Skip to main content

Mesenchymal Stromal Cells Derived from Human Umbilical Cord Tissues: Primitive Cells with Potential for Clinical and Tissue Engineering Applications

  • Chapter
  • First Online:
Bioreactor Systems for Tissue Engineering II

Abstract

Mesenchymal stem or stromal cells (MSCs) have a high potential for cell-based therapies as well as for tissue engineering applications. Since Friedenstein first isolated stem or precursor cells from the human bone marrow (BM) stroma that were capable of osteogenesis, BM is currently the most common source for MSCs. However, BM presents several disadvantages, namely low frequency of MSCs, high donor-dependent variations in quality, and painful invasive intervention. Thus, tremendous research efforts have been observed during recent years to find alternative sources for MSCs.

In this context, the human umbilical cord (UC) has gained more and more attention. Since the UC is discarded after birth, the cells are easily accessible without ethical concerns. This postnatal organ was found to be rich in primitive stromal cells showing typical characteristics of bone-marrow MSCs (BMSCs), e.g., they grow as plastic-adherent cells with a fibroblastic morphology, express a set of typical surface markers, and can be directly differentiated at least along mesodermal lineages. Compared to BM, the UC tissue bears a higher frequency of stromal cells with a higher in vitro expansion potential. Furthermore, immune-privileged and immune-modulatory properties are reported for UC-derived cells, which open highly interesting perspectives for clinical applications.

Authors contributed equally to this work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALP:

Alkaline phosphatase

b-FGF:

Basic fibroblast growth factor

BM:

Bone marrow

BrdU:

5-Bromo-2-deoxyuridine

CCE:

Counterflow centrifugal elutriation

CD:

Cluster of differentiation

CFSE:

Carboxyfluorescein diacetate succinimidyl ester

CFU-F:

Colony forming unit-fibroblast

DAPI:

4′,6-Diamidino-2-phenylindole

ESC:

Embryonic stem cell

GMP:

Good manufacturing practice

GvHD:

Graft-versus-host disease

HA:

Hyaluronic acid

HLA:

Human leukozyte antigen

HUCPVC:

Human umbilical cord perivascular cells

ISCT:

International Society for Cellular Therapy

MLC:

Mixed lymphocyte culture

MSC:

Mesenchymal stromal cell

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PBL:

Peripheral blood lymphocytes

PBMC:

Peripheral blood mononuclear cell

PBS:

Phosphate buffered saline

UC:

Umbilical cord

UCB:

Umbilical cord blood

UCMS:

Umbilical cord matrix cells

VEGF:

Vascular endothelial growth factor

WJ:

Wharton’s jelly

WJC:

Wharton’s jelly cell

References

  1. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  Google Scholar 

  2. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403

    CAS  Google Scholar 

  3. Bajada S, Mazakova I, Richardson JB, Ashammakhi N (2008) Updates on stem cells and their applications in regenerative medicine. J Tissue Eng Regen Med 2:169–183

    Article  CAS  Google Scholar 

  4. Castro-Malaspina H, Gay RE, Resnick G, Kapoor N, Meyers P, Chiarieri D, McKenzie S, Broxmeyer HE, Moore MA (1980) Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood 56:289–301

    CAS  Google Scholar 

  5. Kogler G, Sensken S, Airey JA, Trapp T, Muschen M, Feldhahn N, Liedtke S, Sorg RV, Fischer J, Rosenbaum C, Greschat S, Knipper A, Bender J, Degistirici O, Gao J, Caplan AI, Colletti EJ, Almeida-Porada G, Muller HW, Zanjani E, Wernet P (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200:123–135

    Article  Google Scholar 

  6. Sensebe L (2008) Clinical grade production of mesenchymal stem cells. Biomed Mater Eng 18:S3–S10

    CAS  Google Scholar 

  7. Bieback K, Kern S, Kluter H, Eichler H (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22:625–634

    Article  Google Scholar 

  8. Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM (2003) Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 121:368–374

    Article  Google Scholar 

  9. Di Naro E, Ghezzi F, Raio L, Franchi M, D'Addario V (2001) Umbilical cord morphology and pregnancy outcome. Eur J Obstet Gynecol Reprod Biol 96:150–157

    Article  Google Scholar 

  10. Raio L, Ghezzi F, Di Naro E, Gomez R, Franchi M, Mazor M, Bruhwiler H (1999) Sonographic measurement of the umbilical cord and fetal anthropometric parameters. Eur J Obstet Gynecol Reprod Biol 83:131–135

    Article  CAS  Google Scholar 

  11. Bieback K, Kluter H (2007) Mesenchymal stromal cells from umbilical cord blood. Curr Stem Cell Res Ther 2:310–323

    Article  CAS  Google Scholar 

  12. Gang EJ, Jeong JA, Han S, Yan Q, Jeon CJ, Kim H (2006) In vitro endothelial potential of human UC blood-derived mesenchymal stem cells. Cytotherapy 8:215–227

    Article  CAS  Google Scholar 

  13. Gang EJ, Jeong JA, Hong SH, Hwang SH, Kim SW, Yang IH, Ahn C, Han H, Kim H (2004) Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Stem Cells 22:617–624

    Article  Google Scholar 

  14. Hou L, Cao H, Wang D, Wei G, Bai C, Zhang Y, Pei X (2003) Induction of umbilical cord blood mesenchymal stem cells into neuron-like cells in vitro. Int J Hematol 78:256–261

    Article  Google Scholar 

  15. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675

    Article  CAS  Google Scholar 

  16. Covas DT, Siufi JL, Silva AR, Orellana MD (2003) Isolation and culture of umbilical vein mesenchymal stem cells. Braz J Med Biol Res 36:1179–1183

    Article  CAS  Google Scholar 

  17. Panepucci RA, Siufi JL, Silva WA Jr, Proto-Siquiera R, Neder L, Orellana M, Rocha V, Covas DT, Zago MA (2004) Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells 22:1263–1278

    Article  CAS  Google Scholar 

  18. Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21:105–110

    Article  Google Scholar 

  19. Bailey MM, Wang L, Bode CJ, Mitchell KE, Detamore MS (2007) A comparison of human umbilical cord matrix stem cells and temporomandibular joint condylar chondrocytes for tissue engineering temporomandibular joint condylar cartilage. Tissue Eng 13:2003–2010

    Article  CAS  Google Scholar 

  20. Conconi MT, Burra P, Di Liddo R, Calore C, Turetta M, Bellini S, Bo P, Nussdorfer GG, Parnigotto PP (2006) CD105(+) cells from Wharton's jelly show in vitro and in vivo myogenic differentiative potential. Int J Mol Med 18:1089–1096

    CAS  Google Scholar 

  21. Fu YS, Cheng YC, Lin MY, Cheng H, Chu PM, Chou SC, Shih YH, Ko MH, Sung MS (2006) Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 24:115–124

    Article  Google Scholar 

  22. Fu YS, Shih YT, Cheng YC, Min MY (2004) Transformation of human umbilical mesenchymal cells into neurons in vitro. J Biomed Sci 11:652–660

    Article  CAS  Google Scholar 

  23. Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp DO, Tukun A, Uckan D, Can A (2007) Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25:319–331

    Article  CAS  Google Scholar 

  24. Lund RD, Wang S, Lu B, Girman S, Holmes T, Sauve Y, Messina DJ, Harris IR, Kihm AJ, Harmon AM, Chin FY, Gosiewska A, Mistry SK (2007) Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells 25:602–611

    Article  CAS  Google Scholar 

  25. Ma L, Feng XY, Cui BL, Law F, Jiang XW, Yang LY, Xie QD, Huang TH (2005) Human umbilical cord Wharton's Jelly-derived mesenchymal stem cells differentiation into nerve-like cells. Chin Med J (Engl) 118:1987–1993

    CAS  Google Scholar 

  26. Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, Morales L, Helwig B, Beerenstrauch M, Abou-Easa K, Hildreth T, Troyer D, Medicetty S (2003) Matrix cells from Wharton's jelly form neurons and glia. Stem Cells 21:50–60

    Article  CAS  Google Scholar 

  27. Schmidt D, Mol A, Odermatt B, Neuenschwander S, Breymann C, Gossi M, Genoni M, Zund G, Hoerstrup SP (2006) Engineering of biologically active living heart valve leaflets using human umbilical cord-derived progenitor cells. Tissue Eng 12:3223–3232

    Article  CAS  Google Scholar 

  28. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC (2004) Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord. Stem Cells 22:1330–1337

    Article  Google Scholar 

  29. Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, Luo Y, Rao MS, Velagaleti G, Troyer D (2006) Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem Cells 24:781–792

    Article  CAS  Google Scholar 

  30. Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25:1384–1392

    Article  CAS  Google Scholar 

  31. Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23:220–229

    Article  Google Scholar 

  32. Kadner A, Hoerstrup SP, Tracy J, Breymann C, Maurus CF, Melnitchouk S, Kadner G, Zund G, Turina M (2002) Human umbilical cord cells: a new cell source for cardiovascular tissue engineering. Ann Thorac Surg 74:S1422–S1428

    Article  Google Scholar 

  33. Kadner A, Zund G, Maurus C, Breymann C, Yakarisik S, Kadner G, Turina M, Hoerstrup SP (2004) Human umbilical cord cells for cardiovascular tissue engineering: a comparative study. Eur J Cardiothorac Surg 25:635–641

    Article  Google Scholar 

  34. La Rocca G, Anzalone R, Corrao S, Magno F, Loria T, Lo Iacono M, Di Stefano A, Giannuzzi P, Marasa L, Cappello F, Zummo G, Farina F (2009) Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochem Cell Biol 131:267–282

    Article  CAS  Google Scholar 

  35. Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W, Han ZB, Xu ZS, Lu YX, Liu D, Chen ZZ, Han ZC (2006) Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91:1017–1026

    CAS  Google Scholar 

  36. Majore I, Moretti P, Hass R, Kasper C (2009) Identification of subpopulations in mesenchymal stem cell-like cultures from human umbilical cord. Cell Commun Signal 7:6

    Article  CAS  Google Scholar 

  37. Chen MY, Lie PC, Li ZL, Wei X (2009) Endothelial differentiation of Wharton's jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells. Exp Hematol 37:629–640

    Article  CAS  Google Scholar 

  38. Wu LF, Wang NN, Liu YS, Wei X (2009) Differentiation of Wharton’s jelly primitive stromal cells into insulin-producing cells in comparison with bone marrow mesenchymal stem cells. Tissue Eng Part A 15:2865–2873

    Google Scholar 

  39. Parker GC, Anastassova-Kristeva M, Eisenberg LM, Rao MS, Williams MA, Sanberg PR, English D (2005) Stem cells: shibboleths of development, part II: toward a functional definition. Stem Cells Dev 14:463–469

    Article  CAS  Google Scholar 

  40. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A (2005) Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy 7:393–395

    Article  CAS  Google Scholar 

  41. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  Google Scholar 

  42. Goodwin HS, Bicknese AR, Chien SN, Bogucki BD, Quinn CO, Wall DA (2001) Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant 7:581–588

    Article  CAS  Google Scholar 

  43. Wang JF, Wang LJ, Wu YF, Xiang Y, Xie CG, Jia BB, Harrington J, McNiece IK (2004) Mesenchymal stem/progenitor cells in human umbilical cord blood as support for ex vivo expansion of CD34(+) hematopoietic stem cells and for chondrogenic differentiation. Haematologica 89:837–844

    CAS  Google Scholar 

  44. Raio L, Cromi A, Ghezzi F, Passi A, Karousou E, Viola M, Vigetti D, De Luca G, Bolis P (2005) Hyaluronan content of Wharton's jelly in healthy and Down syndrome fetuses. Matrix Biol 24:166–174

    Article  CAS  Google Scholar 

  45. Jo CH, Kim OS, Park EY, Kim BJ, Lee JH, Kang SB, Lee JH, Han HS, Rhee SH, Yoon KS (2008) Fetal mesenchymal stem cells derived from human umbilical cord sustain primitive characteristics during extensive expansion. Cell Tissue Res 334:423–433

    Article  Google Scholar 

  46. Weiss ML, Troyer DL (2006) Stem cells in the umbilical cord. Stem Cell Rev 2:155–162

    Article  CAS  Google Scholar 

  47. Xu J, Liao W, Gu D, Liang L, Liu M, Du W, Liu P, Zhang L, Lu S, Dong C, Zhou B, Han Z (2009) Neural ganglioside GD2 identifies a subpopulation of mesenchymal stem cells in umbilical cord. Cell Physiol Biochem 23:415–424

    Article  CAS  Google Scholar 

  48. Zhang ZY, Teoh SH, Chong MS, Schantz JT, Fisk NM, Choolani MA, Chan J (2009) Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells. Stem Cells 27:126–137

    Article  CAS  Google Scholar 

  49. Buhring HJ, Battula VL, Treml S, Schewe B, Kanz L, Vogel W (2007) Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci 1106:262–271

    Article  CAS  Google Scholar 

  50. Battula VL, Treml S, Bareiss PM, Gieseke F, Roelofs H, de Zwart P, Muller I, Schewe B, Skutella T, Fibbe WE, Kanz L, Buhring HJ (2009) Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica 94:173–184

    Article  CAS  Google Scholar 

  51. Gang EJ, Bosnakovski D, Figueiredo CA, Visser JW, Perlingeiro RC (2007) SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 109:1743–1751

    Article  CAS  Google Scholar 

  52. Martinez C, Hofmann TJ, Marino R, Dominici M, Horwitz EM (2007) Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood 109:4245–4248

    Article  CAS  Google Scholar 

  53. Karahuseyinoglu S, Kocaefe C, Balci D, Erdemli E, Can A (2008) Functional structure of adipocytes differentiated from human umbilical cord stroma-derived stem cells. Stem Cells 26:682–691

    Article  Google Scholar 

  54. Wu KH, Zhou B, Lu SH, Feng B, Yang SG, Du WT, Gu DS, Han ZC, Liu YL (2007) In vitro and in vivo differentiation of human umbilical cord derived stem cells into endothelial cells. J Cell Biochem 100:608–616

    Article  CAS  Google Scholar 

  55. Kestendjieva S, Kyurkchiev D, Tsvetkova G, Mehandjiev T, Dimitrov A, Nikolov A, Kyurkchiev S (2008) Characterization of mesenchymal stem cells isolated from the human umbilical cord. Cell Biol Int 32:724–732

    Article  CAS  Google Scholar 

  56. Martin-Rendon E, Sweeney D, Lu F, Girdlestone J, Navarrete C, Watt SM (2008) 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang 95:137–148

    Article  CAS  Google Scholar 

  57. Pereira WC, Khushnooma I, Madkaikar M, Ghosh K (2008) Reproducible methodology for the isolation of mesenchymal stem cells from human umbilical cord and its potential for cardiomyocyte generation. J Tissue Eng Regen Med 2:394–399

    Article  CAS  Google Scholar 

  58. Campard D, Lysy PA, Najimi M, Sokal EM (2008) Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells. Gastroenterology 134:833–848

    Article  CAS  Google Scholar 

  59. Chao KC, Chao KF, Fu YS, Liu SH (2008) Islet-like clusters derived from mesenchymal stem cells in Wharton's Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS ONE 3:e1451

    Article  CAS  Google Scholar 

  60. Kadam SS, Tiwari S, Bhonde RR (2009) Simultaneous isolation of vascular endothelial cells and mesenchymal stem cells from the human umbilical cord. In Vitro Cell Dev Biol Anim 45:23–27

    Article  Google Scholar 

  61. Ma L, Cui BL, Feng XY, Law FD, Jiang XW, Yang LY, Xie QD, Huang TH (2006) Biological characteristics of human umbilical cord-derived mesenchymal stem cells and their differentiation into neurocyte-like cells. Zhonghua Er Ke Za Zhi 44:513–517

    Google Scholar 

  62. Chou SC, Ko TL, Fu YY, Wang HW, Fu YS (2008) Identification of genetic networks during mesenchymal stem cell transformation into neurons. Chin J Physiol 51:230–246

    CAS  Google Scholar 

  63. Suzdal'tseva YG, Burunova VV, Vakhrushev IV, Yarygin VN, Yarygin KN (2007) Capability of human mesenchymal cells isolated from different sources to differentiation into tissues of mesodermal origin. Bull Exp Biol Med 143:114–121

    Article  Google Scholar 

  64. Nanaev AK, Kohnen G, Milovanov AP, Domogatsky SP, Kaufmann P (1997) Stromal differentiation and architecture of the human umbilical cord. Placenta 18:53–64

    Article  CAS  Google Scholar 

  65. Kobayashi K, Kubota T, Aso T (1998) Study on myofibroblast differentiation in the stromal cells of Wharton’s jelly: expression and localization of alpha-smooth muscle actin. Early Hum Dev 51:223–233

    Article  CAS  Google Scholar 

  66. Hou T, Xu J, Wu X, Xie Z, Luo F, Zhang Z, Zeng L (2009) Umbilical cord Wharton’s jelly: a new potential cell source of mesenchymal stromal cells for bone tissue engineering. Tissue Eng Part A

    Google Scholar 

  67. Sudo K, Kanno M, Miharada K, Ogawa S, Hiroyama T, Saijo K, Nakamura Y (2007) Mesenchymal progenitors able to differentiate into osteogenic, chondrogenic, and/or adipogenic cells in vitro are present in most primary fibroblast-like cell populations. Stem Cells 25:1610–1617

    Article  CAS  Google Scholar 

  68. Devine SM, Cobbs C, Jennings M, Bartholomew A, Hoffman R (2003) Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 101:2999–3001

    Article  CAS  Google Scholar 

  69. Kraitchman DL, Heldman AW, Atalar E, Amado LC, Martin BJ, Pittenger MF, Hare JM, Bulte JW (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107:2290–2293

    Article  Google Scholar 

  70. Pochampally RR, Neville BT, Schwarz EJ, Li MM, Prockop DJ (2004) Rat adult stem cells (marrow stromal cells) engraft and differentiate in chick embryos without evidence of cell fusion. Proc Natl Acad Sci USA 101:9282–9285

    Article  CAS  Google Scholar 

  71. Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28:875–884

    Article  CAS  Google Scholar 

  72. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, Grisanti S, Gianni AM (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    Article  Google Scholar 

  73. Le Blanc K (2003) Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 5:485–489

    Article  Google Scholar 

  74. Le Blanc K, Ringden O (2005) Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 11:321–334

    Article  CAS  Google Scholar 

  75. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31:890–896

    Article  CAS  Google Scholar 

  76. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57:11–20

    Article  Google Scholar 

  77. Uccelli A, Moretta L, Pistoia V (2006) Immunoregulatory function of mesenchymal stem cells. Eur J Immunol 36:2566–2573

    Article  CAS  Google Scholar 

  78. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48

    Article  Google Scholar 

  79. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, Ringden O (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441

    Article  Google Scholar 

  80. Ringden O, Uzunel M, Rasmusson I, Remberger M, Sundberg B, Lonnies H, Marschall HU, Dlugosz A, Szakos A, Hassan Z, Omazic B, Aschan J, Barkholt L, Le Blanc K (2006) Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81:1390–1397

    Article  Google Scholar 

  81. Ennis J, Gotherstrom C, Le Blanc K, Davies JE (2008) In vitro immunologic properties of human umbilical cord perivascular cells. Cytotherapy 10:174–181

    Article  CAS  Google Scholar 

  82. Weiss ML, Anderson C, Medicetty S, Seshareddy KB, Weiss RJ, VanderWerff I, Troyer D, McIntosh KR (2008) Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells 26:2865–2874

    Article  CAS  Google Scholar 

  83. Yoo KH, Jang IK, Lee MW, Kim HE, Yang MS, Eom Y, Lee JE, Kim YJ, Yang SK, Jung HL, Sung KW, Kim CW, Koo HH (2009) Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol

    Google Scholar 

  84. Yang CC, Shih YH, Ko MH, Hsu SY, Cheng H, Fu YS (2008) Transplantation of human umbilical mesenchymal stem cells from Wharton’s jelly after complete transection of the rat spinal cord. PLoS ONE 3:e3336

    Article  CAS  Google Scholar 

  85. Weiss ML, Mitchell KE, Hix JE, Medicetty S, El-Zarkouny SZ, Grieger D, Troyer DL (2003) Transplantation of porcine umbilical cord matrix cells into the rat brain. Exp Neurol 182:288–299

    Article  CAS  Google Scholar 

  86. Liao W, Xie J, Zhong J, Liu Y, Du L, Zhou B, Xu J, Liu P, Yang S, Wang J, Han Z, Han ZC (2009) Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke. Transplantation 87:350–359

    Article  Google Scholar 

  87. Koh SH, Kim KS, Choi MR, Jung KH, Park KS, Chai YG, Roh W, Hwang SJ, Ko HJ, Huh YM, Kim HT, Kim SH (2008) Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats. Brain Res 1229:233–248

    Article  CAS  Google Scholar 

  88. Friedman R, Betancur M, Boissel L, Tuncer H, Cetrulo C, Klingemann H (2007) Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation. Biol Blood Marrow Transplant 13:1477–1486

    Article  Google Scholar 

  89. Kermani AJ, Fathi F, Mowla SJ (2008) Characterization and genetic manipulation of human umbilical cord vein mesenchymal stem cells: potential application in cell-based gene therapy. Rejuvenation Res 11:379–386

    Article  CAS  Google Scholar 

  90. Glindkamp A, Riechers D, Rehbock C, Hitzmann B, Scheper T, Reardon KF (2009) Sensors in disposable bioreactors status and trends. Adv Biochem Eng Biotechnol

    Google Scholar 

  91. Breymann C, Schmidt D, Hoerstrup SP (2006) Umbilical cord cells as a source of cardiovascular tissue engineering. Stem Cell Rev 2:87–92

    Article  Google Scholar 

  92. Hoerstrup SP, Kadner A, Breymann C, Maurus CF, Guenter CI, Sodian R, Visjager JF, Zund G, Turina MI (2002) Living, autologous pulmonary artery conduits tissue engineered from human umbilical cord cells. Ann Thorac Surg 74:46–52 discussion 52

    Article  Google Scholar 

  93. Schmidt D, Mol A, Neuenschwander S, Breymann C, Gossi M, Zund G, Turina M, Hoerstrup SP (2005) Living patches engineered from human umbilical cord derived fibroblasts and endothelial progenitor cells. Eur J Cardiothorac Surg 27:795–800

    Article  Google Scholar 

  94. van Griensven M, Diederichs S, Roeker S, Boehm S, Peterbauer A, Wolbank S, Riechers D, Stahl F, Kasper C (2009) Mechanical strain using 2D and 3D bioreactors induces osteogenesis: implications for bone tissue engineering. Adv Biochem Eng Biotechnol 112:95–123

    Google Scholar 

  95. www.med.uio.no/dlo/mikro/Images/img03748.jpg

  96. Fan X, Liu T, Liu Y, Ma X, Cui Z (2009) Optimization of primary culture condition for mesenchymal stem cells derived from umbilical cord blood with factorial design. Biotechnol Prog 25:499–507

    Article  CAS  Google Scholar 

  97. Lechner V, Hocht B, Ulrichs K, Thiede A, Meyer T (2007) Obtaining of mesenchymal progenitor cells from the human umbilical cord. Zentralbl Chir 132:358–364

    Article  CAS  Google Scholar 

  98. Lupatov AY, Karalkin PA, Suzdal'tseva YG, Burunova VV, Yarygin VN, Yarygin KN (2006) Cytofluorometric analysis of phenotypes of human bone marrow and umbilical fibroblast-like cells. Bull Exp Biol Med 142:521–526

    Article  Google Scholar 

  99. Walenda T, Bork S, Horn P, Wein F, Saffrich R, Diehlmann A, Eckstein V, Ho AD, Wagner W (2009) Co-culture with mesenchymal stromal cells increases proliferation and maintenance of hematopoietic progenitor cells. J Cell Mol Med

    Google Scholar 

  100. Yan Y, Xu W, Qian H, Si Y, Zhu W, Cao H, Zhou H, Mao F (2009) Mesenchymal stem cells from human umbilical cords ameliorate mouse hepatic injury in vivo. Liver Int 29:356–365

    Article  CAS  Google Scholar 

  101. Yu Y, Ren H, Yun W, Jin Y, Li K, Du L (2008) Differentiation of human umbilical cord blood-derived mesenchymal stem cells into chondroblast and osteoblasts. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 25:1385–1389

    CAS  Google Scholar 

  102. Liu XD, Liu B, Li XS, Mao N (2007) Isolation and identification of mesenchymal stem cells from perfusion of human umbilical cord vein. Zhongguo Shi Yan Xue Ye Xue Za Zhi 15:1019–1022

    Google Scholar 

  103. Diao Y, Ma Q, Cui F, Zhong Y (2009) Human umbilical cord mesenchymal stem cells: osteogenesis in vivo as seed cells for bone tissue engineering. J Biomed Mater Res A 91(1):123–131

    Google Scholar 

  104. Bakhshi T, Zabriskie RC, Bodie S, Kidd S, Ramin S, Paganessi LA, Gregory SA, Fung HC, Christopherson KW 2nd (2008) Mesenchymal stem cells from the Wharton’s jelly of umbilical cord segments provide stromal support for the maintenance of cord blood hematopoietic stem cells during long-term ex vivo culture. Transfusion 48:2638–2644

    Article  Google Scholar 

  105. Kadivar M, Khatami S, Mortazavi Y, Shokrgozar MA, Taghikhani M, Soleimani M (2006) In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells. Biochem Biophys Res Commun 340:639–647

    Article  CAS  Google Scholar 

  106. Qiao C, Xu W, Zhu W, Hu J, Qian H, Yin Q, Jiang R, Yan Y, Mao F, Yang H, Wang X, Chen Y (2008) Human mesenchymal stem cells isolated from the umbilical cord. Cell Biol Int 32:8–15

    Article  CAS  Google Scholar 

  107. Lu LL, Song YP, Wei XD, Fang BJ, Zhang YL, Li YF (2008) Comparative characterization of mesenchymal stem cells from human umbilical cord tissue and bone marrow. Zhongguo Shi Yan Xue Ye Xue Za Zhi 16:140–146

    Google Scholar 

  108. Covas DT, Panepucci RA, Fontes AM, Silva WA Jr, Orellana MD, Freitas MC, Neder L, Santos AR, Peres LC, Jamur MC, Zago MA (2008) Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol 36:642–654

    Article  CAS  Google Scholar 

  109. Magin AS, Koerfer NR, Partenheimer H, Lange C, Zander A, Noll T (2008) Primary cells as feeder cells for coculture expansion of human hematopoietic stem cells from umbilical cord blood a comparative study. Stem Cells Dev

    Google Scholar 

  110. Carlin R, Davis D, Weiss M, Schultz B, Troyer D (2006) Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod Biol Endocrinol 4:8

    Article  CAS  Google Scholar 

  111. Hiroyama T, Sudo K, Aoki N, Miharada K, Danjo I, Fujioka T, Nagasawa T, Nakamura Y (2008) Human umbilical cord-derived cells can often serve as feeder cells to maintain primate embryonic stem cells in a state capable of producing hematopoietic cells. Cell Biol Int 32:1–7

    Article  CAS  Google Scholar 

  112. Ciavarella S, Dammacco F, De Matteo M, Loverro G, Silvestris F (2009) Umbilical cord mesenchymal stem cells: role of regulatory genes in their differentiation to osteoblasts. Stem Cells Dev

    Google Scholar 

  113. Tian X, Fu RY, Chen Y, Yuan LX (2008) Isolation of multipotent mesenchymal stem cells from the tissue of umbilical cord for osteoblasts and adipocytes differentiation. Sichuan Da Xue Xue Bao Yi Xue Ban 39:26–29

    Google Scholar 

  114. Passeri S, Nocchi F, Lamanna R, Lapi S, Miragliotta V, Giannessi E, Abramo F, Stornelli MR, Matarazzo M, Plenteda D, Urciuoli P, Scatena F, Coli A (2009) Isolation and expansion of equine umbilical cord-derived matrix cells (EUCMCs). Cell Biol Int 33:100–105

    Article  CAS  Google Scholar 

  115. Honsawek S, Dhitiseith D, Phupong V (2006) Effects of demineralized bone on proliferation and osteogenic differentiation of mesenchymal stem cells from human umbilical cord. J Med Assoc Thai 89(Suppl 3):S189–S195

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Martina Weiss for her support with the production of the figures and to Stefanie Boehm for the critical reading of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Kasper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moretti, P. et al. (2009). Mesenchymal Stromal Cells Derived from Human Umbilical Cord Tissues: Primitive Cells with Potential for Clinical and Tissue Engineering Applications. In: Kasper, C., van Griensven, M., Pörtner, R. (eds) Bioreactor Systems for Tissue Engineering II. Advances in Biochemical Engineering / Biotechnology, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2009_15

Download citation

Publish with us

Policies and ethics