosyltransferase Bacillus subtilis levansucrase. BMC Struct Biol 8:16

    Google Scholar 

  68. Martinez-Fleites C, Ortiz-Lombardia M, Pons T, Tarbouriech N, Taylor EJ, Arrieta JG, Hernandez L, Davies GJ (2005) Crystal structure of levansucrase from the Gram-negative bacterium Gluconacetobacter diazotrophicus. Biochem J 390:19–27

    CAS  Google Scholar 

  69. Alberto F, Bignon C, Sulzenbacher G, Henrissat B, Czjzek M (2004) The three-dimensional structure of invertase (beta-fructosidase) from Thermotoga maritima reveals a bimodular arrangement and an evolutionary relationship between retaining and inverting glycosidases. J Biol Chem 279:18903–18910

    CAS  Google Scholar 

  70. Verhaest M, Ende WV, Roy KL, De Ranter CJ, Laere AV, Rabijns A (2005) X-ray diffraction structure of a plant glycosyl hydrolase family 32 protein: fructan 1-exohydrolase IIa of Cichorium intybus. Plant J 41:400–411

    CAS  Google Scholar 

  71. Nagem RA, Rojas AL, Golubev AM, Korneeva OS, Eneyskaya EV, Kulminskaya AA, Neustroev KN, Polikarpov I (2004) Crystal structure of exo-inulinase from Aspergillus awamori: the enzyme fold and structural determinants of substrate recognition. J Mol Biol 344:471–480

    CAS  Google Scholar 

  72. Alberto F, Jordi E, Henrissat B, Czjzek M (2006) Crystal structure of inactivated Thermotoga maritima invertase in complex with the trisaccharide substrate raffinose. Biochem J 395:457–462

    CAS  Google Scholar 

  73. Matrai J, Lammens W, Jonckheer A, Le Roy K, Rabijns A, Van den Ende W, De Maeyer M (2008) An alternate sucrose binding mode in the E203Q Arabidopsis invertase mutant: an X-ray crystallography and docking study. Proteins 71:552–564

    CAS  Google Scholar 

  74. Ozimek LK, Kralj S, Kaper T, van der Maarel MJ, Dijkhuizen L (2006) Single amino acid residue changes in subsite−1 of inulosucrase from Lactobacillus reuteri 121 strongly influence the size of products synthesized. FEBS J 273:4104–4113

    CAS  Google Scholar 

  75. Homann A, Biedendieck R, Gotze S, Jahn D, Seibel J (2007) Insights into polymer versus oligosaccharide synthesis: mutagenesis and mechanistic studies of a novel levansucrase from Bacillus megaterium. Biochem J 407:189–198

    CAS  Google Scholar 

  76. Ozimek LK, van Hijum SA, van Koningsveld GA, van Der Maarel MJ, van Geel-Schutten GH, Dijkhuizen L (2004) Site-directed mutagenesis study of the three catalytic residues of the fructosyltransferases of Lactobacillus reuteri 121. FEBS Lett 560:131–133

    CAS  Google Scholar 

  77. Ozimek LK, Kralj S, van der Maarel MJ, Dijkhuizen L (2006) The levansucrase and inulosucrase enzymes of Lactobacillus reuteri 121 catalyse processive and non-processive transglycosylation reactions. Microbiology 152:1187–1196

    CAS  Google Scholar 

  78. Hernandez L, Arrieta J, Menendez C, Vazquez R, Coego A, Suarez V, Selman G, Petit-Glatron MF, Chambert R (1995) Isolation and enzymatic properties of levansucrase secreted by Acetobacter diazotrophicus SRT4, a bacterium associated with sugar cane. Biochem J 309(Pt 1):113–118

    CAS  Google Scholar 

  79. Korakli M, Rossmann A, Ganzle MG, Vogel RF (2001) Sucrose metabolism and exopolysaccharide production in wheat and rye sourdoughs by Lactobacillus sanfranciscensis. J Agric Food Chem 49:5194–5200

    CAS  Google Scholar 

  80. Korakli M, Pavlovic M, Ganzle MG, Vogel RF (2003) Exopolysaccharide and kestose production by Lactobacillus sanfranciscensis LTH2590. Appl Environ Microbiol 69:2073–2079

    CAS  Google Scholar 

  81. Doelle HW, Kirk L, Crittenden R, Toh H, Doelle MB (1993) Zymomonas mobilis – science and industrial application. Crit Rev Biotechnol 13:57–98

    CAS  Google Scholar 

  82. Chambert R, Petit-Glatron MF (1991) Polymerase and hydrolase activities of Bacillus subtilis levansucrase can be separately modulated by site-directed mutagenesis. Biochem J 279:35–41

    CAS  Google Scholar 

  83. Kralj S, Buchholz K, Dijkhuizen L, Seibel J (2008) Fructansucrase enzymes and sucrose analogues: new approach for the synthesis of unique fructo-oligosaccharides. Biocatal Biotransform 26:32–41

    CAS  Google Scholar 

  84. Seibel J, Moraru R, Gotze S, Buchholz K, Na’amnieh S, Pawlowski A, Hecht HJ (2006) Synthesis of sucrose analogues and the mechanism of action of Bacillus subtilis fructosyltransferase (levansucrase). Carbohydr Res 341:2335–2349

    CAS  Google Scholar 

  85. Cheetam PSJ, Hacking AJ, Vlitos M (1989) Synthesis of novel disaccharides by a newly isolated fructosyltransferase from Bacillus subtilis. Enz Microb Technol 11:212–219

    Google Scholar 

  86. Seibel J, Beine R, Moraru R, Behringer C, Buchholz K (2006) A new pathway for the synthesis of oligosaccharides by the use of non-Leloir glycosyltransferases. Biocatal Biotrans 24:157–165

    CAS  Google Scholar 

  87. Goldberg R, Tewari J (1989) Thermodynamic and transport properties of carbohydrates and their monophosphates: the pentoses and hexoses. J Phys Chem Ref Data 18:809–822

    CAS  Google Scholar 

  88. Goldberg R, Tewari J, Ahluwalia J (1989) Thermodynamics of the hydrolysis of sucrose. J Biol Chem 264:9901–9904

    CAS  Google Scholar 

  89. Hancock SM, Vaughan MD, Withers SG (2006) Engineering of glycosidases and glycosyltransferases. Curr Opin Chem Biol 10:509–519

    CAS  Google Scholar 

  90. Trincone A, Giordano A (2006) Glycosyl hydrolases and glycosyltransferases in the synthesis of oligosaccharides. Curr Org Chem 10:1163

    CAS  Google Scholar 

  91. Zuccaro A, Götze S, Kneip S, Dersch P, Seibel J (2008) Tailor-made fructooligosaccharides by a combination of substrate and genetic engineering. Chembiochem 9:143–149

    CAS  Google Scholar 

  92. Ergezinger M, Bohnet M, Berensmeier S, Bucholz K (2006) Integrated enzymatic synthesis and adsorption of Isomaltose in a multiphase fluidized bed reactor. Eng Life Sci 5:1–8

    Google Scholar 

  93. Buchholz K, Kasche V, Bornscheuer U (2005) Biocatalysts and enzyme technology. Wiley-VCH, Weinheim

    Google Scholar 

  94. Berensmeier S, Buchholz K (2004) Separation of isomaltose from high sugar concentrated enzyme reaction mixture by dealuminated β-zeolite. Sep Purif Technol 38:129

    CAS  Google Scholar 

  95. Buchholz K, Gödelmann B (1978) Macrokinetics and operational stability of immobilized glucose oxidase and catalase. Biotechnol Bioeng 20:1201–1220

    CAS  Google Scholar 

  96. Reuss M, Buchholz K (1979) Analysis of the coupled transport, reaction and deactivation phenomena in the immobilized system glucose oxidase and catalase. Biotechnol Bioeng 21:2061–2081

    CAS  Google Scholar 

  97. Hartmeyer W (1985) Immobilized biocatalysts – from simple to complex systems. Trends Biotechnol 3:149–153

    Google Scholar 

  98. Förster U (1986) Co-Immobilisierung von Saccharomyces cerevisiae und beta-Galactosidase zur Ethanolherstellung aus Molke. PhD-Thesis, Mathematisch-Naturwissenschaftliche Fakultät der Rheinisch-Westfälischen Technischen Hochschule Aachen

    Google Scholar 

  99. Hahn-Hägerdal B (1984) An enzyme coimmoilized with a microorganism: the conversion of cellobiose to ethanol using [beta]-glucosidase and Saccaromyces cerevisiae in calcium alginate gels. Biotechnol Bioeng 26:365–385

    Google Scholar 

  100. Giordano RL, Trovati J, Schmidell W (2008) Continuous production of ethanol from starch using glucoamylase and yeast co-immobilized in pectin gel. Appl Biochem Biotechnol 147:47–61

    CAS  Google Scholar 

  101. Ge Y, Wang Y, Zhou H, Wang S, Tong Y, Li W (1999) Coimmobilization of glucoamylase and glucose isomerase by molecular deposition technique for one-step conversion of dextrin to fructose. J Biotechnol 67:33–40

    CAS  Google Scholar 

  102. van de Velde F, Lourenco ND, Bakker M, van Rantwijk F, Sheldon RA (2000) Improved operational stability of peroxidases by coimmobilization with glucose oxidase. Biotechnol Bioeng 69:286–291

    Google Scholar 

  103. Atia KS, Ismail SA, El-Arnaouty MB, Dessouki AM (2003) Use of coimmobilized beta-amylase and pullulanase in reduction of saccharification time of starch and increase in maltose yield. Biotechnol Progr 19:853–857

    CAS  Google Scholar 

  104. Goulas AK, Cooper JM, Grandison AS, Rastall RA (2004) Synthesis of isomaltooligosaccharides and oligodextrans in a recycle membrane bioreactor by the combined use of dextransucrase and dextranase. Biotechnol Bioeng 88:778–787

    CAS  Google Scholar 

  105. Goulas AK, Fisher DA, Grimble GK, Grandison AS, Rastall RA (2004) Synthesis of isomaltooligosaccharides and oligodextrans by the combined use of dextransucrase and dextranase. Enzyme Microb Technol 35:327–338

    CAS  Google Scholar 

  106. Erhardt FA, Stammen S, Jordening HJ (2008) Production, characterization and (co-)immobilization of dextranase from Penicillium aculeatum. Biotechnol Lett 30:1069–1073

    CAS  Google Scholar 

  107. Erhardt FA, Jordening HJ (2007) Immobilization of dextranase from Chaetomium erraticum. J Biotechnol 131:440–447

    CAS  Google Scholar 

  108. Erhardt FA, Kugler J, Chakravarthula RR, Jordening HJ (2008) Co-immobilization of dextransucrase and dextranase for the facilitated synthesis of isomalto-oligosaccharides: preparation, characterization and modeling. Biotechnol Bioeng 100:673–683

    CAS  Google Scholar 

  109. Buttersack C, Fornefett I, Mahrholz J, Buchholz K (1997) Specific adsorption from aqueous phase on apolar zeolites in surface science and calatalysis. In: Chon H, Ihm SK, Uh YS (eds) Studies in surface science and calatalysis. Elsevier, Amsterdam, pp 1723–1730

    Google Scholar 

  110. Prüße U, Fox B, Kirchhoff M, Bruske F, Breford J, Vorlop K-D (1998) The jet cutting method as a new immobilization technique. Biotechnol Tech 12:105

    Google Scholar 

  111. Ergezinger M (2006) Integrierte enzymatische Produktion und Adsorption von Isomaltose in einem Mehrphasenreaktor. Phd-thesis, Technische Universität Braunschweig

    Google Scholar 

  112. Kim D, Robyt JF, Lee SY, Lee JH, Kim YM (2003) Dextran molecular size and degree of branching as a function of sucrose concentration, pH, and temperature of reaction of Leuconostoc mesenteroides B-512FMCM dextransucrase. Carbohydr Res 338:1183–1189

    CAS  Google Scholar 

  113. Holtkamp M, Erhardt FA, Jördening H-J, Scholl S (2009) Reaction-integrated separation of isomaltose by ad- and desorption on zeolite. Chem Eng Process 48:852–858

    Google Scholar 

Download references

Acknowledgement

This project is supported by the German Research Foundation via SFB 578 “From Gene to Product”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Seibel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Seibel, J., Jördening, HJ., Buchholz, K. (2010). Extending Synthetic Routes for Oligosaccharides by Enzyme, Substrate and Reaction Engineering. In: Wittmann, C., Krull, R. (eds) Biosystems Engineering I. Advances in Biochemical Engineering / Biotechnology, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2009_54

Download citation

Publish with us

Policies and ethics