Plasmon-Controlled Fluorescence Towards High-Sensitivity Optical Sensing

  • K. Ray
  • M. H. Chowdhury
  • J. Zhang
  • Y. Fu
  • H. Szmacinski
  • K. Nowaczyk
  • J. R. Lakowicz
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 116)


Fluorescence spectroscopy is widely used in chemical and biological research. Until recently most of the fluorescence experiments have been performed in the far-field regime. By far-field we imply at least several wavelengths from the fluorescent probe molecule. In recent years there has been growing interest in the interactions of fluorophores with metallic surfaces or particles. Near-field interactions are those occurring within a wavelength distance of an excited fluorophore. The spectral properties of fluorophores can dramatically be altered by near-field interactions with the electron clouds present in metals. These interactions modify the emission in ways not seen in classical fluorescence experiments. Fluorophores in the excited state can create plasmons that radiate into the far-field and fluorophores in the ground state can interact with and be excited by surface plasmons. These reciprocal interactions suggest that the novel optical absorption and scattering properties of metallic nanostructures can be used to control the decay rates, location, and direction of fluorophore emission. We refer to these phenomena as plasmon-controlled fluorescence (PCF). An overview of the recent work on metal—fluorophore interactions is presented. Recent research combining plasmonics and fluorescence suggest that PCF could lead to new classes of experimental procedures, novel probes, bioassays, and devices.


Fluorescence Metal-enhanced fluorescence Plasmon-controlled fluorescence Sensing Single molecule detection Surface-plasmon coupled emission 



This work was supported by National Institutes of Health (Grant nos. HG002655, EB006521, and EB00682).


  1. 1.
    Strickler SJ, Berg RA (1962) Relationship between absorption intensity and fluorescence lifetimes of molecules. J Chem Phys 37:814–822CrossRefGoogle Scholar
  2. 2.
    Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: I. Theory. Anal Biochem 262:137–156CrossRefGoogle Scholar
  3. 3.
    Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: II. Experimental characterization. Anal Biochem 262:157–176CrossRefGoogle Scholar
  4. 4.
    Schultz S, Smith SR, Mock JJ, Schulz DA (2000) Single target molecule detection with nonbleaching multicolor optical immunolabels. Proc Natl Acad Sci U S A 97:996–1001CrossRefGoogle Scholar
  5. 5.
    Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R (2003) Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63:199–2004Google Scholar
  6. 6.
    Chowdhury MH, Gray SK, Pond J, Geddes CD, Aslan K, Lakowicz JR (2007) Computational study of fluorescence scattering by silver nanoparticles. J Opt Soc Am B 24:2259–2267CrossRefGoogle Scholar
  7. 7.
    Mayergoyz ID, Zhang Z, Miano G (2007) Analysis of dynamics of excitation and dephasing of plasmon resonance modes in nanoparticles. Phys Rev Lett 98:147401–1/4CrossRefGoogle Scholar
  8. 8.
    Pelton M, Liu M, Park S, Scherer NF, Guyor-Sionnest P (2006) Ultrafast resonant optical sensing from single gold nanorods: large nonlinearities and plasmon saturation. Phys Rev B 73:155419–1/6CrossRefGoogle Scholar
  9. 9.
    Lakowicz JR (2001) Radiative decay engineering: biophysical and biomedical applications. Anal Biochem 298:1–24CrossRefGoogle Scholar
  10. 10.
    Lakowicz JR, Shen Y, D'Auria S, Malicka J, Fang J, Gryczynski Z, Gryczynski I (2002) Radiative decay engineering. 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal Biochem 301:261–277CrossRefGoogle Scholar
  11. 11.
    Lakowicz JR (2004) Radiative decay engineering 3: surface plasmon coupled emission. Anal Biochem 324:153–169CrossRefGoogle Scholar
  12. 12.
    Gryczynski I, Malicka J, Gryczynski Z, Lakowicz JR (2004) Radiative decay engineering 4: experimental studies of surface plasmon coupled emission. Anal Biochem 324:170–182CrossRefGoogle Scholar
  13. 13.
    Sokolov K, Chumanov G, Cotton TM (1998) Enhancement of molecular fluorescence near the surface of colloidal metal films. Anal Chem 70:3898–3905CrossRefGoogle Scholar
  14. 14.
    Amos RM, Barnes WL (1997) Modification of the spontaneous emission rate of Eu3+ ions close to a thin metal mirror. Phys Rev B 55(11):7249–7254CrossRefGoogle Scholar
  15. 15.
    Barnes WL (1998) Fluorescence near interfaces: the role of photonic mode density. J Mod Opt 45(4):661–699CrossRefGoogle Scholar
  16. 16.
    Weitz DA, Garoff S, Hanson CD, Gramila TJ (1982) Fluorescent lifetimes of molecules on silver-island films. Opt Lett 7(2):89–91CrossRefGoogle Scholar
  17. 17.
    Aussenegg FR, Leitner A, Lippitsch ME, Reinisch H, Reigler M (1987) Novel aspects of fluorescence lifetime for molecules positioned close to metal surfaces. Surf Sci 139:935–945CrossRefGoogle Scholar
  18. 18.
    Leitner A, Lippitsch ME, Draxler S, Riegler M, Aussenegg FR (1985) Fluorescence properties of dyes absorbed to silver islands, investigated by picosecond techniques. Appl Phys B 36:105–109CrossRefGoogle Scholar
  19. 19.
    Sabanayagam C, Lakowicz JR (2007) Increasing the sensitivity of DNA microarrays by metal-enhanced fluorescence using surface-bound silver nanoparticles. Nucleic Acids Res 35:e13CrossRefGoogle Scholar
  20. 20.
    Gu T, Whitesell JK, Fox MA (2003) Energy transfer from a surface bound arene to the gold core in fluorenyl-alkane-1-thiolate monolayer-protected gold clusters. Chem Mater 15:1358–1366CrossRefGoogle Scholar
  21. 21.
    Gueroui Z, Liebchaber A (2004) Single-molecule measurements of gold quenched quantum dots. Phys Rev Lett 93:166108–166114CrossRefGoogle Scholar
  22. 22.
    Ipe BI, Thomas KG (2002) Photoinduced charge separation in a fluorophore-Gold assembly. J Phys Chem B 106:18–21CrossRefGoogle Scholar
  23. 23.
    Aguila A, Murray RW (2000) Monolayer-protected clusters with fluorescent dansyl ligands. Langmuir 16:5949–5954CrossRefGoogle Scholar
  24. 24.
    Yun CS, Javier A, Jennings T, Fisher M, Hira S, Peterson S, Hopkins B, Reich NO, Strouse GF (2002) Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. J Am Chem Soc 127:3115–3119CrossRefGoogle Scholar
  25. 25.
    Fan C, Wang S, Hong JW, Bazan GC, Plaxco KW, Heeger AJ (2003) Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold-nanoparticles. Proc Natl Acad Sci U S A 100:6297–6301CrossRefGoogle Scholar
  26. 26.
    Zhang J, Lakowicz JR (2007) Metal-enhanced fluorescence of an organic fluorophore using gold particles. Opt Exp 15(5):2598–2606CrossRefGoogle Scholar
  27. 27.
    Garoff S, Weitz DA, Alvarez MS, Gersten JI (1984) Electrodynamics at rough metal surfaces: photochemistry and luminescence of adsorbance near metal-island films. J Chem Phys 81(11):5189–5200CrossRefGoogle Scholar
  28. 28.
    Ray K, Chowdhury M, Lakowicz JR (2007) Aluminum nano-structured film as a substrate for enhanced fluorescence in the ultraviolet — blue spectral region. Anal Chem 79:6480–6487CrossRefGoogle Scholar
  29. 29.
    Ray K, Badugu R, Lakowicz JR (2006) Metal-enhanced fluorescence from CdTe nanocrystals: a single-molecule fluorescence study. J Am Chem Soc 128:8998–8999CrossRefGoogle Scholar
  30. 30.
    Okamoto K, Vyawahare S, Scherer A (2006) Surface-plasmon enhanced bright emission from CdSe quantum-dot nanocrystals. J Opt Soc Am B 23:1674–1678CrossRefGoogle Scholar
  31. 31.
    Shimizu KT, Woo WK, Fisher BR, Eisler HJ, Bawendi MG (2002) Surface-enhanced emission from single semiconductor nanocrystals. Phys Rev Lett 89:117401–1/4CrossRefGoogle Scholar
  32. 32.
    Chowdhury MH, Ray K, Aslan K, Lakowicz JR, Geddes CD (2007) Enhanced fluorescence of phycobiliproteins from plasmonic nanostructures. J Phys Chem C 111:18856–18863CrossRefGoogle Scholar
  33. 33.
    Lakowicz JR, Maliwal BP, Malicka J, Gryczynski Z, Gryzynski I (2002) Effects of silver island films on the luminescent intensity and decay times of lanthanide chelates. J Fluoresc 12(3/4):431–437CrossRefGoogle Scholar
  34. 34.
    Wu M, Lakowicz JR, Geddes CD (2005) Enhanced lanthanide luminescence using silver nanostructures: opportunities for a new class of probes with exceptional spectra characteristics. J Fluoresc 15:53–59CrossRefGoogle Scholar
  35. 35.
    Daniel E, Weber G (1966) Cooperative effects in binding by bovine serum albumin, I: the binding of 1-anilino-8-naphthalenesulfonate. Fluorimetric titrations. Coop Effects Binding Albumin 5:1893–1900Google Scholar
  36. 36.
    Slavik J (1982) Anilinonaphthalene sulfonate as a probe of membrane composition and function. Biochim Biophys Acta 694:1–25CrossRefGoogle Scholar
  37. 37.
    Benson SC, Zeng Z, Glazer AN (1995) Fluorescence energy-transfer cyanine heterodimers with high affinity for double-stranded DNA. Anal Biochem 231:247–255CrossRefGoogle Scholar
  38. 38.
    Haq I, Ladbury JE, Chowdhry BZ, Jenkins TC, Chaires JB (1997) Specific binding of Hoechst 33258 to the D(CGCAAATTTGCG)2 duplex: calorimetric and spectroscopic studies. J Mol Biol 271:244–257CrossRefGoogle Scholar
  39. 39.
    Glazer AN, Peck K, Matheis RA (1990) A stable double-stranded DNA ethidium homodimer complex: application to picogram fluorescence detection of DNA in agarose gels. Proc Natl Acad Sci U S A 87:3851–3855CrossRefGoogle Scholar
  40. 40.
    Rye HS, Yue S, Wemmer DE, Quesada MA, Haugland RP, Mathies RA, Glazer AN (1992) Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: properties and applications. Nucleic Acids Res 20(11:):2803–2812CrossRefGoogle Scholar
  41. 41.
    Malicka J, Gryczynski I, Lakowicz JR (2003) DNA hybridization assays using metal-enhanced fluorescence. Biochem Biophys Res Commun 306:213–218CrossRefGoogle Scholar
  42. 42.
    Enderlein J (2002) Spectral properties of a fluorescing molecule within a spherical metallic cavity. Phys Chem Chem Phys 4:2780–2786CrossRefGoogle Scholar
  43. 43.
    Enderlien J (2002) Theoretical study of single molecule fluorescence in a metallic nanocavity. Appl Phys Lett 80:315–317CrossRefGoogle Scholar
  44. 44.
    Zhang J, Gryczynski I, Gryczynski Z, Lakowicz JR (2006) Dye-labeled silver nanoshell — bright particle. J Phys Chem B 110:8986–8991CrossRefGoogle Scholar
  45. 45.
    Aslan K, Lakowicz JR, Geddes CG (2007) Metal enhanced fluorescence solution-based sensing platform 2: fluorescent core-shell Ag@SiO2 nanoballs. J Fluoresc 17:127–131CrossRefGoogle Scholar
  46. 46.
    Aslan K, Wu M, Lakowicz JR, Geddes CG (2007) Fluorescent core — shell Ag@SiO2 nanocomposites for meta-enhanced fluorescence and single nanoparticle sensing platforms. J Am Chem Soc 129:1524–1425CrossRefGoogle Scholar
  47. 47.
    Hemmila IA (1991) Applications of fluorescence in immunoassays. John Wiley & Sons, New York, 360 pGoogle Scholar
  48. 48.
    Soini E, Hemmila IA, Dahlen D (1995) Time-resolved fluorescence in biospecific assays (review). Pharmacol Ther 66:207–235CrossRefGoogle Scholar
  49. 49.
    Yan Y, Marriott G (2003) Analysis of protein interactions using fluorescence technologies. Curr Opin Chem Biol 7:635–640CrossRefGoogle Scholar
  50. 50.
    Goldsby RA, Kindt TJ, Osborne BA, Kuby J (2003) Enzyme-linked immunosorbent assay. In: Immunology, 5th edn. Freeman, New York, pp. 148–160Google Scholar
  51. 51.
    Szmacinski H[AU1], Smith D, Hanson MA, Kostov Y, Lakowicz JR, Rao G (2008) A novel method for monitoring monoclonal antibody production during cell culture. Biotechnol Bioengin 100:448–457CrossRefGoogle Scholar
  52. 52.
    Findlay JWA, Smith WC, Lee JW, Nordblom GD, Das I, DeSilva BS, Khan MN, Bowsher RR (2000) Validation of immunoassays for bioanalysis: a pharmaceutical industry perspective. J Pharm Biomed Anal 21:1249–1273CrossRefGoogle Scholar
  53. 53.
    Szmacinski H, Lakowicz JR (1999) Measurement of the intensity of long lifetime luminophores in the presence of background signals using phase-modulation fluorometry. Appl Spectrosc 53:1490–1494CrossRefGoogle Scholar
  54. 54.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer Science, New York, pp. 158–204CrossRefGoogle Scholar
  55. 55.
    Harms P, Sipior J, Ram N, Carter GM, Rao G (1999) Low cost phase-modulation measurements of nanosecond fluorescence lifetimes using a lock-in amplifier. Rev Sci Instrum 70(2):1535–1539CrossRefGoogle Scholar
  56. 56.
    Calander N (2005) Surface plasmon-coupled emission and Fabry-Perot resonance in the sample layer: a theoretical approach. J Phys Chem B 109:13957–13956CrossRefGoogle Scholar
  57. 57.
    Calander N (2004) Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures. Anal Chem 76:2168–2173CrossRefGoogle Scholar
  58. 58.
    Salamon Z, Macleod HA, Tollin G (1997) Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I: Theoretical principles. Biochim Biophy Acta 1331:117–129CrossRefGoogle Scholar
  59. 59.
    Melendez J, Carr R, Bartholomew DU, Kukanskis K, Elkind J, Yee S, Furlong C, Woodbury R (1996) A commercial solution for surface plasmon sensing. Sens Actuators B 35–36:212–216CrossRefGoogle Scholar
  60. 60.
    Liedberg B, Lundstrom I (1993) Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sens Actuators B 11:63–72CrossRefGoogle Scholar
  61. 61.
    Cooper MA (2002) Optical biosensors in drug discovery. Nat Rev 1:515–528Google Scholar
  62. 62.
    Wegner GJ, Lee HJ, Corn RM (2002) Characterization and optimization of peptide arrays for the study of epitope-antibody interactions using surface plasmon resonance imaging. Anal Chem 74:5161–5168CrossRefGoogle Scholar
  63. 63.
    Natan MJ, Lyon LA (2002) Surface plasmon resonance biosensing with colloidal Au amplification. In: Feldheim DL, Foss CA (eds.) Metal nanoparticles: synthesis, characterization, and applications. Marcel Dekker, New York, pp. 183–205Google Scholar
  64. 64.
    Raether H (1977) Surface plasmon oscillations and their applications. Physics of thin films. In: Hass G, Francombe MH, Hoffman RW (eds.) Advances in research and development. Academic Press, New York, Vol. 9, pp. 145–261Google Scholar
  65. 65.
    Yih J, Chien F, Lin C, Yau H, Chen S (2005) Angular interrogation attenuated total reflection metrology system for plasmonic structures. Appl Opt 44:6155–6162CrossRefGoogle Scholar
  66. 66.
    Skivesen N, Horvath R, Pederson HC (2005) Optimization of metal-clad waveguide sensors. Sens Actua B 106:668–676CrossRefGoogle Scholar
  67. 67.
    Barnes WL (1998) Fluorescence near interfaces: the role of photonic mode density. J Mod Opt 45(4):661–699CrossRefGoogle Scholar
  68. 68.
    Drexhage KH (1970) Influence of a dielectric interface on fluorescence decay time. J Luminescence 2:693–701CrossRefGoogle Scholar
  69. 69.
    Benner RE, Dornhaus R, Chang RK (1979) Angular emission profiles of dye molecules excited by surface plasmon waves at a metal surface. Opt Commun 30(2):145–149CrossRefGoogle Scholar
  70. 70.
    Weber WH, Eagen CF (1979) Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal. Opt Lett 4(8):236–238CrossRefGoogle Scholar
  71. 71.
    Isfort G, Schierbaum K, Zerulla D (2006) Causality of surface plasmon polariton emission processes. Phys Rev B 73:033408–1/4CrossRefGoogle Scholar
  72. 72.
    Chowdhury MH, Malyn SN, Aslan K, Lakowicz JR, Geddes JR (2006) Multicolor directional surface plasmon coupled chemiluminescence. J Phys Chem B 110:22644–22651CrossRefGoogle Scholar
  73. 73.
    Kostov Y, Smith DS, Tolosa L, Rao G, Gryczynski I, Gryczynski Z, Malicka J, Lakowicz JR (2005) Directional surface plasmon-coupled emission from a 3 nm green fluorescent protein monolayer. Biotechnol Prog 21:1731–1735CrossRefGoogle Scholar
  74. 74.
    Neal TD, Okamoto K, Scherer A (2005) Surface plasmon enhanced emission from dye doped polymer layers. Opt Exp 13(14):5522–5527CrossRefGoogle Scholar
  75. 75.
    Ray K, Badugu R, Lakowicz JR (2007) Sulforhodamine adsorbed Langmuir—Blodgett layers on silver island films: effect of probe distance on the metal-enhanced fluorescence. J Phys Chem C 111:7091–7097CrossRefGoogle Scholar
  76. 76.
    Ray K, Badugu R, Lakowicz JR (2007) Polyelectrolyte layer-by-layer assembly to control the distance between fluorophores and plasmonic nanostructures. Chem Mater 111:7091–7097Google Scholar
  77. 77.
    Ray K, Szmacinski H, Enderlein J, Lakowicz JR (2007) Distance dependence of surface plasmon-coupled emission observed using Langmuir—Blodgett films. Appl Phys Lett 90:251116–1/3CrossRefGoogle Scholar
  78. 78.
    Chowdhury MH, Ray K, Geddes CD Lakowicz JR (2008) Use of silver nanoparticles to enhance surface plasmon-coupled emission (SPCE). Chem Phys Lett 452:162–167CrossRefGoogle Scholar
  79. 79.
    Matveeva EG, Gryczynski Z, Malicka J, Lukomska J, Makowiec S, Berndt KW, Lakowicz JR, Gryczynski I (2005) Directional surface plasmon-coupled emission: application for an immunoassay in whole blood. Anal Biochem 344:161–167CrossRefGoogle Scholar
  80. 80.
    Matveeva EG, Gryczynski I, Barnett A, Leonenko Z, Lakowicz JR, Gryczynski Z (2007) Metal particle-enhanced fluorescent immunoassays on metal mirrors. Anal Biochem 363:239–245CrossRefGoogle Scholar
  81. 81.
    Gryczynski I, Malicka J, Nowaczky K., Gryczynski Z, Lakowicz JR (2006) Waveguide-modulated surface plasmon-coupled emission of Nile blue in poly(vinyl alcohol) thin films. Thin Solid Films 510:15–20CrossRefGoogle Scholar
  82. 82.
    Gryczynski I, Malicka J, Nowaczyk K, Gryczynski Z, Lakowicz JR (2004) Effects of sample thickness on the optical properties of surface plasmon-coupled emission. J Phys Chem B 108:12073–12083CrossRefGoogle Scholar
  83. 83.
    Stefani FD, Vasilev K, Bocchio N, Stoyanova N, Kreiter M (2005) Surface-plasmon-mediated single molecule fluorescence through a thin metallic film. Phys Rev Lett 94:023005–1/4CrossRefGoogle Scholar
  84. 84.
    Vasilev K, Knoll W, Kreiter M (2004) Fluorescence intensities of chromophores in front of a thin metal film. J Chem Phys 120(7):3439–3445CrossRefGoogle Scholar
  85. 85.
    Fu Y, Lakowicz JR (2006) Enhanced fluorescence of Cy5-labeled DNA tethered to silver island films: fluorescence images and time-resolved studies using single-molecule spectroscopy. Anal Chem 78:6238–6245CrossRefGoogle Scholar
  86. 86.
    Fu Y, Lakowicz JR (2006) Enhanced fluorescence of Cy5-labeled oligonucleotides near silver island films: a distance effect study using single molecule spectroscopy. J Phys Chem B 110:22557–22562CrossRefGoogle Scholar
  87. 87.
    Moerner WE (1997) Those blinking single molecules. Science 277:1059–1060CrossRefGoogle Scholar
  88. 88.
    Dickson R, Cubitt A, Tsien R, Moerner WE (1997) On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388:355–358CrossRefGoogle Scholar
  89. 89.
    Rasnik I, McKinney SA, Ha T (2006) Nonblinking and long lasting single molecule fluorescence imaging. Nat Methods 3:891–893CrossRefGoogle Scholar
  90. 90.
    Zhang J, Fu Y, Chowdhury MH, Lakowicz JR (2008) Single molecule studies on fluorescently labeled particles: effects of particle size. J Phys Chem C 112:18–26CrossRefGoogle Scholar
  91. 91.
    Ford GW, Weber WH (1984) Electromagnetic interactions of molecules with metal surfaces. Phys Rep 113(4):195–287CrossRefGoogle Scholar
  92. 92.
    Gersten J, Nitzan A (1981) Spectroscopic properties of molecules interacting with small dielectric particles. J Chem Phys 75(3):1139–1152CrossRefGoogle Scholar
  93. 93.
    Kneipp K, Kneipp H, Deinum G, Itzkan I, Dasari RR, Feld MS (1998) Single-molecule detection of a cyanine dye in silver colloidal solution using near-infrared surface-enhanced Raman scattering. Appl Spectrosc 52(2):175–178CrossRefGoogle Scholar
  94. 94.
    Kneipp K, Wang Y, Kneipp H, Perelman L, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670CrossRefGoogle Scholar
  95. 95.
    Zhang J, Fu Y, Chowdhury MH, Lakowicz JR (2007) Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles. Nano Lett 7:2101–2107CrossRefGoogle Scholar
  96. 96.
    Ullman EF, Schwarzberg M, Rubenstein KE (1976) Fluorescent excitation transfer immunoassay: a general method for determination of antigens. J Biol Chem 251(14):4172–4178Google Scholar
  97. 97.
    Malicka J, Gryczynski I, Kusba J, Lakowicz JR (2003) Effects of metallic silver island films on resonance energy transfer between N,N′-(dipropyl)-tetramethyl-indocarbocyanine (Cy3)- and N,N′(dipropyl)-tetramethyl-indodicarbocyanine (cy5)-labeled DNA. Biopolymers 70:595–603CrossRefGoogle Scholar
  98. 98.
    Zhang J, Fu Y, Lakowicz JR (2007) Enhanced Forster resonance energy transfer (FRET) on a single metal particle. J Phys Chem C 111:50–56CrossRefGoogle Scholar
  99. 99.
    Gersten JI, Nitzan A (1983) Accelerated energy transfer between molecules near a solid particle. Chem Phys Lett 104:31–37CrossRefGoogle Scholar
  100. 100.
    Hua XM, Gersten JI, Nitzan A (1985) Theory of energy transfer between molecules near solid state particles. J Chem Phys 83:3650–3654CrossRefGoogle Scholar
  101. 101.
    Gersten JI (2005) Theory of fluorophore-metallic surface interactions. In: Topics in fluorescence spectroscopy. Radiative decay engineering, Vol. 8. Springer, New York, p. 197Google Scholar
  102. 102.
    Christenson RH, Azzazy HME (1999) Evidence based approach to practice guides and decision thresholds for cardiac markers. Scand J Clin Lab Invest 59(Suppl 230):90–102CrossRefGoogle Scholar
  103. 103.
    Newby LK, Storrow AB, Gibler WB, et al. (2001) Bedside multimarker testing for risk stratification in chest pain units: the chest pain evaluation by creatine kinase-MB, myoglobin, and troponin I(CHECKMATE) study. Circulation 103:1832–1837CrossRefGoogle Scholar
  104. 104.
    Christenson RH, Azzazy HME (1998) Biochemical markers of the acute coronary syndromes. Clin Chem 44:1855–1864Google Scholar
  105. 105.
    Zhang Z, Fu Y, Lakowicz JR (2007) Enhanced Forster resonance energy transfer (FRET) on a single metal particle. J Phys Chem C 111:50–56CrossRefGoogle Scholar
  106. 106.
    Zhang Z, Fu Y, Lakowicz JR (2007) Enhanced Forster resonance energy transfer (FRET) on single metal particle 2: dependence on donor-acceptor separation distance, particle size, and distance from metal surface. J Phys Chem C 111:11784–11792CrossRefGoogle Scholar
  107. 107.
    Gifford DK, Hall DG (2002) Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling. Appl Phys Lett 81(23):4315–4317CrossRefGoogle Scholar
  108. 108.
    Feng J, Okamoto T, Kawata S (2005) Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices. Appl Phys Lett 87:241109–1/3CrossRefGoogle Scholar
  109. 109.
    Matthews DR, Summers HD, Njoh k, Chappell S, Errington R, Smith P, Pope I, Barber P, Vojnovic B, Ameer-Beg S (2007) A fluorescence biochip with a plasmon active surface. Proc SPIE 6450:645006–1/8CrossRefGoogle Scholar
  110. 110.
    Hung Y-J, Smolyaninov II, Davis CC (2006) Fluorescence enhancement by surface gratings. Opt Exp 14(22):10825–10830CrossRefGoogle Scholar
  111. 111.
    Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153CrossRefGoogle Scholar
  112. 112.
    Milan M, Whitesides GM (1995) Patterning self-assembled monolayers using microcontact printing: a new technology for biosensors. TIBTECH 13:228–231CrossRefGoogle Scholar
  113. 113.
    Dandliker WB, de Saussure VA (1970) Fluorescence polarization in immunochemistry. Immunochemistry 7:799–828CrossRefGoogle Scholar
  114. 114.
    Van der Molen KL, Klein Koerkamp KJ, Enoch S, Segerink FB, van Hulst NF, Kuipers L (2005) Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: experiment and theory. Phys Rev B 72:045421–1/9CrossRefGoogle Scholar
  115. 115.
    Elliott J, Smolyaninov II, Zheludev NI, Zayats AV (2004) Polarization control of optical transmission of a periodic array of elliptical nanoholes in a metal film. Opt Lett 29(12):1414–1416CrossRefGoogle Scholar
  116. 116.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108:494–521CrossRefGoogle Scholar
  117. 117.
    Jin EX, Xu X (2006) Enhanced optical near field from a bowtie aperture. Appl Phys Lett 88:143110–1/CrossRefGoogle Scholar
  118. 118.
    Wang L, Uppuluri SM, Jin EX, Xu X (2006) Nanolithography using high transmission nanoscale bowtie apertures. Nano Lett 6(3):361–364CrossRefGoogle Scholar
  119. 119.
    Yin L, Vlasko-Vlasov VK, Rydh A, Pearson J, Welp U, Chang S-H, Gray SK, Schatz GC, Brown DB, Kimball CW (2004) Surface plasmons at single nanoholes in Au films. Appl Phys Lett 85(3):467–469CrossRefGoogle Scholar
  120. 120.
    Popov E, Neviere M, Wenger J, Lenne P-F, Rigneault H, Chaumet P (2006) Field enhancement in single subwavelength apertures. J Opt Soc Am A 23(9):2342–2348CrossRefGoogle Scholar
  121. 121.
    Kim JH, Moyer PJ (2007) Laser-induced fluorescence within subwavelength metallic arrays of nanoholes indicating minimal dependence on hole periodicity. Appl Phys Lett 90:131111–1/3CrossRefGoogle Scholar
  122. 122.
    Wenger J, Lenne P-F, Popov E, Rigneault H (2005) Single molecule fluorescence in rectangular nano-apertures. Opt Exp 13(18):7035–7044CrossRefGoogle Scholar
  123. 123.
    Rigneault H, Capoulade J, Dintinger J, Wenger J, Bonod N, Popov E, Ebbesen TW, Lenne P-F (2005) Enhancement of single-molecule fluorescence detection in subwavelength apertures. Phys Rev Lett 95:117401–1/4CrossRefGoogle Scholar
  124. 124.
    Liu Y, Mahdavi F, Blair S (2005) Enhanced fluorescence transduction properties of metallic nanocavity arrays. IEEE J Sel Top Quantum Electronics 11(4):778–784CrossRefGoogle Scholar
  125. 125.
    Samiee KT, Moran-Mirabal JM, Cheung YK, Craighead HG (2006) Zero mode waveguides for single-molecule spectroscopy on lipid membranes. Biophys J 90:3288–3299CrossRefGoogle Scholar
  126. 126.
    Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW (2003) Zero-model waveguides for single-molecule analysis at high concentrations. Science 299:682–868CrossRefGoogle Scholar
  127. 127.
    Gryczynski Z, Borejdo J, Calander N, Matveeva EG, Gryczynski I (2006) Minimization of detection volume by surface-plasmon coupled emission. Anal Biochem 356:125–131CrossRefGoogle Scholar
  128. 128.
    Gryczynski I, Malicka J, Lakowicz JR, Goldys EM, Calander N, Gryczynski Z (2005) Directional two-photon induced surface plasmon-coupled emission. Thin Solid Films 491:173–176CrossRefGoogle Scholar
  129. 129.
    Borejdo J, Gryczynski Z, Calander N, Muthu P, Gryczynski I (2006) Application of surface-plasmon coupled emission to study muscles. Biophys J 91:2626–2635CrossRefGoogle Scholar
  130. 130.
    Issa NA, Guckenberger R (2007) Optical nanofocusing on tapered metallic waveguides. Plasmonics 2:31–37CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • K. Ray
    • 1
  • M. H. Chowdhury
    • 1
  • J. Zhang
    • 1
  • Y. Fu
    • 1
  • H. Szmacinski
    • 1
  • K. Nowaczyk
    • 1
  • J. R. Lakowicz
    • 1
  1. 1.Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular BiologyUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations