Skip to main content

Sensors

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 119))

Abstract

With recent advances in nanotechnology, development of nanomaterial bioconjugates is growing exponentially towards eventual translation into biomolecular recognition layers on surfaces. Label-free monitoring of biorecognition events is also key-technology and provides a promising platform, which is simple, cost-effective, and requires no external modification to biomolecules. In this review, we describe the application of nanomaterials, mainly metal nanoparticles, and specific applications of carbon nanotubes (CNTs) based label-free approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

µTAS:

Micro total analysis system

Aβ:

Amyloid-beta

AFB1:

Aflatoxin B1

AFM:

Atomic force microscope

CNTFETs:

Carbon nanotube field-effect transistors

CNTs:

Carbon nanotubes

DMPC:

Dimyristoylphosphatidylcholine

DPV:

Differential pulse voltammetry

FET:

Field-effect transistor

GOxGOD:

Glucose oxidase

HBM:

Hybrid bilayer membrane

hCG:

Human chorionic gonadotropin hormone

HRP:

Horseradish peroxidase

IgE:

Immunoglobulin E

LOD:

Limit of detection

MWCNTs:

Multi-walled CNTs

OP:

Organophosphorus

OPH:

Organophosphorus hydrolase

PDMS:

Poly(dimethylsiloxane)

PNA:

Peptide nucleic acid

QCM:

Quartz crystal microbalance

SAM:

Self assembled monolayer

SEM:

Scanning electron microscopy

SNP:

Single-nucleotide polymorphism

SSB:

Single-stranded DNA binding protein

SWCNTs:

Single-walled CNTs

TNF-α:

Tumor necrosis factor-α gene

T-PSA:

Prostate-specific antigen

References

  1. Hutter E, Fendler J (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706

    Article  CAS  Google Scholar 

  2. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862

    Article  CAS  Google Scholar 

  3. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  4. Ghosh SK, Kundu S, Mandal M, Pal T (2002) Silver and gold nanocluster catalyzed reduction of methylene blue by arsine in a micellar medium. Langmuir 18:8756–8760

    Article  CAS  Google Scholar 

  5. Ghosh SK, Pal T, Kundu S, Nath S, Pal T (2004) Fluorescence quenching of 1-methylaminopyrene near gold nanoparticles: size regime dependence of the small metallic particles. Chem Phys Lett 395:366–372

    Article  CAS  Google Scholar 

  6. Ghosh SK, Pal A, Kundu S, Nath S, Panigrahi S, Pal T (2005) Dimerization of eosin on nanostructured gold surfaces: size regime dependence of the small metallic particles. Chem Phys Lett 412:5–11

    Article  CAS  Google Scholar 

  7. Kubo R (1962) Electronic properties of metallic fine particles I. J Physical Soc Japan 17:975–986

    Article  CAS  Google Scholar 

  8. Mulvaney P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12:788

    Article  CAS  Google Scholar 

  9. Yonzon CR, Jeoung E, Zou S, Schatz GC, Mrksich M, Van Duyne RP (2004) A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer. J Am Chem Soc 126:12669

    Article  CAS  Google Scholar 

  10. Nath N, Chilkoti A (2002) A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 74:504–509

    Article  CAS  Google Scholar 

  11. Nath N, Chilkoti A (2004) Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Anal Chem 76:5370–5378

    Article  CAS  Google Scholar 

  12. Fujiwara K, Watarai H, Itoh H, Nakahama E, Ogawa N (2006) Measurement of antibody binding to protein immobilized on gold nanoparticles by localized surface plasmon spectroscopy. Anal Bioanal Chem 386:639–644

    Article  CAS  Google Scholar 

  13. Ha MH, Endo T, Kim DK, Tamiya E (2007) Nanostructure and molecular interface for biosensing devices. Proc SPIE 6768:67680I1–67680I11

    Google Scholar 

  14. Vestergaard M, Kerman K, Kim DK, Ha MH, Tamiya E (2008) Detection of Alzheimer’s tau protein using localised surface plasmon resonance-based immunochip. Talanta 74:1038–1042

    Article  CAS  Google Scholar 

  15. Endo T, Kerman K, Nagatani N, Ha MH, Kim DK, Yonezawa Y, Nakano K, Tamiya E (2006) Anal Chem 78:6465–6475

    Article  CAS  Google Scholar 

  16. Ha MH, Endo T, Kerman K, Chikae M, Kim DK, Yamamura S, Takamura Y, Tamiya E (2007) Sci Tech Adv Mater 8:331–338

    Article  Google Scholar 

  17. Ha MH, Nakayama T, Saito M, Yamamura S, Takamura Y, Tamiya E (2008) A microfluidic chip based on localized surface plasmon resonance for real-time monitoring of antigen-antibody reaction. Jpn J Appl Phys 47:1337–1341

    Article  Google Scholar 

  18. Ha MH, Endo MS, Chikae M, Kim DK, Yamamura S, Takamura Y, Tamiya E (2008) Label-free detection of melittin binding to a membrane using electrochemical-localized surface plasmon resonance. Anal Chem 80:1859–1864

    Article  Google Scholar 

  19. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  20. Zhao Q, Gan Z, Zhuang Q (2002) Electrochemical sensors based on carbon nanotubes. Electroanalysis 14:1609–1613

    Article  CAS  Google Scholar 

  21. Merkoci A, Alegret S (2005) Towards nanoanalytical chemistry: case of nanomaterial integration into [bio]sensing systems. Contrib Sci 3:57–66

    Google Scholar 

  22. Britto PJ, Santhanam KSV, Ajayan PM (1996) Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem Bioenerg 41:121–125

    Article  CAS  Google Scholar 

  23. Besteman K, Lee J, Wiertz FGM, Heering HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 3:727–730

    Article  CAS  Google Scholar 

  24. Wang J, Musameh M, Lin Y (2003) Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors. J Am Chem Soc 125:2408–2409

    Article  CAS  Google Scholar 

  25. Rubianes MD, Rivas GA (2003) Carbon nanotubes paste electrode. Electrochem Commun 5:689–694

    Article  CAS  Google Scholar 

  26. Musameh M, Wang J, Merkoci A, Lin Y (2002) Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem Commun 4:743–746

    Article  CAS  Google Scholar 

  27. Wang J, Musameh M (2003) Reagentless amperometric alcohol biosensor based on carbon-nanotube/teflon composite electrodes. Anal Lett 36:2041–2048

    Article  CAS  Google Scholar 

  28. Deo RP, Wang J, Block I, Mulchandani A, Joshi KA, Trojanowicz M, Scholz F, Chen W, Lin Y (2005) Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Anal Chim Acta 530:185–189

    Article  CAS  Google Scholar 

  29. Tsujita Y, Maehashi K, Matsumoto K, Chikae M, Torai S, Takamura Y, Tamiya E (2008) Carbon nanotube amperometric chips with pneumatic micropumps. Jpn J Appl Phys 47:2064–2067

    Article  CAS  Google Scholar 

  30. Okuno J, Maehashi K, Kerman K, Takamura Y, Matsumoto K, Tamiya E (2007) Label-free immunosensor for prostate-specific antigen based on single-walled carbon nanotube array-modified microelectrodes. Biosens Bioelectron 22:2377–2381

    Article  CAS  Google Scholar 

  31. Maehashi K, Katsura T, Kerman K, Takamura Y, Matsumoto K, Tamiya E (2007) Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal Chem 79:782–787

    Article  CAS  Google Scholar 

  32. So HM, Won K, Hwan Kim YH, Kim BK, Ryu BH, Na PS, Kim H, Lee JO (2005) Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J Am Chem Soc 127:11906–11907

    Article  CAS  Google Scholar 

  33. Palecek E (2004) Surface-attached molecular beacons light the way for DNA sequencing. Trends Biotechnol 22:55–58

    Article  CAS  Google Scholar 

  34. Watterson JH, Piunno PAE, Krull UJ (2002) Towards the optimization of an optical DNA sensor: control of selectivity coefficients and relative surface affinities. Anal Chim Acta 457:29–38

    Article  CAS  Google Scholar 

  35. Williams KA, Veenhuizen PTM, de la Torre BG, Eritja R, Dekker C (2002) Nanotechnology: carbon nanotubes with DNA recognition. Nature 420:761

    Article  CAS  Google Scholar 

  36. Li J, Ng HT, Cassell A, Fan W, Chen H, Ye Q, Koehne J, Han J, Meyyappan M (2003) Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett 3:597–602

    Article  CAS  Google Scholar 

  37. Kerman K, Morita Y, Takamura Y, Tamiya E, Maehashi K, Matsumoto K (2005) Peptide nucleic acid-modified carbon nanotube field-effect transistor for ultra-sensitive real-time detection of DNA hybridization. NanoBiotechnology 1:65–70

    Article  CAS  Google Scholar 

  38. González-García MB, Fernández-Sánchez C, Costa-García A (2000) Colloidal gold as an electrochemical label of streptavidin–biotin interaction. Biosens Bioelectron 15:315–321

    Article  Google Scholar 

  39. Dequaire M, Degrand C, Limoges B (2000) An electrochemical metalloimmunoassay based on a colloidal gold label. Anal Chem 72:5521–5528

    Article  CAS  Google Scholar 

  40. Díaz-GonzáLez M, Hernaández-Santos D, González-Garcí MB, Costa-García A (2005) Development of an immunosensor for the determination of rabbit IgG using streptavidin modified screen-printed carbon electrodes. Talanta 65:565–573

    Article  Google Scholar 

  41. Tonning E, Sapelnikova S, Christensen J, Carlsson C, Winther-Nielsen M, Dock E, Solná R, Skládal P, Norgaard L, Ruzgas T, Emnéus J (2005) Chemometric exploration of an amperometric biosensor array for fast determination of wastewater quality. Biosens Bioelectron 21:608–617

    Article  CAS  Google Scholar 

  42. Preechaworapun A, Dai Z, Xiang Y, Chailapakul O, Wang J (2008) Investigation of the enzyme hydrolysis products of the substrates of alkaline phosphatase in electrochemical immunosensing. Talanta 76:424–431

    Article  CAS  Google Scholar 

  43. Zhang S, Huang F, Liu B, Ding J, Xu X, Kong J (2007) A sensitive impedance immunosensor based on functionalized gold nanoparticle–protein composite films for probing apolipoprotein A-I. Talanta 71:874–881

    Article  CAS  Google Scholar 

  44. Liang WB, Yuan R, Chai YQ, Li Y, Zhuo Y (2008) A novel label-free voltammetric immunosensor for the detection of α-fetoprotein using functional titanium dioxide nanoparticles. Electrochim Acta 53:2302–2308

    Article  CAS  Google Scholar 

  45. Liang KZ, Qi JS, Mu WJ, Chen ZG (2008) Biomolecules/gold nanowires-doped sol–gel film for label-free electrochemical immunoassay of testosterone. J Biochem Biophys Methods 70:1156–1162

    Article  CAS  Google Scholar 

  46. Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18:319–326

    Article  CAS  Google Scholar 

  47. Liu Y, Qin Z, Wu X, Jiang H (2006) Immune-biosensor for aflatoxin B1 based bio-electrocatalytic reaction on micro-comb electrode. Biochem Eng J 32:211–217

    Article  CAS  Google Scholar 

  48. Liang KZ, Mu WJ (2006) Flow-injection immuno-bioassay for interleukin-6 in humans based on gold nanoparticles modified screen-printed graphite electrodes. Anal Chim Acta 580:128–135

    Article  CAS  Google Scholar 

  49. Idegami K, Chikae M, Kerman K, Nagatani N, Yuhi T, Endo T, Tamiya E (2008) Gold nanoparticle-based redox signal enhancement for sensitive detection of human chorionic gonadotropin hormone. Electroanalysis 1:14–21

    Article  Google Scholar 

  50. Chikae M, Fukuda T, Kerman K, Idegami K, Miura Y, Tamiya E (2008) Amyloid-β detection with saccharide immobilized gold nanoparticle on carbon electrode. Bioelectrochemistry 74:118–123

    Article  CAS  Google Scholar 

  51. Liu S, Ju H (2003) Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosens Bioelectron 19:177–183

    Article  CAS  Google Scholar 

  52. Zhang S, Wang N, Yu H, Niu Y, Sun C (2005) Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor. Bioelectrochemistry 67:15–22

    Article  CAS  Google Scholar 

  53. Zhao S, Zhang K, Bai Y, Yang W, Sun C (2006) Glucose oxidase/colloidal gold nanoparticles immobilized in Nafion film on glassy carbon electrode: direct electron transfer and electrocatalysis. Bioelectrochemistry 69:158–163

    Article  CAS  Google Scholar 

  54. Kerman K, Chikae M, Yamamura S, Tamiya E (2007) Gold nanoparticle-based electrochemical detection of protein phosphorylation. Anal Chim Acta 588:26–33

    Article  CAS  Google Scholar 

  55. Du D, Chen S, Cai J, Zhang A (2007) Electrochemical pesticide sensitivity test using acetylcholinesterase biosensor based on colloidal gold nanoparticle modified sol–gel interface. Talanta 74:766–772

    Article  Google Scholar 

  56. Wang J, Li J, Baca AJ, Hu J, Zhou F, Pan W, Pang D-W (2003) Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Anal Chem 75:3941–3945

    Article  CAS  Google Scholar 

  57. Wang M, Sun C, Wang L, Ji X, Bai Y, Li T, Li J (2003) Electrochemical detection of DNA immobilized on gold colloid particles modified self-assembled monolayer electrode with silver nanoparticle label. J Pharm Biomed Anal 33:1117–1125

    Article  CAS  Google Scholar 

  58. Ozsoz M, Erdem A, Kerman K, Ozkan D, Tugrul B, Topcuoglu N, Ekren H, Taylan M (2003) Electrochemical genosensor based on colloidal gold nanoparticles for the detection of Factor V Leiden mutation using disposable pencil graphite electrodes. Anal Chem 75:2181–2187

    Article  CAS  Google Scholar 

  59. Kerman K, Morita Y, Takamura Y, Ozsoz M, Tamiya E (2004) Modification of Escherichia coli single-stranded DNA binding protein with gold nanoparticles for electrochemical detection of DNA hybridization. Anal Chim Acta 510:169–174

    Article  CAS  Google Scholar 

  60. Tsai CY, Chang TL, Chen CC, Ko FH, Chen PH (2005) An ultra sensitive DNA detection by using gold nanoparticle multilayer in nano-gap electrodes. Microelectron Eng 78–79:546–555

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiichi Tamiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saito, M., Hiep, H.M., Nagatani, N., Tamiya, E. (2009). Sensors. In: Endo, I., Nagamune, T. (eds) Nano/Micro Biotechnology. Advances in Biochemical Engineering / Biotechnology, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2009_13

Download citation

Publish with us

Policies and ethics