Genetic and Ecological Consequences of Transgene Flow to the Wild Flora

  • François Felber
  • Gregor Kozlowski
  • Nils Arrigo
  • Roberto Guadagnuolo
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 107)

Abstract

Gene flow from crops to wild relatives by sexual reproduction is one of the major issues in risk assessment for the cultivation of genetically engineered (GE) plants. The main factors which influence hybridization and introgression, the two processes of gene flow, as well as the accompanying containment measures of the transgene, are reviewed. The comparison of risks between Switzerland and Europe highlights the importance of regional studies. Differences were assessed for barley, beet and wheat. Moreover, transgene flow through several wild species acting as bridge (bridge species) has been up to now poorly investigated. Indeed, transgene flow may go beyond the closest wild relative, as in nature several wild species complexes hybridize. Its importance is assessed by several examples in Poaceae. Finally, the transgene itself has genetic and ecological consequences that are reviewed. Transgenic hybrids between crops and wild relatives may have lower fitness than the wild relatives, but in several cases, no cost was detected. On the other hand, the transgene provides advantages to the hybrids, in the case of selective value as a Bt transgene in the presence of herbivores. Genetic and ecological consequences of a transgene in a wild species are complex and depend on the type of transgene, its insertion site, the density of plants and ecological factors. More studies are needed for understanding the short and long term consequences of escape of a transgene in the wild.

Risk assessment Transgene Genetically engineered plants Bridge species Switzerland 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hails RS, Morley K (2005) Trends Ecol Evol 20:245 PubMedGoogle Scholar
  2. 2.
    Ellstrand NC, Prentice HC, Hancock JF (1999) Ann Rev Ecol Syst 30:539 Google Scholar
  3. 3.
    Halfhill MD, Millwood RJ, Rymer PL, Stewart CN (2002) Environ Biosafety Res 1:19 PubMedGoogle Scholar
  4. 4.
    Ellstrand NC (2003) Dangerous Liaisons? When Cultivated Plants Mate with Their Wild Relatives. The John Hopkins University Press, Baltimore Google Scholar
  5. 5.
    Stewart CN, Halfhill MD, Warwick SI (2003) Nat Rev Genet 4:806 PubMedGoogle Scholar
  6. 6.
    Wilkinson MJ, Elliott LJ, Allanguillaume J, Shaw MW, Norris C, Welters R, Alexander M, Sweet J, Mason D (2003) Science 302:457 PubMedADSGoogle Scholar
  7. 7.
    den Nijs HCM, Bartsch D, Sweet J (2004) Introgression from Genetically Modified Plants into Wild Relatives. CABI Publishing, Oxon, UK Google Scholar
  8. 8.
    Elliott LJ, Mason DC, Wilkinson MJ, Allainguillaume J, Norris C, Alexander M, Welters R (2004) J Appl Ecol 41:1174 Google Scholar
  9. 9.
    Reagon M, Snow AA (2006) Am J Bot 93:127 Google Scholar
  10. 10.
    Burke JM, Rieseberg LH (2003) Science 23:1250 Google Scholar
  11. 11.
    Guadagnuolo R, Clegg J, Ellstrand NC (2006) Ecol Appl 16:1967 PubMedGoogle Scholar
  12. 12.
    Chapman MA, Burke JM (2006) New Phytol 170:429 PubMedGoogle Scholar
  13. 13.
    Gepts P (2002) Crop Sci 42:1780 CrossRefGoogle Scholar
  14. 14.
    Ellstrand NC (2003) Philos Trans R Soc Lond B 358:1163 Google Scholar
  15. 15.
    Bannert M (2006) Simulation of transgenic pollen dispersal by use of different grain colour maize. Dissertation no. 16508 Swiss Federal Institute of Technology of Zürich Google Scholar
  16. 16.
    Watrud LS, Lee EH, Fairbrother A, Burdick C, Reichman JR, Bollman M, Storm M, King G, Van de Water PK (2004) Proc Natl Acad Sci USA 101:14533 PubMedADSGoogle Scholar
  17. 17.
    Lavigne C, Klein EK, Vallee P, Pierre J, Godelle B, Renard M (1998) Theor Appl Genet 96:886 Google Scholar
  18. 18.
    Damgaard C, Kjellsson G (2005) Agric Ecosyst Environ 108:291 Google Scholar
  19. 19.
    Hayter KE, Cresswell JE (2006) J Appl Ecol 43:1196 Google Scholar
  20. 20.
    Haygood R, Ives AR, Andow DA (2003) Proc R Soc Lond B Biol Sci 270:1879 Google Scholar
  21. 21.
    Ellstrand NC, Elam DR (1993) Annu Rev Ecol Syst 24:217 Google Scholar
  22. 22.
    Burgess KS, Morgan M, Deverno L, Husband BC (2005) Mol Ecol 14:3471 PubMedGoogle Scholar
  23. 23.
    Whitton J, Wolf DE, Arias DM, Snow AA, Rieseberg LH (1997) Theor Appl Genet 95:33 Google Scholar
  24. 24.
    Guéritaine G, Sester M, Eber F, Chevre AM, Darmency H (2002) Mol Ecol 11:1419 PubMedGoogle Scholar
  25. 25.
    Rieseberg LH, Whitton J, Gardner K (1999) Genetics 152:713 PubMedGoogle Scholar
  26. 26.
    Martinsen GD, Whitham TG, Turek RJ, Keim P (2001) Evolution 55:1325 PubMedGoogle Scholar
  27. 27.
    Deblock M, Debrouwer D (1993) Planta 189:218 Google Scholar
  28. 28.
    Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Proc Natl Acad Sci USA 98:11479 PubMedADSGoogle Scholar
  29. 29.
    Zemetra RS, Hansen J, Mallory-Smith CA (1998) Weed Sci 46:313 Google Scholar
  30. 30.
    Seefeldt SS, Zemetra R, Young FL, Jones SS (1997) Weed Sci 46:632 Google Scholar
  31. 31.
    Halfhill MD, Richards HA, Mabon SA, Stewart CN (2001) Theor Appl Genet 103:659 Google Scholar
  32. 32.
    Schoenenberger N, Felber F, Savova-Bianchi D, Guadagnuolo R (2005) Theor Appl Genet 111:1338 PubMedGoogle Scholar
  33. 33.
    Schoenenberger N, Guadagnuolo R, Savova-Bianchi D, Küpfer P, Felber F (2006) Genetics 174:2061 PubMedGoogle Scholar
  34. 34.
    Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Nat Biotechnol 16:345 PubMedGoogle Scholar
  35. 35.
    Smith SE (1989) Plant Breed Rev 6:361 Google Scholar
  36. 36.
    Huang CY, Ayliffe MA, Timmis JN (2003) Nature 422:72 PubMedADSGoogle Scholar
  37. 37.
    Keenan RJ, Stemmer WPC (2002) Nat Biotechnol 20:215 PubMedGoogle Scholar
  38. 38.
    Gressel J (1999) Trends Biotechnol 17:361 PubMedGoogle Scholar
  39. 39.
    Al-Ahmad H, Galili S, Gressel J (2005) Planta 272:372 Google Scholar
  40. 40.
    Savova D, Rufener Al Mazyad P, Felber F (1996) Bot Helv 106:197 Google Scholar
  41. 41.
    Reichman JR, Watrud LS, Lee EH, Burdick CA, Bollman MA, Storm MJ, King GA, Mallory-Smith C (2006) Mol Ecol 15:4243 PubMedGoogle Scholar
  42. 42.
    Savova-Bianchi D, Keller-Senften J, Felber F (2002) Weed Res 42:325 Google Scholar
  43. 43.
    Fernandes MIBM, Zanatta ACA, Prestes AM, Caetano VR, Barcellos AL, Angra DC, Pandolci V (2000) Genet Mol Biol 23:1051 Google Scholar
  44. 44.
    Romero MD, Montes MJ, Sin E, Lopez-Braña I, Duce A, Martin-Sanchez JA, Andrés MF, Delibes A (1998) Theor Appl Genet 96:1135 Google Scholar
  45. 45.
    Riley R, Kimber G (1966) Annu Rep Plant Breed Inst 1964–1965:6 Google Scholar
  46. 46.
    Choudhary BR, Joshi P, Singh A (2000) Theor Appl Genet 101:990 Google Scholar
  47. 47.
    Vroh BI, Baudoinm JP, Hau B, Mergeai G (1999) Euphytica 106:243 Google Scholar
  48. 48.
    Chen J, Staub J, Qian Ch, Jiang J, Luo X, Zhuang F (2003) Theor Appl Genet 106:688 PubMedGoogle Scholar
  49. 49.
    Laferriere LT, Helgeson JP, Allen C (1999) Theor Appl Genet 98:1272 Google Scholar
  50. 50.
    Mallet J (2005) Trends Ecol Evol 20:229 PubMedGoogle Scholar
  51. 51.
    Stace C (ed) (1975) Hybridization and the flora of the British Isles. Academic Press, London Google Scholar
  52. 52.
    Ellstrand NC, Whitkus R, Rieseberg LH (1996) Proc Natl Acad Sci USA 93:5090 PubMedADSGoogle Scholar
  53. 53.
    Hardig TM, Brunsfeld SJ, Fritz RS, Morgan M, Orians CM (2000) Mol Ecol 9:9 PubMedGoogle Scholar
  54. 54.
    Dumolin-Lapegue S, Kremer A, Petit RJ (1999) Evolution 53:1406 Google Scholar
  55. 55.
    Griffin AR, Burgess IP, Wolf L (1988) Austr J Bot 36:41 Google Scholar
  56. 56.
    Rieseberg LH (1997) Ann Rev Ecol Syst 28:359 Google Scholar
  57. 57.
    Rieseberg LH, Baird SJE, Gardner KA (2000) Plant Mol Biol 42:205 PubMedGoogle Scholar
  58. 58.
    Hegarty MJ, Hiscock SJ (2005) New Phytol 165:411 PubMedGoogle Scholar
  59. 59.
    Grant V (1981) Plant speciation. Columbia University Press, New York Google Scholar
  60. 60.
    Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, New York Google Scholar
  61. 61.
    Raven PH (1976) Syst Bot 1:284 Google Scholar
  62. 62.
    Whitham TG, Morrow PA, Potts BM (1991) Science 254:779 ADSGoogle Scholar
  63. 63.
    Stebbins GL (1959) Proc Am Philos Soc 103:231 Google Scholar
  64. 64.
    Abbott RJ (1992) Trends Ecol Evol 7:401 Google Scholar
  65. 65.
    Marchant AD, Arnold ML, Willinson P (1988) Heredity 61:321 Google Scholar
  66. 66.
    Mathews S, Tsai RC, Kellogg EA (2000) Am J Bot 87:96 PubMedGoogle Scholar
  67. 67.
    Davies JI, Soreng RJ (1993) Am J Bot 80:1444 Google Scholar
  68. 68.
    Dahlgren RMT, Cliford HT, Yeo PF (1985) The families of the monocotyledons. Springer, Berlin Heidelberg New York Google Scholar
  69. 69.
    Clark LG, Zhang W, Wendel JF (1995) Syst Bot 20:436 Google Scholar
  70. 70.
    Stebbins GL (1985) Ann Missouri Bot Gard 72:824 Google Scholar
  71. 71.
    Wipff JK (2002) Gene flow in turf and forage grasses (Poaceae), In: Ecological and Agronomic Consequences of Gene Flow from Transgenic Crops to Wild Relatives, Workshop Proceedings. The Ohio State University, Columbus, Ohio, p 115–133 Google Scholar
  72. 72.
  73. 73.
    Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York Google Scholar
  74. 74.
    Clausen J (1961) Euphytica 10:87 Google Scholar
  75. 75.
    Muntzing A (1940) Hereditas 15:219 Google Scholar
  76. 76.
    Melderis A (1955) Proc BSBI 1:390 Google Scholar
  77. 77.
    Trist PJO (1971) Watsonia 8:311 Google Scholar
  78. 78.
    Jahuar PP (1975) Chromosoma 52:103 Google Scholar
  79. 79.
    Terell EE (1966) Bot Rev 32:138 Google Scholar
  80. 80.
    Gymer PT, Whittington WJ (1973a) New Phytol 72:411 Google Scholar
  81. 81.
    Gymer PT, Whittington WJ (1973b) New Phytol 72:862 Google Scholar
  82. 82.
    Terell EE (1979) Taxonomy, morphology, and phylogeny, In: Buckner RC, Bush LP (eds) Tall Fescue, Chapter 3. Agronomy Series No. 20. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Inc., Madison Google Scholar
  83. 83.
    Jaworski A, Sulinowski S, Nowacki E (1975) Genet Pol 16:271 Google Scholar
  84. 84.
    Darbyshire SJ (1993) Novon 3:239 Google Scholar
  85. 85.
    Metzdorff SB, Kok EJ, Knuthsen P, Pedersen J (2006) Plant Biol 8:662 PubMedGoogle Scholar
  86. 86.
    Bergelson J, Purrington CB, Palm CJ, LopezGutierrez JC (1996) Proc R Soc Lond B Biol Sci 263:1659 ADSGoogle Scholar
  87. 87.
    Purrington CB, Bergelson J (1997) Genetics 145:807 PubMedGoogle Scholar
  88. 88.
    Bergelson J, Purrington CB, Wichmann G (1998) Nature 395:25 PubMedADSGoogle Scholar
  89. 89.
    Saxena D, Stotzky G (2001) Am J Bot 88:1794 Google Scholar
  90. 90.
    Prescott VE, Campbell PM, Moore A, Mattes J, Rothenberg ME, Foster PS, Higgins TJV, Hogan SP (2005) J Agric Food Chem 53:9023 PubMedGoogle Scholar
  91. 91.
    Arnold ML, Hodges SA (1995) Trends Ecol Evol 10:67 Google Scholar
  92. 92.
    Burke JM, Arnold ML (2001) Ann Rev Genet 35:31 PubMedGoogle Scholar
  93. 93.
    Hauser TP, Shaw RG, Østergård H (1998) Heredity 81:429 Google Scholar
  94. 94.
    Hauser TP, Jørgensen RB, Østergård H (1998) Heredity 81:436 Google Scholar
  95. 95.
    Snow AA, Uthus KL, Culley TM (2001) Ecol Appl 11:934 Google Scholar
  96. 96.
    Hauser TP (2002) Conservation Genet 3:75 MathSciNetCrossRefGoogle Scholar
  97. 97.
    Arriola PE, Ellstrand NC (1997) Ecol Appl 7:512 Google Scholar
  98. 98.
    Hooftmann DAP, Oostermeijer GB, Jacobs MMJ, den Nijs HCM (2005) J Appl Ecol 42:1086 Google Scholar
  99. 99.
    Snow AA, Pilson D, Rieseberg LH, Paulsen MJ, Pleskac N, Reagon MR, Wolf DE, Selbo SM (2003) Ecol Appl 13:279 Google Scholar
  100. 100.
    Vacher C, Weis AE, Hermann D, Kossler T, Young C, Hochberg ME (2004) Theor Appl Genet 109:806 PubMedGoogle Scholar
  101. 101.
    Linder CR, Schmitt J (1995) Ecol Appl 5:1056 Google Scholar
  102. 102.
    Linder CR, Taha I, Seiler GJ, Snow AA, Rieseberg LH (1998) Theor Appl Genet 96:339 Google Scholar
  103. 103.
    Pertl M, Hauser TP, Damgaard C, Jorgensen RB (2002) Heredity 89:212 PubMedGoogle Scholar
  104. 104.
    Moser D, Gygax A, Bäumler B, Wyler N, Palese R (2002) Liste Rouge des fougères et plantes à fleurs menacées de Suisse. OFEV, Bern Google Scholar
  105. 105.
    Mason P (2003) Env Biosafety Res 2:263 Google Scholar
  106. 106.
    Snow AA, Andersen B, Jorgensen RB (1999) Mol Ecol 8:605 Google Scholar
  107. 107.
    Mikkelsen TR, Andersen B, Jorgensen RB (1996) Nature 380:31 ADSGoogle Scholar
  108. 108.
    Snow AA, Moran-Palma P, Rieseberg LH, Wszelaki A, Seiler GJ (1998) Am J Bot 85:794 Google Scholar
  109. 109.
    Pohl-Orf M, Morak C, Wehres U, Saeglitz C, Driessen S, Lehnen M, Hesse P, Mücher T, von Soosten S, Schuphan I, Bartsch D (2000) The environmental impact of gene flow from sugar beet to wild beet – an ecological comparison of transgenic and natural virus tolerance genes. In: Fairbairn C, Scoles G, McHughen A (eds) Proc 6th Int Symp Biosafety of Genetically Modified Organisms, Saskatoon, Canada, p 51–55 Google Scholar
  110. 110.
    Fuchs M, Chirco EM, Mcferson JR, Gonsalves D (2004) Environ Biosafety Res 3:17 PubMedGoogle Scholar
  111. 111.
    Spencer L, Snow A (2001) Heredity 86:694 PubMedGoogle Scholar
  112. 112.
    Akerberg E (1942) Hereditas 28:1 CrossRefGoogle Scholar
  113. 113.
    Akerberg E, Bingefors S (1953) Hereditas 39:1 Google Scholar
  114. 114.
    Bangerter EB (1957) Proc BSBI 2:381 Google Scholar
  115. 115.
    Benoit PM (1958) Proc BSBI 3:85 Google Scholar
  116. 116.
    Benoit PM (1960) Nature Wales 6:59 Google Scholar
  117. 117.
    Clapham AR, Tutin TG, Warburg EF (1952) Flora of the British Isles. Cambridge University Press, Cambridge Google Scholar
  118. 118.
    Corkhill L (1945) J Agr 71:465 Google Scholar
  119. 119.
    Dale MR, Ahmed MK, Jelenkovic G, Funk CR (1975) Crop Sci 15:797 CrossRefGoogle Scholar
  120. 120.
    Dandy JE (1958) List of British vascular plants. BSBI, London Google Scholar
  121. 121.
    Druce GC (1919) Rep BEC 5:314 Google Scholar
  122. 122.
    Griffiths D (1950) J Agr Sci 40:19 Google Scholar
  123. 123.
    Gymer PT (1971) The nature of hybrids between Lolium perenne L. and Festuca pratensis Huds., PhD Thesis, University of Nottingham Google Scholar
  124. 124.
    Gymer PT, Whittington WJ (1973a) New Phytol 72:411 Google Scholar
  125. 125.
    Gymer PT, Whittington WJ (1973b) New Phytol 72:862 Google Scholar
  126. 126.
    Hertzsch W (1938) Züchter 10:261 Google Scholar
  127. 127.
    Holmberg OR (1922) Hartmans Handbook i Skandinaviens Flora 1:151 Google Scholar
  128. 128.
    Hubbard CE (1968) Grasses, 2nd Ed. Penguin Books, Harmondsworth Google Scholar
  129. 129.
    Hylander N (1953) Nordisk Kärlväxtflora 1:356 Google Scholar
  130. 130.
    Jahuar PP (1975) Chromosoma 52:103 Google Scholar
  131. 131.
    Jenkin TJ (1931) Welsh Pl Breed, Ser H 12:121 Google Scholar
  132. 132.
    Jenkin TJ, Thomas PT (1938) J Bot Lond 76:10 Google Scholar
  133. 133.
    Jenkin TJ (1954) J Genet 52:282 Google Scholar
  134. 134.
    Jenkin TJ (1955a) J Genet 53:442 CrossRefGoogle Scholar
  135. 135.
    Jenkin TJ (1955b) J Genet 53:467 Google Scholar
  136. 136.
    Jenkin TJ (1955c) J Genet 53:94 Google Scholar
  137. 137.
    de Langhe J-E, Delvosalle L, Duvigneaud J, Lambinon J, Berghen CV (1973) Nouvelle Flore de la Belgique, du Grand Duché de Luxembourg, du Nord de la France et des Régions voisines. Edition du Patrimoine du Jardin botanique national de Belgique, Bruxelles Google Scholar
  138. 138.
    Lewis EJ (1966) The production and manipulation of new breeding material in Lolium-Festuca In: Proc 10th Int Grassland Congr, Helsinki, p 688 Google Scholar
  139. 139.
    Linton EF (1907) J Bot Lond 45:296 ADSGoogle Scholar
  140. 140.
    Malik CP, Thomas PT (1966) Chromosoma 18:1 Google Scholar
  141. 141.
    Melderis A (1955) Proc BSBI 1:390 Google Scholar
  142. 142.
    Melderis A (1957) Proc BSBI 2:243 Google Scholar
  143. 143.
    Melderis A (1965) Proc BSBI 6:172 Google Scholar
  144. 144.
    Melderis A (1971) Watsonia 8:299 Google Scholar
  145. 145.
    Nannfeldt JA (1937) Bot Notiser 1937:1 Google Scholar
  146. 146.
    Nilsson F (1935) Hereditas 20:181 CrossRefGoogle Scholar
  147. 147.
    Nilsson F (1930) Bot Notiser 1930:161 Google Scholar
  148. 148.
    Nygren A (1962) Symb Bot Upsal 17:1 Google Scholar
  149. 149.
    Patzke E (1970) Biol 51:255 Google Scholar
  150. 150.
    Perring FH, Sell PD (1968) Critical supplement to the atlas of the British flora. Nelson, London Google Scholar
  151. 151.
    Petch CP, Swann EL (1968) Flora of Norfolk. Jarrold and Sons Ltd, Norwich Google Scholar
  152. 152.
    Peto FH (1933) J Genet 28:113 Google Scholar
  153. 153.
    Stace CA (1975) Hybridization and the Flora of the British Isles. Academic Press, London Google Scholar
  154. 154.
    Stace CA, Cotton R (1974) Watsonia 10:119 Google Scholar
  155. 155.
    Terrell EE (1966) Bot Rev 32:138 Google Scholar
  156. 156.
    Trist PJO (1971) Watsonia 8:311 Google Scholar
  157. 157.
    Tutin TG (1957) Watsonia 4:1 Google Scholar
  158. 158.
    Ullmann W (1936) Herbage Rev 4:105 Google Scholar
  159. 159.
    Webster MMCC (1973) Watsonia 9:390 Google Scholar
  160. 160.
    Willis AJ (1967) Proc BSBI 6:386 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • François Felber
    • 1
  • Gregor Kozlowski
    • 2
  • Nils Arrigo
    • 1
  • Roberto Guadagnuolo
    • 1
  1. 1.Laboratoire de Botanique évolutive, Institut de BiologieUniversité de NeuchâtelNeuchâtelSwitzerland
  2. 2.Department of Biology and Botanical GardenUniversity of FribourgFribourgSwitzerland

Personalised recommendations