Skip to main content

Plant Biotechnology: Transgenic Crops

  • Chapter
  • First Online:
Book cover Food Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 111))

Abstract

Transgenesis is an important adjunct to classical plant breeding, in that it allows the targeted manipulation of specific characters using genes from a range of sources. The current status of crop transformation is reviewed, including methods of gene transfer, the selection of transformed plants and control of transgene expression. The application of genetic modification technology to specific traits is then discussed, including input traits relating to crop production (herbicide tolerance and resistance to insects, pathogens and abiotic stresses) and output traits relating to the composition and quality of the harvested organs. The latter include improving the nutritional quality for consumers as well as the improvement of functional properties for food processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Evans LT (1998) Feeding the ten billion. Plants and population growth. Cambridge University Press, Cambridge

    Google Scholar 

  2. Mann CC (1999) Crop scientists seek a new revolution. Science 283:310

    CAS  Google Scholar 

  3. Kinsella JE (1979) Functional properties of soy proteins. J Am Oil Chem Soc 56:242

    CAS  Google Scholar 

  4. Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303

    CAS  Google Scholar 

  5. Lucca P, Hurrell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailability of the level of iron in rice grains. Theor Appl Genet 102:392

    CAS  Google Scholar 

  6. Hossain T, Rosenberg I, Selhub J, Kishore G, Beachy R, Schubert K (2004) Enhancement of folates in plants through metabolic engineering. Proc Nat Acad Sci USA 10:1073

    Google Scholar 

  7. James C (2007) ISAAA Briefs No. 35-2006: Global status of commercialized biotech/GM crops 2006

    Google Scholar 

  8. Sandford JC (1988) The biolistic process. Trends Biotechnol 6:299

    Google Scholar 

  9. Sandford JC, Smith FD, Russell JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483

    Google Scholar 

  10. Rasmussen JL, Kikkert JR, Roy MK, Sanford JC (1994) Biolistic transformation of tobacco and maize suspension cells using bacterial cells as microprojectiles. Plant Cell Rep 13:212

    CAS  Google Scholar 

  11. Fromm ME, Morrish F, Armstrong C, Williams R, Thomas J, Klein TM (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8:833

    CAS  Google Scholar 

  12. Gordonkamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, Obrien JV, Chambers SA, Adams WR et al. (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603

    CAS  Google Scholar 

  13. Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2:409

    CAS  Google Scholar 

  14. Vasil V, Castillo AM, Fromm ME, Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10:667

    CAS  Google Scholar 

  15. Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC (1990) Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep 9:189

    CAS  Google Scholar 

  16. Christou P, Ford TL, Kofron M (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric-discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology 9:957

    Google Scholar 

  17. McCabe DE, Martinell BJ (1993) Transformation of elite cotton cultivars via particle bombardment of meristems. Bio/Technology 11:596

    Google Scholar 

  18. Cheng M, Lowe BA, Spencer TM, Ye XD, Armstrong CL (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell Dev Biol Plant 40:31

    Google Scholar 

  19. Gheysen G, Angenon G, Van Montague M (1998) Agrobacterium-mediated plant transformation: a scientifically intriguing story with significant application. In: Lindsey K (ed) Transgenic plant research. Harwood Academic, The Netherlands, p 1

    Google Scholar 

  20. Nadolska-Orczyk A, Orczyk W, Przetakiewicz A (2000) Agrogacterium-mediated transformation of cereals—from technique development to its application. Acta Physiol Plant 22:77

    CAS  Google Scholar 

  21. Smith RH, Hood EE (1995) Agrobacterium tumefaciens transformation of monocotyledons. Crop Sci 35:301

    Article  Google Scholar 

  22. Zupan J, Muth TR, Draper O, Zambryski P (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J 23:11

    CAS  Google Scholar 

  23. Jones HD, Doherty A, Wu H (2005) Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat. Plant Methods 1:5

    Google Scholar 

  24. Bevan MW, Flavell RB, Chilton MD (1983) A chimaeric antibiotic-resistance gene as a selectable marker for plant-cell transformation. Nature 304:184

    CAS  Google Scholar 

  25. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of Vir-region and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179

    CAS  Google Scholar 

  26. Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226

    Google Scholar 

  27. Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205

    CAS  Google Scholar 

  28. Hu T, Metz S, Chay C, Zhou HP, Biest N, Chen G, Cheng M, Feng X, Radionenko M et al. (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep 21:1010

    CAS  Google Scholar 

  29. Shibata D, Liu YG (2000) Agrobacterium-mediated plant transformation with large DNA fragments. Trends Plant Sci 5:354

    CAS  Google Scholar 

  30. Rasco-Gaunt S, Barcelo P (1999) Immature inforescence culture of cereals: a highly responsive system for regeneration and transformation. In: Hall R (ed) Methods in molecular biology—plant cell culture protocols. Humana, Totowa, p 71

    Google Scholar 

  31. Barcelo P, Hagel C, Becker D, Martin A, Lorz H (1994) Transgenic cereal (Tritordeum) plants obtained at high efficiency by microprojectile bombardment of inflorescence tissue. Plant J 5:583

    CAS  Google Scholar 

  32. Lowe K, Bowen B, Hoerster G, Ross M, Bond D, Pierce D, Gordonkamm B (1995) Germline transformation of maize following manipulation of chimeric shoot meristems. Bio/Technology 13:677

    CAS  Google Scholar 

  33. Zhang S, Cho MJ, Koprek T, Yun R, Bregitzer P, Lemaux PG (1999) Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings. Plant Cell Rep 18:959

    CAS  Google Scholar 

  34. Funatsuki H, Kuroda H, Kihara M, Lazzeri PA, Muller E, Lorz H, Kishinami I (1995) Fertile transgenic barley generated by direct DNA transfer to protoplasts. Theor Appl Genet 91:707

    CAS  Google Scholar 

  35. Golovkin MV, Abraham M, Morocz S, Bottka S, Feher A, Dudits D (1993) Production of transgenic maize plants by direct DNA uptake into embryogenic protoplasts. Plant Sci 90:41

    CAS  Google Scholar 

  36. Shimamoto K, Terada R, Izawa T, Fujimoto H (1989) Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338:274

    CAS  Google Scholar 

  37. McCabe DE, Swain WF, Martinell BJ, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6:923

    Google Scholar 

  38. Hinchee MAW, Connorward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT et al. (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/Technology 6:915

    CAS  Google Scholar 

  39. Trick HN, Finer JJ (1998) Sonication-assisted Agrobacterium-mediated transformation of soybean Glycine max (L.) Merrill embryogenic suspension culture tissue. Plant Cell Rep 17:482

    CAS  Google Scholar 

  40. Parrott WA, Hoffman LM, Hildebrand DF, Williams EG, Collins GB (1989) Recovery of primary transformants of soybean. Plant Cell Rep 7:615

    CAS  Google Scholar 

  41. Cardoza V, Stewart CN (2003) Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep 21:599

    CAS  Google Scholar 

  42. Fry J, Barnason A, Horsch RB (1987) Transformation of Brassica napus with Agrobacterium tumefaciens-based vectors. Plant Cell Rep 6:321

    CAS  Google Scholar 

  43. Pau EC, Mehra Palta A, Nagy F, Chua N (1987) Transgenic plants of Brassica napus L. Biotechnology 5:815

    Google Scholar 

  44. Moloney MM, Walker JM, Sharma KK (1989) High-efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep 8:238

    CAS  Google Scholar 

  45. Bock R (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr Opin Biotechnol 18:100

    CAS  Google Scholar 

  46. Floss DM, Falkenburg D, Conrad U (2007) Production of vaccines and therapeutic antibodies for veterinary applications in transgenic plants: an overview. Transgenic Res 16:315

    CAS  Google Scholar 

  47. Carrer H, Maliga P (1995) Targeted insertion of foreign genes into the tobacco plastid genome without physical linkage to the selectable marker gene. Biotechnology 13:791

    CAS  Google Scholar 

  48. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229

    CAS  Google Scholar 

  49. Hall RD, Rikens Bruinsma T, Weyens GJ, Rosquin IJ, Denys PN, Evans IJ, Lathouwers JE, Lefebvre MP, Dunwell JM et al. (1996) A high efficiency technique for the generation of transgenic sugar beets from stomatal guard cells. Nat Biotechnol 14:1133

    CAS  Google Scholar 

  50. Deblock M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Movva NR, Thompson C, Vanmontague M et al. (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6:2513

    CAS  Google Scholar 

  51. Tachibana K, Watanabe T, Sekizawa Y, Takematsu T (1986) Action mechanism of Bialaphos. 2. Accumulation of ammonia in plants treated with Bialaphos. J Pesticide Sci 11:33

    CAS  Google Scholar 

  52. Murakami T, Anzai H, Imai S, Satoh A, Nagaoka K, Thompson CJ (1986) The bialaphos biosynthetic genes of Streptomyces hygroscopicus—molecular cloning and characterization of the gene cluster. Mol Gen Genet 205:42

    CAS  Google Scholar 

  53. Thompson CJ, Movva NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6:2519

    CAS  Google Scholar 

  54. Wohlleben W, Arnold W, Broer I, Hillemann D, Strauch E, Puhler A (1988) Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogense-Tu494 and its expression in Nicotiana tabacum. Gene 70:25

    CAS  Google Scholar 

  55. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711

    CAS  Google Scholar 

  56. Vandenelzen PJM, Townsend J, Lee KY, Bedbrook JR (1985) A chimaeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol Biol 5:299

    CAS  Google Scholar 

  57. Waldron C, Murphy EB, Roberts JL, Gustafson GD, Armour S, Malcolm SK (1985) Resistance to hygromycin B: a new marker for plant transformation studies. Plant Mol Biol 5:103

    CAS  Google Scholar 

  58. Hauptmann RM, Vasil V, Oziasakins P, Tabaeizadeh Z, Rogers SG, Fraley RT, Horsch RB, Vasil IK (1988) Evaluation of selectable markers for obtaining stable transformants in the Gramineae. Plant Physiol 86:602

    CAS  Google Scholar 

  59. Barcelo P, Rasco-Gaunt S, Thorpe C, Lazzeri PA (2001) Transformation and gene expression. Adv Bot Res 34:59

    CAS  Google Scholar 

  60. Wilmink A, Dons JJM (1993) Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant Mol Biol Rep p 165

    Google Scholar 

  61. Joersbo M (2001) Advances in the selection of transgenic plants using non-antibiotic marker genes. Physiol Planta 111:269

    CAS  Google Scholar 

  62. Joersbo M, Petersen SG, Okkels FT (1999) Parameters interacting with mannose selection employed for the production of transgenic sugar beet. Physiol Planta 195:109

    Google Scholar 

  63. Negrotto D, Jolley M, Beer S, Wenck AR, Hansen G (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19:798

    CAS  Google Scholar 

  64. Wang AS, Evans RA, Altendorf PR, Hanten JA, Doyle MC, Rosichan RL (2000) A mannose selection system for production of fertile transgenic maize plants from protoplasts. Plant Cell Rep 19:654

    CAS  Google Scholar 

  65. Zhang P, Puonti-Kaerlas J (2000) PIG-mediated cassava transformation using positive and negative selection. Plant Cell Rep 19:1041

    CAS  Google Scholar 

  66. Joersbo M, Donaldson I, Kreiberg J, Petersen SG, Brunstedt J, Okkels FT (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breed 4:111

    CAS  Google Scholar 

  67. Boscariol RL, Almeida WAB, Derbyshire M, Mourao FAA, Mendes BMJ (2003) The use of the PMI/mannose selection system to recover transgenic sweet orange plants (Citrus sinensis L. Osbeck). Plant Cell Rep 22:122

    CAS  Google Scholar 

  68. O'Kennedy MM, Burger JT, Botha FC (2004) Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase. Plant Cell Rep 22:684

    Google Scholar 

  69. Reed J, Privalle L, Powell ML, Meghji M, Dawson J, Dunder E, Suttie J, Wenck A, Launis K et al. (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell Dev Biol Plant 37:127

    CAS  Google Scholar 

  70. Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H et al. (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep 20:429

    CAS  Google Scholar 

  71. Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. CR Acad Sci III 316:1194

    CAS  Google Scholar 

  72. Clough SG, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735

    CAS  Google Scholar 

  73. Bechtold N, Jaudeau B, Jolivet S, Maba B, Vezon D, Voisin R, Pelletier G (2000) The maternal chromosome set is the target of the T-DNA in the in planta transformation of Arabidopsis thaliana. Genetics 155:1875

    CAS  Google Scholar 

  74. Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol 123:895

    CAS  Google Scholar 

  75. Ye GN, Stone D, Pang SZ, Creely W, Gonzalez K, Hinchee M (1999) Arababidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J 19:249

    Google Scholar 

  76. Liu F, Cao MQ, Yao L, Li Y, Robaglia C, Tourneur C (1998) In planta transformation of pakchoi (Brassica campestris L., ssp chinensis) by infiltration of adult plants with Agrobacterium. Acta Hortic 467:187

    Google Scholar 

  77. Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA, Shin HS, Chiou TJ, Katagi H et al. (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22:531

    CAS  Google Scholar 

  78. Aziz N, Machray GC (2002) Efficient male germ line transformation for transgenic tobacco production without selection. Plant Mol Biol 51:203

    Google Scholar 

  79. Hu CY, Wang LZ (1999) In planta soybean transformation technologies developed in China. Procedure, confirmation and field performance. In Vitro Cell Dev Biol Plant 35:417

    Google Scholar 

  80. Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus-35s promoter. Nature 313:810

    CAS  Google Scholar 

  81. Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes—structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675

    CAS  Google Scholar 

  82. McElroy D, Blowers AD, Jenes B, Wu R (1991) Construction of expression vectors based on the rice Actin-1 (Act) 5′ region for use in monocot transformation. Mol Gen Genet 231:150

    CAS  Google Scholar 

  83. Lamacchia C, Shewry PR, Di Fonzo N, Forsyth JL, Harris N, Lazzeri PA, Napier JA, Halford NG, Barcelo P (2001) Endosperm-specific activity of a storage protein gene promoter in transgenic wheat seed. J Exp Bot 52:243

    CAS  Google Scholar 

  84. Shewry PR, Morell M (2001) Manipulating cereal endosperm structure, development and composition to improve end-use properties. Adv Bot Res 34:165

    CAS  Google Scholar 

  85. Shewry PR, Tatham AS, Fido R, Jones H, Barcelo P, Lazzeri PA (2001) Improving the end use properties of wheat by manipulating the grain protein composition. Euphytica 119:45

    CAS  Google Scholar 

  86. Thorneycroft D, Hosein F, Thangavelu M, Clark J, Vizir I, Burrell MM, Ainsworth C (2003) Characterization of a gene from chromosome 1B encoding the large subunit of ADPglucose pyrophosphorylase from wheat: evolutionary divergence and differential expression of Agp2 genes between leaves and developing endosperm. Plant Biotechnol J 1:259

    CAS  Google Scholar 

  87. Qu LQ, Takaiwa F (2004) Evaluation of tissue specificity and expression strength of rice seed component gene promoters in transgenic rice. Plant Biotechnol J 2:113

    CAS  Google Scholar 

  88. Marraccini P, Deshayes A, Petiard V, Rogers WJ (1999) Molecular cloning of the complete 11S seed storage protein gene of Coffea arabica and promoter analysis in transgenic tobacco plants. Plant Physiol Biochem 37:273

    CAS  Google Scholar 

  89. Truksa M, MacKenzie SL, Qiu X (2003) Molecular analysis of flax 2S storage protein conlinin and seed specific activity of its promoter. Plant Physiol Biochem 41:141

    CAS  Google Scholar 

  90. Wu CY, Adachi T, Hatano T, Washida H, Suzuki A, Takaiwa F (1998) Promoters of rice seed storage protein genes direct endosperm-specific gene expression in transgenic rice. Plant Cell Physiol 39:885

    CAS  Google Scholar 

  91. Hannon GJ (2002) RNA interference. Nature 418:244

    CAS  Google Scholar 

  92. Susi P, Hohkuri M, Wahlroos T, Kilby NJ (2004) Characteristics of RNA silencing in plants: similarities and differences across kingdoms. Plant Mol Biol 54:157

    CAS  Google Scholar 

  93. Padgette SR, Kolacz KH, Delannay X, Re DB, Lavallee BJ, Tinius CN, Rhodes WK, Otero YI, Barry GF, Eichholtz DA, Peschke VM, Nida DL, Taylor NB, Kishore GM (1995) Development, identification and characterization of a glyphosate-tolerant soybean line. Crop Sci 35:1451

    Article  CAS  Google Scholar 

  94. Freyssinet G, Pelissier B, Freyssinet M, Delon R (1996) Crops resistant to oxynils: from the laboratory to the market. Field Crops Res 45:125

    Google Scholar 

  95. Forster VA (2002) Genetically modified crop approvals and planted acreages. Crop Biotechnol 829:17

    CAS  Google Scholar 

  96. Duke SO, Scheffler BE, Dayan FE, Dyer WE (2002) Genetic engineering crops for improved weed management traits. Crop Biotechnol 829:52

    Article  CAS  Google Scholar 

  97. Benbrook CM (2003) Impacts of genetically engineered crops on pesticide use in the United States: the first eight years. BioTech InfoNet Technical Paper Number 6 (www.biotech-info.net/Technical_paper_6.pdf)

    Google Scholar 

  98. de Maagd RA, Bosch D, Stiekema W (1999) Bacillus thuringiensis toxin-mediated insect resistance in plants. Trends Plant Sci 4:9

    Google Scholar 

  99. Gianessi LP, Silvers CS, Sankula S, Carpenter JE 2002. Plant biotechnology: current and potential impact for improving pest management. In: US agriculture: an analysis of 40 case studies. National Center for Food and Agricultural Policy, Washington

    Google Scholar 

  100. Dowd PF (2000) Indirect reduction of ear molds and associated mycotoxins in Bacillus thuringiensis corn under controlled and open field conditions: utility and limitations. J Econ Entomol 93:1669

    CAS  Google Scholar 

  101. Dowd PF (2001) Biotic and abiotic factors limiting efficacy of Bt corn in indirectly reducing mycotoxin levels in commercial fields. J Econ Entomol 94:1067

    CAS  Google Scholar 

  102. Ferreira SA, Pitz KY, Manshardt R, Zee F, Fitch M, Gonsalves D (2002) Virus coat protein transgenic papaya provides practical control of papaya ringspot virus in Hawaii. Plant Dis 86:101

    Google Scholar 

  103. Gonsalves D (1998) Control of papaya ringspot virus in papaya: a case study. Annu Rev Phytopathol 36:415

    CAS  Google Scholar 

  104. Culver JN (2002) Tobacco mosaic virus assembly and disassembly: determinants in pathogenicity and resistance. Annu Rev Phytopathol 40:287

    CAS  Google Scholar 

  105. Delvas M, Ceriani MF, Collavita M, Butzonich I, Hopp HE (1993) Analysis of transgenic potato plants expressing potato leaf-roll virus coat protein gene. Plant Physiol 102:174

    Google Scholar 

  106. Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Nat Acad Sci USA 100:9128

    CAS  Google Scholar 

  107. Garg AK, Kim J-K, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Nat Acad Sci USA 99:15898

    CAS  Google Scholar 

  108. Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotechnol 13:146

    CAS  Google Scholar 

  109. Kepzcynski J, Kepcynska E (2005) Manipulation of ethylene biosynthesis. Acta Physiol Planta 27:213

    Google Scholar 

  110. Falco SC, Guida T, Locke M, Mauvais J, Sandres C, Ward RT, Webber P (1995) Transgenic canola and soybean seeds with increased lysine. Bio/Technology 13:577

    CAS  Google Scholar 

  111. Mazur B, Krebbers E, Tingey S (1999) Gene discovery and product development for grain quality traits. Science 285:372

    CAS  Google Scholar 

  112. Karchi H, Shaul O, Galili G (1994) Lysine synthesis and catabolism are coordinately regulated during tobacco seed development. Proc Nat Acad Sci USA 91:2577

    CAS  Google Scholar 

  113. Karchi H, Miron D, Ben-Yaacov S, Galili G (1995) The lysine-dependent stimulation of lysine catabolism in tobacco seeds requires calcium and protein phosphorylation. Plant Cell 7:1963

    CAS  Google Scholar 

  114. Zhu X, Galili G (2003) Increased lysine synthesis coupled with a knockout of its catabolism synergistically boosts lysine content and also transregulates the metabolism of other amino acids in Arabidopsis seeds. Plant Cell 15:845

    CAS  Google Scholar 

  115. Wasaka K, Hasegawa H, Nemoto H, Matsuda F, Miyazawa H, Tozawa Y, Morino K, Komatsu A, Yamada T, Terekawa T, Miyagawa H (2006) High-level tryptophan accumulation in seeds of transgenic rice and its limited effects on agronomic traits and seed metabolite profile. J Exp Bot 57:3069

    Google Scholar 

  116. Hejgaard J, Boisen S (1980) High-lysine proteins in Hiproly barley breeding: identification, nutritional significance and new screening methods. Hereditas 93:311

    CAS  Google Scholar 

  117. Roesler KR, Rao AG (1999) Conformation and stability of barley chymotrypsin inhibitor-2 (CI-2) mutants containing multiple lysine substitutions. Protein Eng 12:967

    CAS  Google Scholar 

  118. Roesler KR, Rao AG (2000) A single disulfide bond restores thermodynamic and proteolytic stability to an extensively mutated protein. Protein Sci 9:1642

    CAS  Google Scholar 

  119. Forsyth JL, Beaudoin F, Halford NG, Sessions R, Clarke AR, Shewry PR (2005) Design, expression and characterisation of lysine-rich forms of the barley seed protein CI-2. Biochim Biophys Acta 1747:221

    CAS  Google Scholar 

  120. Rao AG, Hassan M, Hempel JC (1994) Structure–function validation of high lysine analogs of α-hordothionin designed by protein modelling. Protein Eng 7:1485

    CAS  Google Scholar 

  121. Florack DEA, Stiekema WJ (1994) Thionins: properties, possible biological roles and mechanisms of action. Plant Mol Biol 26:25

    CAS  Google Scholar 

  122. Altenbach SB, Kuo C-C, Staraci LC, Sun SSM (1992) Accumulation of a Brazil nut albumin in seeds of transgenic canola results in enhanced levels of seed protein methionine. Plant Mol Biol 18:235

    CAS  Google Scholar 

  123. Jung R, Martino-Catt S, Townsend J, Beach L (1997) Expression of a sulphur-rich protein in soybean seeds causes an altered seed protein composition. Plant Mol Biol Rep Suppl 15:307

    Google Scholar 

  124. Saalbach I, Waddell D, Pickardt T, Schieder O, Müntz K (1995) Stable expression of the sulphur-rich 2S albumin gene in transgenic Vicia narbonensis increases the methionine content of seeds. J Plant Physiol 145:674

    CAS  Google Scholar 

  125. Muntz K, Christov V, Saalbach G, Saalbach I, Waddell D, Pickardt T, Schieder O, Wustenhagen T (1998) Genetic engineering for high methionine grain legumes. Nahrung 42:125

    CAS  Google Scholar 

  126. Kortt AA, Caldwell JB (1990) Low molecular weight albumins from sunflower seed: identification of a methionine-rich albumin. Phytochemistry 29:2805

    CAS  Google Scholar 

  127. Kortt AA, Caldwell JB, Lilley GG, Higgins TJV (1991) Amino acid and cDNA sequences of a methionine-rich 2S protein from sunflower seed (Helianthus annus L.). Eur J Biochem 195:329

    CAS  Google Scholar 

  128. Molvig L, Tabe LM, Eggum BO, Moore AE, Craig S, Spencer D, Higgins TJV (1997) Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc Nat Acad Sci USA 94:8393

    CAS  Google Scholar 

  129. Hagan ND, Upadhyaya N, Tabe LM, Higgins TJV (2003) The redistribution of protein sulphur in transgenic rice expressing a gene for a foreign, sulphur-rich protein. Plant J 34:1

    CAS  Google Scholar 

  130. Demidov D, Horstmann C, Meixner M, Pickardt T, Saalbach I, Galili G, Muntz K (2003) Additive effects of the feed-back insensitive bacterial aspartate kinase and the Brazil nut 2S albumin on the methionine content of transgenic narbon bean (Vicia narbonensis L). Mol Breed 11:187

    CAS  Google Scholar 

  131. Tabe L, Droux M (2002) Limits to sulfur accumulation in transgenic lupin seeds expressing a foreign sulfur-rich protein. Plant Physiol 128:1137

    CAS  Google Scholar 

  132. Lee TTT, Chung M-C, Kao Y-W, Wang C-S, Chen L-J, Tzen JTC (2005) Specific expression of a sesame storage protein in transgenic rice bran. J Cereal Sci 41:23

    CAS  Google Scholar 

  133. Lee TTT, Wang MMC, Hou RCW, Chen L-J, Su RC, Wang CS, Tzen JTC (2003) Enhanced methionine and cysteine levels in transgenic rice seeds by the accumulation of sesame 2S albumin. Biosci Biotechnol Biochem 67:1699

    Google Scholar 

  134. Monsalve RI, Villalba M, Rico M, Shewry PR, Rodríguez R (2004) The 2S albumin proteins. In: Mills ENC, Shewry PR (eds) Plant food protein allergens. Blackwell Science, Oxford, p 42

    Google Scholar 

  135. Melo VMM, Xavier-Filho J, Lima MS, Prouvost-Danon A (1994) Allergenicity and tolerance to proteins from Brazil nut (Bertholletia excelsa HBK). Food Agric Immunol 6:185

    CAS  Google Scholar 

  136. Nordlee JA, Taylor SL, Townsend JA, Thomas LA, Bush RK (1996) Identification of a Brazil-nut allergen in transgenic soybeans. New Engl J Med 334:688

    CAS  Google Scholar 

  137. Kelly JD, Hefle SL (2000) 2S methionine-rich protein (SSA) from sunflower seed is an IgE-binding protein. Allergy 55:556

    CAS  Google Scholar 

  138. Kelly JD, Hlywka JJ, Hefle SL (2000) Identification of sunflower seed IgE-binding proteins. Int Arch Allergy Appl Immunol 121:19

    CAS  Google Scholar 

  139. Pastorello EA, Varin E, Farioli L, Pravettoni V, Ortolani C, Trambaioli C, Fortunato D, Giuffrida MG, Rivolta F, Robino A, Calamari AM, Lacava L, Conti A (2001) The major allergen of sesame seeds (Sesamum indicum) is a 2S albumin. J Chromatogr B 756:85

    CAS  Google Scholar 

  140. Swarup S, Timmermans MCP, Chaudhuri S, Messing J (1995) Determinants of the high-methionine trait in wild and exotic germplasm may have escaped selection during early cultivation of maize. Plant J 8:359

    CAS  Google Scholar 

  141. Pedersen K, Argos P, Naravana SVL, Larkins BA (1986) Sequence analysis and characterization of a maize gene encoding a high-sulfur zein protein of M r 15000. J Biol Chem 261:6279

    CAS  Google Scholar 

  142. Anthony A, Brown W, Buhr D, Ronhovde G, Genovesi D, Lane T, Yingling R, Rosato M, Anderson P (1997) Transgenic maize with elevated 10-kD zein and methionine. In: Cram WJ et al. (eds) Sulphur metabolism in higher plants. Backhuys, Leiden, p 295

    Google Scholar 

  143. Lai J, Messing J (2002) Increasing maize seed methionine by mRNA stability. Plant J 30:395

    CAS  Google Scholar 

  144. Mills ENC, Madsen C, Shewry PR, Wichers HJ (2003) Food allergens of plant origin—their molecular and evolutionary relationships. Trends Food Sci Technol 14:145

    CAS  Google Scholar 

  145. Mills ENC, Jenkins JA, Bannon GA (2004) Plant seed globulin allergens. In: Mills ENC, Shewry PR (eds) Plant food allergens. Blackwell Science, Oxford, p 141

    Google Scholar 

  146. Scheurer S, Son DY, Boehm M, Karamloo F, Franke S, Hoffmann A, Haustein D, Vieths S (1999) Cross-reactivity and epitope analysis of Pru a 1, the major cherry allergen. Mol Immunol 36:155

    CAS  Google Scholar 

  147. Kasarda DD (2001) Grains in relation to celiac disease. Cereal Foods World 46:209

    Google Scholar 

  148. Nakase M, Adachi T, Urisu A, Miyashita T, Alvarez AM, Nagasaki S, Aoki N, Nakamura R, Matsuda T (1996) Rice (Oryza sativa L.) α-amylase inhibitors of 14–16 kDa are potential allergens and products of a multigene family. J Agric Food Chem 44:2624

    CAS  Google Scholar 

  149. Matsuda T, Nomura R, Sugiyama M, Nakamura R (1991) Immunochemical studies on rice allergenic proteins. Agric Biol Chem 55:509

    CAS  Google Scholar 

  150. Alvarez A, Adachi T, Nakase M, Aoki N, Nakamura R, Matsuda T (1995) Classification of rice allergenic protein cDNAs belonging to the α-amylase/trypsin inhibitor gene family. Biochim Biophys Acta 1251:201

    Google Scholar 

  151. Tada Y, Nakase M, Adachi T, Nakamura R, Shimada H, Takahashi M, Fujimura T, Matsuda T (1996) Reduction of 14–16 kDa allergenic proteins in transgenic rice plants by antisense gene. FEBS Lett 391:341

    CAS  Google Scholar 

  152. Herman EM, Helm RM, Jung R, Kinney AJ (2003) Genetic modification removes and immunodominant allergen from soybean. Plant Physiol 132:36

    CAS  Google Scholar 

  153. Bhalla PL, Swoboda I, Singh MB (1999) Antisense-mediated silencing of a gene encoding a major ryegrass pollen allergen. Proc Nat Acad Sci USA 96:11676

    CAS  Google Scholar 

  154. Petrovska N, Wu X, Donato R, Wang Z, Ong E-K, Jones E, Forster J, Emmerling M, Sidoli A, O'Hehir R, Spangenberg G (2004) Transgenic ryegrasses (Lolium spp.) with down-regulation of main pollen allergens. Mol Breed 14:489

    CAS  Google Scholar 

  155. Gilissen L, Bolhaar STH, Matos CI, Rouwendal GJA, Boone MJ, Krens FA, Zuidmeer L, van Leeuwen A, Akkerdaas J, Hoffmann-Sommergruber K et al. (2005) Silencing the major apple allergen Mal d 1 by using the RNA interference approach. J Allergy Clin Immunol 115:364

    CAS  Google Scholar 

  156. Zhu T, Peterson DJ, Tagliani L, St Clair G, Baszczynski CL, Bowen B (1999) Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc Nat Acad Sci USA 96:8768 XXX

    CAS  Google Scholar 

  157. Payne PI, Nightingale MA, Krattiger AF, Holt LM (1987) The relationship between the HMW glutenin subunit composition and the breadmaking quality of British-grown wheat varieties. J Sci Food Agric 40:51

    CAS  Google Scholar 

  158. Payne PI (1987) Genetics of wheat storage proteins and the effect of allelic variation on breadmaking quality. Annu Rev Plant Physiol 38:141

    CAS  Google Scholar 

  159. Popineau Y, Cornec M, Lefebre J, Marchylo B (1994) Influence of high M r glutenin subunits on glutenin polymers and rheological properties of gluten and gluten subfractions of near-isogenic lines of wheat Sicco. J Cereal Sci 19:231

    CAS  Google Scholar 

  160. Gupta RB, MacRitchie F (1994) Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1 of common wheats. II. Biochemical basis of the allelic effects on dough properties. J Cereal Sci 19:19

    CAS  Google Scholar 

  161. Shewry PR, Halford NG, Tatham AS, Popineau Y, Lafiandra D, Belton PS (2003) The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. Adv Food Nutr Res 45:219

    Article  CAS  Google Scholar 

  162. Halford NG, Field JM, Blair H, Urwin P, Moore K, Robert L, Thompson R, Flavell RB, Tatham AS, Shewry PR (1992) Analysis of HMW glutenin subunits encoded by chromosome 1A of bread wheat (Triticum aestivum L.) indicates quantitative effects on grain quality. Theor Appl Genet 83:373

    CAS  Google Scholar 

  163. Blechl AE, Anderson OD (1996) Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat. Nat Biotechnol 14:875

    CAS  Google Scholar 

  164. Altpeter F, Vasil V, Srivastava V, Vasil IK (1996) Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 gene into wheat. Nat Biotechnol 14:1155

    CAS  Google Scholar 

  165. Barro F, Rooke L, Bekes F, Gras P, Tatham AS, Fido R, Lazzeri PA, Shewry PR, Barcelo P (1997) Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nat Biotechnol 15:1295

    CAS  Google Scholar 

  166. Anderson OD, Blechl AE (2000) Transgenic wheat: challenges and opportunities. In: O'Brien L, Henry R (eds) Transgenic cereals. American Association of Cereal Chemists, St Pauls, p 1

    Google Scholar 

  167. Rooke L, Bekes F, Fido R, Barro F, Gras P, Tatham AS, Barcelo P, Lazzeri P, Shewry PR (1999) Overexpression of a gluten protein in transgenic wheat results in greatly increased dough strength. J Cereal Sci 30:115

    CAS  Google Scholar 

  168. Alvarez ML, Guelman S, Halford NG, Lustig S, Reggiardo MI, Ryabushkina N, Shewry PR, Stein J, Vallejos RH (2000) Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor Appl Genet 100:319

    CAS  Google Scholar 

  169. Alvarez ML, Gomez M, Carrillo JM, Vallejos RH (2001) Analysis of dough functionality of flours from transgenic wheat. Mol Breed 8:103

    CAS  Google Scholar 

  170. Popineau Y, Deshayes G, Lefebre J, Fido R, Tatham AS, Shewry PR (2001) Prolamin aggregation, gluten viscoelasticity and mixing properties of transgenic wheat lines expressing 1Ax and 1Dx high molecular weight glutenin subunit transgenes. J Agric Food Chem 49:395

    CAS  Google Scholar 

  171. Darlington H, Fido R, Tatham AS, Jones H, Salmon SE, Shewry PR (2003) Milling and baking properties of field grown wheat expressing HMW subunit transgenes. J Cereal Sci 38:301

    CAS  Google Scholar 

  172. Vasil IK, Bean S, Zhao J, McCluskey P, Lookhart G, Zhao H-P, Altpeter F, Vasil V (2001) Evaluation of baking properties and gluten protein composition of field grown transgenic wheat lines expressing high molecular weight glutenin gene 1Ax1. J Plant Physiol 158:521

    CAS  Google Scholar 

  173. Pastori GM, Steele SH, Jones HD, Shewry PR (2000) Transformation of commercial wheat varieties with high molecular weight glutenin subunit genes. In: Shewry PR, Tatham AS (eds) Wheat gluten. Royal Society of Chemistry, Cambridge, p 88

    Google Scholar 

  174. Rakszegi M, Pastori G, Jones HD, Békés F, Butow B, Lang L, Bedo Z, Shewry PR (2007) Technological quality of field grown transgenic lines of commercial wheat cultivars expressing the 1Ax1 HMW glutenin subunit gene. J Cereal Sci (in press)

    Google Scholar 

  175. Field JM, Bhandari D, Bonet A, Underwood C, Darlington H, Shewry PR (2007) Introgression of transgenes into a commercial cultivar confirms differential effects of HMW subunits 1Ax1 and 1Dx5 on gluten properties. J Cereal Sci (in press)

    Google Scholar 

  176. Denbow DM, Grabau EA, Lacy GH, Kornegay ET, Russell DR, Umbeck PF (1998) Soybeans transformed with a fungal phytase gene improve phosphorus availability for broilers. Poultry Sci 77:878

    CAS  Google Scholar 

  177. Zhang ZB, Kornegay ET, Radcliffe JS, Denbow DM, Veit HP, Larsen CT (2000a) Comparison of genetically engineered microbial and plant phytase for young broilers. Poultry Sci 79:709

    CAS  Google Scholar 

  178. Zhang ZB, Kornegay ET, Radcliffe JS, Wilson JH, Veit HP (2000b) Comparison of phytase from genetically engineered Aspergillus and canola in weanling pig diets. J Anim Sci 78:2868

    CAS  Google Scholar 

  179. Brinch-Pedersen H, Olesen A, Rasmussen SK, Holm PB (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breed 6:195

    CAS  Google Scholar 

  180. Brinch-Pedersen H, Hatzack F, Sorensen LD, Holm PB (2003) Concerted action of endogenous and heterologous phytase on phytic acid degradation in seeds of transgenic wheat (Triticum aestivum L.). Transgenic Res 12:649

    CAS  Google Scholar 

  181. Drakakaki G, Marcel S, Glahn RP, Lund EK, Pariagh S, Fischer R, Christou P, Stoger E (2005) Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol Biol 59:869

    CAS  Google Scholar 

  182. Brinch-Pedersen H, Sorensen LD, Bach Holm P (2002) Engineering crop plants: getting a handle on phosphate. Trends Plant Sci 7:118

    CAS  Google Scholar 

  183. Hong CY, Cheng KJ, Tsent TH, Wang CS, Liu LF, Yu SM (2004) Production of two highly active bacterial phytases with broad pH optima in generating transgenic rice seeds. Transgenic Res 13:29

    CAS  Google Scholar 

  184. WHO (1992) National strategies for overcoming micronutrient malnutrition. Document A45/3. WHO, Geneva

    Google Scholar 

  185. Theil EC (1987) Ferritin: structure, gene regulation and cellular function in animals, plants, and microorganisms. Annu Rev Biochem 56:289

    CAS  Google Scholar 

  186. Goto F, Yoshihara T, Saiki H (1998) Iron accumulation in tobacco plants expressing the soybean ferritin gene. Transgenic Res 7:173

    CAS  Google Scholar 

  187. Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282

    CAS  Google Scholar 

  188. Qu LQ, Yoshihara T, Ooyama A, Goto F, Takaiwa F (2005) Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds. Planta 222:225

    CAS  Google Scholar 

  189. Voelker TA, Worrell AC, Anderson L, Bleibaum J, Fan C, Hawkins DJ, Radke SE, Davies HM (1992) Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science 257:72

    CAS  Google Scholar 

  190. Kinney AJ (1996) Development of genetically engineered soybean oils for good applications. J Food Lipids 3:273

    CAS  Google Scholar 

  191. Lee M, Lenman M, Banás A, Bafor M, Singh S, Schweizer M, Nilsson R, Liljenberg C, Dahlqvist A, Gummeson P-O, Sjödahl S, Green A, Stymne S (1998) Identification of non-heme diiron proteins that catalyze triple bond and epoxy group formation. Science 280:915

    CAS  Google Scholar 

  192. Cahoon EB, Carlson TJ, Ripp KG, Schweiger BJ, Cook GA, Hall SE, Kinney AJ (1999) Biosynthetic origin of conjugated double bonds: production of fatty acid components of high-value drying oils in transgenic soybean embryos. Proc Nat Acad Sci USA 96:12935

    CAS  Google Scholar 

  193. Sayanova OV, Napier JA (2004) Eicosapentaenoic acid: biosynthetic routes and the potential for synthesis in transgenic plants. Phytochemistry 65:147

    CAS  Google Scholar 

  194. Mendoza de Gyves E, Sparks C, Sayanova O, Lazzeri P, Napier JA, Jones HD (2004) Genetic manipulation of gamma-linolenic acid (GLA) synthesis in commercial varieties of evening primrose (Oenothera spp.). Plant Biotechnol J 2:351

    Google Scholar 

  195. Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier JA, Stobart AK, Lazarus CM (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22:739

    CAS  Google Scholar 

  196. Napier JA (2007) The production of unusual fatty acids in transgenic plants. Annu Rev Plant Biol 58:295

    CAS  Google Scholar 

  197. Westrate JA, Meijer GW (1998) Plant sterol-enriched margarines and reduction of plasma total- and LDL-cholesterol concentrations in normocholesterolemic and mildly hypercholesterolemic subjects. Eur J Clin Nutr 52:334

    Google Scholar 

  198. Harker M, Holmberg M, Clayton JC, Gibbard CL, Wallace AD, Rawlins S, Hellyer SA, Lanot A, Safford R (2003) Enhancement of seed phytosterol levels by expression of an N-terminal truncated Hevea brasiliensis (rubber tree) 3-hydroxy-3-methylglutaryl-CoA reductase. Plant Biotechnol J 1:113

    CAS  Google Scholar 

  199. Herbers K (2003) Vitamin production in transgenic plants. J Plant Physiol 160:821

    CAS  Google Scholar 

  200. Kloti A, Henrich C, Bieri S, He XY, Chen G, Burkhardt PK, Wunn J, Lucca P, Hohn T et al. (1999) Upstream and downstream sequence elements determine the specificity of the rice tungro bacilliform virus promoter and influence RNA production after transcription initiation. Plant Mol Biol 40:249

    CAS  Google Scholar 

  201. Reddy P, Appels R (1993) Analysis of a genomic DNA segment carrying the wheat high molecular weight (HMW) glutenin Bx17 subunit and its use as an Rflp marker. Theor Appl Genet 85:616

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter R. Shewry .

Editor information

Ulf Stahl Ute E. B. Donalies Elke Nevoigt

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shewry, P.R., Jones, H.D., Halford, N.G. (2008). Plant Biotechnology: Transgenic Crops. In: Stahl, U., Donalies, U.E., Nevoigt, E. (eds) Food Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2008_095

Download citation

Publish with us

Policies and ethics