Skip to main content

Application of Disposable Bag-Bioreactors in Tissue Engineering and for the Production of Therapeutic Agents

  • Chapter
  • First Online:
Advances in Biochemical Engineering / Biotechnology

Abstract

In order to increase process efficiency, many pharmaceutical and biotechnology companies have introduced disposable bag technology over the last 10 years. Because this technology also greatly reduces the risk of cross-contamination, disposable bags are preferred in applications in which an absolute or improved process safety is a necessity, namely the production of functional tissue for implantation (tissue engineering), the production of human cells for the treatment of cancer and immune system diseases (cellular therapy), the production of viruses for gene therapies, the production of therapeutic proteins, and veterinary as well as human vaccines. Bioreactors with a pre-sterile cultivation bag made of plastic material are currently used in both development and manufacturing processes primarily operating with animal and human cells at small- and middle-volume scale. Due to their scalability, hydrodynamic expertise and the convincing results of oxygen transport efficiency studies, wave-mixed bioreactors are the most used, together with stirred bag bioreactors and static bags, which have the longest tradition. Starting with a general overview of disposable bag bioreactors and their main applications, the following paper summarizes the working principles and engineering aspects of bag bioreactors suitable for cell expansion, formation of functional tissue and production of therapeutic agents. Furthermore, results from selected cultivation studies are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AAV:

Adeno-associated virus

ACD:

Aseptic connection device

AD:

Aujeszky’s disease

ADV:

Aujeszky’s disease virus

B cells:

Lymphocytes which produce antibodies against soluble antigens

BEV:

Baculovirus expression vector

BHK cells:

Baby hamster kidney cells

BHV:

Bovine herpes virus

CHO cells:

Chinese hamster ovary cells

CV:

Culture volume

dhfr :

Dihydrofolate reductase deficient

E. coli:

Escherichia coli

E-FL cells:

Embryogenic feline lung fibroblast cells

FDA:

Food and Drug Administration

G. max:

Glycine max

GMP:

Good Manufacturing Practice

GS-NS0:

Glutamine synthethase deficient mouse cell line

H. muticus:

Hyoscyamus muticus

H. procumbens:

Harpagophytum procumbens

HEK cells:

Human embryogenic kidney cells

HSC:

Haematopoietic stem cells

IgG:

Immunoglobulin

IL-2:

Recombinant interleukin-2

ISO:

International Organization for Standardization

kLa:

Gas-liquid mass transfer coefficient

M:

Motor

M. domesticus:

Malus domesticus

mAb:

Monoclonal antibody

MDBK cells:

Madin-Darby bovine kidney cells

MDCK cells:

Madin-Darby canine kidney cells

MEV:

Mink enteritis virus

MOI:

Multiplicity of infection or optimal ratio of virus particles per cell

N. tabacum:

Nicotiana tabacum

NK cells:

Natural killer cells

NS0 cells:

Mouse myeloma cells

P. ginseng:

Panax ginseng

P. pastoris:

Pichia pastoris

pDNA:

Plasmid DNA

PEI:

Polyethyleneimine

PER.C6™ cells:

Human embryogenic retinoblast cells

PGA:

Polyglycolic acid

PLA:

Polylactic acid

P/V:

Power input per volume

r:

Recombinant

Re:

Reynolds number

rpm:

Revolution per minute

RV:

Rabies virus

S. cerevisiae:

Saccharomyces cerevisiae

SEAP:

Secreted alkaline phosphatase

SeMet:

Selenomethionine

Sf:

Spodoptera frugiperda

T. baccata:

Taxus baccata

T cells:

Thymus cells, belonging to the group of lymphocytes

TCID50 :

Tissue culture infectious dose

TIB:

Temporary immersion bioreactor

Tn5 cells:

Cells from Trichoplusia ni (insect cells, also called High Five® cells)

TOI:

Optimal density of cells at infection

tu:

Transducing units

USP:

United States Pharmacopeial Convention

V. vinifera:

Vitis vinifera

Vero cells:

Kidney epithelial cells from African green monkey

VLPs:

Virus-like particles

VM:

Vibromixer

vvm:

Volume per volume per minute

WIM:

Wave-induced motion

3D:

Three-dimensional

References

  1. DePalma A (2006) GEN 26:60

    Google Scholar 

  2. Morrow KJ (2007) GEN 28:37

    Google Scholar 

  3. Flanagan N (2007) GEN 27:38

    Google Scholar 

  4. Eibl R, Eibl D (2006) Disposable bioreactors for pharmaceutical research and manufacturing. In: Proceedings of 2nd international conference on bioreactor technology in cell, tissue culture and biomedical applications. Saariselkä, Finland

    Google Scholar 

  5. Eibl R, Eibl D (2007) ProcessPharmaTEC 4:14

    Google Scholar 

  6. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  7. Stang BV, Wood PA, Reddington JJ, Reddington GM, Heidel JR (1997) Monoclonal antibody production in gas-permeable bags using serum-free media. Monoclonal antibody workshop, Baltimore, California

    Google Scholar 

  8. Daley LP, Gagliardo LF, Duffy MS, Smith MC, Appleton JA (2005) Clin Diagn Lab Immunol 12:380

    Article  PubMed  CAS  Google Scholar 

  9. Purdy MH, Hogan CJ, Hami L, McNiece I, Franklin W, Jones RB, Bearman SI, Berenson RI, Cagnoni BI, Heimfeld S, Shpall EJ (1995) J Hematother 4:515

    Article  PubMed  CAS  Google Scholar 

  10. Robinet E, Certoux JM, Ferrand C, Maples P, Hardwick A, Cahn JY, Reynolds CW, Jacob W, Hervé P, Tiberghien P (1998) J Hematother 7:205

    Article  PubMed  CAS  Google Scholar 

  11. Andrews RG, Briddell RA, Hill R, Gough M, McNiece IK (1999) Stem Cells 17:210

    Article  PubMed  CAS  Google Scholar 

  12. CorCell Inc (2003) Information sheet: umbilical cord blood

    Google Scholar 

  13. Mu LJ, Gaudernack G, Saeboe-Larssen S, Hammerstad H, Tierens A, Kvalheim G (2003) Scand J Immunol 58:578

    Article  PubMed  CAS  Google Scholar 

  14. Mu LJ, Lazarova P, Gaudernack G, Saeboe-Larssen S, Kvalheim G (2004) Int J Immunopathol Pharmacol 17:255

    PubMed  CAS  Google Scholar 

  15. Safinia L, Panoskaltsis N, Mantalaris A (2005) Haematopoietic culture systems. In: Chaudhuri JB, Al-Rubeai M (eds) Bioreactors for tissue engineering. Springer, Dordrecht, p 309

    Chapter  Google Scholar 

  16. Halberstadt, CR, Hardin R, Bezverkov K, Snyder D, Allen L, Landeen L (1994) Biotechnol Bioeng 43:740

    Article  PubMed  CAS  Google Scholar 

  17. Purdue, GF, Hunt JL, Still JM, Law EJ, Herndon DN, Goldfarb IW, Schiller WR, Hansbrough JF, Hickerson WL, Himel HN, Kealey GP, Twomey J, Missavage AE, Solem LD, Davis M, Totoritis M, Gentzkow GD (1997) J Burn Care Rehab 18:52

    Article  CAS  Google Scholar 

  18. Ratcliffe A, Niklason L (2002) Ann NY Acad Sci 961:210

    Article  PubMed  CAS  ADS  Google Scholar 

  19. Ducos JP, Lambot C, Pétiard V (2007) Int J Dev Biol 1:1

    Google Scholar 

  20. Ducos JP, Chantanumat P, Vuong P, Lambot C, Pètiard V (2007) Acta Hort ISHS, 764: 33

    CAS  Google Scholar 

  21. Card, C, Smith T (2006) Application report draft – SUB050601

    Google Scholar 

  22. Card C (2007) Large scale, animal free production of human monoclonal antibody using PERC.6™ cells in a disposable, stirred-tank bioreactor. Poster presented in 20th ESACT meeting 2007, Dresden, Germany

    Google Scholar 

  23. Zijlstra, G (2007) Scale-up of a PER.C6® fed-batch process in 50 and 250 L Hyclone single use bioreactors compared to 50 and 250 L stainless steel bioreactors. Poster presented in 20th ESACT meeting 2007, Dresden, Germany

    Google Scholar 

  24. Thermo Fisher Scientific (2007) Application note:AN003 Rev 1

    Google Scholar 

  25. Brecht R (2007) Disposable bioreactor technologies: challenges and trends in cGMP manufacturing. BioProduction 2007, Berlin, Germany

    Google Scholar 

  26. Ozturk SS (2007) Comparison of product quality: disposable and stainless steel bioreactor. BioProduction 2007, Berlin, Germany

    Google Scholar 

  27. Galliher P (2007) Case study: scale up to a 1,000 L perfusion in a disposable stirred tank bioreactor. BioProduction 2007, Berlin, Germany

    Google Scholar 

  28. Castillo J, Vanhamel S (2007) GEN 27:40

    Google Scholar 

  29. Zambaux JP (2007) How synergy answers the biotech industry needs. BioProduction 2007, Berlin, Germany

    Google Scholar 

  30. Collignon F, Gelbras V, Havelange N, Drugmand JC, Debras F, Mathieu E, Halloin V, Castillo J (2007) CHO cell cultivation and antibody production in a new disposable bioreactor based on magnetic driven centrifugal pump. Available at http://www.artelis.be. Accessed 20 October 2007

  31. Zurich University of Applied Sciences, Department for Life Sciences and Facility Management, IBT, Cell cultivation techniques and biochemical engineering (2006–2007) Protocols of experiments, unpublished

    Google Scholar 

  32. Werner S, Nägeli M (2007) BioTec 3:22

    Google Scholar 

  33. Hallmann S, Bertelsen HP, Scheffler U, Luttmann R (2007) Einsatz von Massflow-Controllern zur Steuerung von Bioreaktionsprozessen. Poster presented in Biotechnica 2007 Hannover, Germany

    Google Scholar 

  34. Mikola M, Seto J, Amanullah, A (2007) Bioprocess Biosyst Eng 30:231

    Article  CAS  PubMed  Google Scholar 

  35. Laderman K, Quezada V, Dunphy N, Anderson J, Derecho J, McMahom R, Hsu D, Couture L (2007) DNA production in the Wave Bioreactor under cGMP conditions. Available at http://www.wavebiotech.com/pdfs/press/pDNA_Poster_COH2007.pfd. Accessed 6 November 2007

  36. Eibl R, Eibl D (2002) Bioreactors for plant cell and tissue cultures. In: Oksman-Caldentey KM, Barz WH (eds) Plant biotechnology and transgenic plants. Marcel Dekker, New York, p 163

    Google Scholar 

  37. Palazón J, Mallol A, Eibl R, Lettenbauer C, Cusidó RM Piñol MT (2003) Planta Med 69: 344

    Article  PubMed  Google Scholar 

  38. Bentebibel S, Moyano E, Palazón J, Cusidó RM, Bonfill M, Eibl R, Piñol MT (2005) Biotechnol Bioeng 89:647

    Article  PubMed  CAS  Google Scholar 

  39. Girard LS, Fabis MJ, Bastin M, Courtois D, Pétiard V, Koprowski H (2006) Biochem Biophys Res Commun 345:602

    Article  PubMed  CAS  Google Scholar 

  40. Kilani J, Lebeaut JM (2006) Appl Microbiol Biotechnol 74:324

    Article  PubMed  CAS  Google Scholar 

  41. Eibl R, Eibl D (2006) Design and use of the Wave Bioreactor for plant cell culture. In: Dutta Gupta S, Ibaraki Y (eds) Plant tissue culture engineering, series: focus on biotechnology, vol 6. Springer, Dordrecht, p 203

    Chapter  Google Scholar 

  42. Terrier B, Courtois D, Hénault N, Cuvier A, Bastin M, Aknin A, Dubreuil J, Pétiard V (2006) Biotechnol Bioeng 96:914

    Article  CAS  Google Scholar 

  43. Eibl R, Eibl D (2008) Phytochem Rev, 7:593

    Article  CAS  Google Scholar 

  44. Cuperus S, Eibl R, Hühn T, Amado R (2007) BioForum Eur 6:2

    Google Scholar 

  45. Bonfill M, Bentebibel S, Moyano E, Palazón J, Cusidó RM, Eibl R, Piñol MT (2007) Biol Plant 51:647

    Article  CAS  Google Scholar 

  46. Amanullah A, Burden E, Jug-Dujakovic M, Mikola M, Pearre C, Herber W (2004) Development of a large-scale cell bank in cryobags for the production of biologics. Available at http://www.wavebiotech.com/pdfs/literature/Merck_Cancun-2004.pfd. Accessed 4 November 2007

  47. CeLLution Biotech BV (2007) Mass transfer in the CELL-tainer® disposable bioreactor. Available at http://www.cellutionbiotech.com. Accessed 20 October 2007

  48. CeLLution Biotech BV (2007) Cultivation of PER.C6®-cells in the CELL-tainer® disposable bioreactor. Available at www.cellutionbiotech.com. Accessed 20 October 2007

  49. CeLLution Biotech BV (2007) Cultivation of CHO-cells in the CELL-tainer® disposable bioreactor. Available at www.cellutionbiotech.com. Accessed 20 October 2007

  50. Cronin CN, Lim KB, Rogers J (2007) Protein Sci 16:2023

    Article  PubMed  CAS  Google Scholar 

  51. DÀquino R (2006) Chem Eng Prog 102:8

    Google Scholar 

  52. Fries, S, Glazomitsky K, Woods A, Forrest G, Hsu A, Olewinski R, Robinson D, Chartrain M (2005) BioProcess Int 3:36

    CAS  Google Scholar 

  53. Genzel Y, Behrendt I, Koenig S, Sann H, Reichl U (2004) Vaccine 22:2202

    Article  PubMed  CAS  Google Scholar 

  54. Genzel Y, Olmer RM, Schaefer B, Reichl U (2006) Vaccine 24:6074

    Article  PubMed  CAS  Google Scholar 

  55. Haldankar R, Li D, Saremi Z, Baikalov C, Deshpande R (2006) Bioreactors Mol Biotechnol 34:191

    Article  CAS  Google Scholar 

  56. Houtzager E, van der Linden R, de Roo G, Huurman S, Priem P, Sijmons C (2005) BioProcess Int 3:60

    Google Scholar 

  57. Hundt B, Best C, Schlawin N, Kassner H, Genzel Y, Reichl U (2007) Vaccine 25:3987

    Article  PubMed  CAS  Google Scholar 

  58. Knevelman C, Hearle DC, Osman JJ, Khan M, Dean M, Smith M, Aiyedebinu Cheung K (2002) Characterization and operation of a disposable bioreactor as a replacement for conventional steam-in-place inoculum bioreactors for mammalian cell culture processes. Poster presented in 224th national meeting of the american chemical society, Boston, MA. American Chemical Society, Washington DC, BIOT 210

    Google Scholar 

  59. Matthews T, Wolk B (2005) The use of disposable technologies in antibody manufac-turing processes. Available at http://www.wavebiotech.com/pdfs/literature/IBCDisposables_2005.pdf. Accessed 4 November 2007

  60. Negrete A, Kotin RM (2007) J Virol 145:155

    CAS  Google Scholar 

  61. Ohashi R, Singh V, Hammel JF (2001) Perfusion cell culture in disposable bioreactors. In: 17th ESACT meeting 2001. Tylösand, Sweden

    Google Scholar 

  62. Pierce LN and Sabraham PW (2004) Bioprocess J 3:51

    Google Scholar 

  63. Rios M (2006) Pharma Tech 4:1

    Google Scholar 

  64. Schlaeppi JM, Henke M, Mahnke M, Hartmann S, Schmitz R, Pouliquen Y, Kerins B, Weber E, Kolbinger F, Kocher HP (2006) Protein Expres Purif 50:185

    Article  CAS  Google Scholar 

  65. Singh V (1999) Cytotechnol 30:149

    Article  CAS  Google Scholar 

  66. Slivac I, Srček VG, Radoševic K, Kmetič I, Kniewald Z (2006) J Biosci 3:363

    Article  Google Scholar 

  67. Tang YJ, Ohashi R, Hamel JP (2007) Biotechnol Prog 23:255

    Article  PubMed  CAS  Google Scholar 

  68. Weber W, Weber E, Geisse S, Memmert K (2002) Cytotechnol 38:77

    Article  CAS  Google Scholar 

  69. Weber W, Bacchus W, Daoud-El Baba M, Fussenegger M (2007) Nucleic Acids Res35:e116

    Article  PubMed  CAS  Google Scholar 

  70. Weber W, Stelling J, Rimann M, Keller B, Daoud-El Baba M, Weber CC, Aubel D, Fussenegger M (2007) PNAS 104:2643

    Article  PubMed  ADS  CAS  Google Scholar 

  71. Zijlstra G, Oosterhuis N (2007) Cultivation of PERC.6®cells in the novel CELL-tainer™ high-performance disposable bioreactor. Poster presented in 20th ESACT meeting 2007, Dresden, Germany

    Google Scholar 

  72. Hami LS, Chana H, Yuan V, Craig S (2003) BioProc J 2:23

    Google Scholar 

  73. Hamis LS, Green C, Leshinsky N, Markham E, Miller K, Craig S (2004) Cytotherapy 6:554

    Article  CAS  Google Scholar 

  74. Levine B (2007) Making waves in cell therapy: the Wave Bioreactor for the generation of adherent and non-adherent cells for clinical use. Available at http://www.wavebiotech.com/pdf/literature/ISCT_2007_Levine_Final.pdf. Accessed 4 November 2007

  75. Curtis WR (2004) United States Patent, 6,709,862 B2

    Google Scholar 

  76. Ziv M, Ronen G, Raviv M (1998) Dev Biol Plant 34:152

    Google Scholar 

  77. Harrell RC, Bienek M, Hood CF, Munilla R, Cantliffe DY (1994) Plant Cell Tissue Org Cult 39:171

    Article  Google Scholar 

  78. Fukui H, Tanaka M (1995) Plant Cell Tissue Org Cult 41:17

    Article  Google Scholar 

  79. Escalona M, Lorenzo JC, Gonzalez BL, Daquinta M, Gonzalez JL, Desjardine Y, Borroto CG (1999) Plant Cell Rep 18:743

    Article  CAS  Google Scholar 

  80. Taylor, I. (2007) The CellMaker Plus™ single-use bioreactor: a new bioreactor capable of culturing bacteria, yeast, insect and mammalian cells. Biotechnica 2007 Hannover, Germany

    Google Scholar 

  81. Auton KA, Bick JA, Taylor IM (2007 GEN 27:42

    Google Scholar 

  82. Kunas KT, Keating J (2005) Stirred tank-single-use bioreactor: comparison to traditional stirred tank bioreactor. bioLOGIC Europe, Geneva, Switzerland

    Google Scholar 

  83. Eibl R, Eibl D, Pechmann G, Ducommun C, Lisica L, Lisica S, Blum P, Schär M, Wolfram L, Rhiel M, Emmerling M, Röll M, Lettenbauer C, Rothmaier M, Flükiger M (2003) Produktion pharmazeutischer Wirkstoffe in disposable Systemen bis zum 100 L Massstab, Teil 1. KTI-Projekt 5844.2 FHS, Final Report, University of Applied Sciences Wädenswil, Switzerland, unpublished

    Google Scholar 

  84. Lisica S (2004) Energieeintrag in Wave-Bioreaktoren. Modelling approaches, University of Applied Sciences Wädenswil, Switzerland, unpublished

    Google Scholar 

  85. Nienow AW (2006) Cytotechnology 50:9

    Article  PubMed  CAS  Google Scholar 

  86. Martin I, Wendt D, Heberer M (2004) Trends Biotechnol 22:80

    Article  PubMed  CAS  Google Scholar 

  87. Altaras GM, Eklund C, Ranucci C, Maheswari G (2007) Biotechnol Bioeng 96:999

    Article  PubMed  CAS  Google Scholar 

  88. Jenke D (2007) J Pharm Sci 96:2566

    Article  PubMed  CAS  Google Scholar 

  89. Okonkowski J, Balasubramanian U, Seamans C, Fischrogen S, Zhang J, Lachs P, Robinson D, Chartrain M (2007) J Biosci Bioeng 103:50

    Article  PubMed  CAS  Google Scholar 

  90. van Tienhoven EAE, Korbee D, Schipper L, Verharen HW, Jong De WH (2006) J Biomed Mater Res A78:175

    Article  CAS  Google Scholar 

  91. Pörtner R, Nagel-Heyer St, Goepfert C, Adamietz P, Meenen NM (2005) J Bioeng Biosci100:235

    Article  CAS  Google Scholar 

  92. Ye H, Xia Z, Ferguson DJP, Triffitt JT, Cui Z (2007) J Mater Sci Mater Med 18:641

    Article  PubMed  CAS  Google Scholar 

  93. Cabrita GJM, Ferreira BS, da Silva CL, Goncales R, Almeida-Porada G, Cabral JMS (2003) Trends Biotechnol 21:233

    Article  PubMed  CAS  Google Scholar 

  94. Tzanakakis ES, Verfaillie CM (2006) Advances in adult stem cell culture. In: Ozturk SS, Hu WS (eds) Cell culture technology for pharmaceutical and cell-based therapies. CRC, New York, p 693

    Google Scholar 

  95. Carswell KS, Papoutsakis ET (2000) Biotechnol Bioeng 68:328

    Article  PubMed  CAS  Google Scholar 

  96. June CH, Ledbetter JA, Linsley PS, Thompson CB (1990) Immunol Today 11:211

    Article  PubMed  CAS  Google Scholar 

  97. Wurm FM (2004) Nat Biotechnol 22:1393

    Article  PubMed  CAS  Google Scholar 

  98. Wurm FM (2007) Novel technologies for rapid and low cost provisioning of antibodies and process details in mammalian cell culture based biomanufacturing. BioProduction 2007, Berlin, Germany

    Google Scholar 

  99. Schwander E, Rasmusen H (2005) GEN 25:29

    Google Scholar 

  100. DePalma A (2002) GEN 22:58

    Google Scholar 

  101. Vaughn J (1999) Insect cell culture, protein expression. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology, vol 3. Wiley, New York, p 1444

    Google Scholar 

  102. Weber W, Fussenegger M (2005) Baculovirus-based production of biopharmaceuticals using insect cell culture processes. In: Knäblein J (ed) Modern biopharmaceuticals. Wiley, Weinheim, p 1045

    Chapter  Google Scholar 

  103. Durocher Y, Perret S, Kamen A (2002) Nucleic Acids Res 30:e9

    Article  PubMed  Google Scholar 

  104. Wurm FM, Bernard A (1999) Curr Opin Biotechnol 313:156

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regine Eibl .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London

About this chapter

Cite this chapter

Eibl, R., Eibl, D. (2009). Application of Disposable Bag-Bioreactors in Tissue Engineering and for the Production of Therapeutic Agents . In: Advances in Biochemical Engineering / Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2008_23

Download citation

  • DOI: https://doi.org/10.1007/10_2008_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics