Skip to main content

Towards Industrial Application of Quasi Real-Time Metabolic Flux Analysis for Mammalian Cell Culture

  • Chapter
  • First Online:
Cell Culture Engineering

Abstract

Cellular physiology and metabolism were monitored using a quasi real-time combination of on-lineand off-line data to estimate metabolic fluxes in an established bioreaction network. The utility of thisapproach towards optimizing bioreactor operation was demonstrated for CHO cells cultivated in 15 Lperfusion reactors at 20 × 106 cells/mL. Medium compositionand dilution rates were changed to obtain several steady states with varying glucose and glutamine concentrations.When cells were restored to initial culture medium and perfusion rate conditions after being exposed tolower glucose and glutamine concentrations, the pyruvate flux into the TCA cycle was increased 30% whilethe pyruvate flux through lactate was decreased 30%, suggesting steady-state multiplicity. By appropriatelyaltering cellular metabolism, perfusion bioreactors can operate at lower perfusion rates without significantaccumulation of inhibitory metabolites such as lactate. Changes in glucose, lactate and glutamine uptake/productionrates had significant effects on the calculation of other fluxes in the network. Sensitivity analysis ofthese key metabolic fluxes highlighted the need for accurate and reliable real-time sensors. Overall, rapidobservation of metabolic fluxes can be a valuable tool for bioprocess development, monitoring and control.The framework presented in this study offers a convenient means for quasi real-time estimation of metabolicfluxes and represents a step towards realizing the potential of metabolic flux analysis for acceleratedbioprocess optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Konstantinov K, Chuppa S, Sajan E, Tsai Y, Yoon S, Golini F (1994) Real-time biomass-concentration monitoring in animal-cell cultures. Trends Biotechnol 12:324

    Article  CAS  Google Scholar 

  2. Trampler F, Sonderhoff SA, Pui PW, Kilburn DG, Piret JM (1994) Acoustic cell filter for high density perfusion culture of hybridoma cells. Bio/Technol 12:281

    Article  CAS  Google Scholar 

  3. Glacken MW, Huang C, Sinskey AJ (1989) Mathematical description of hybridoma culture kinetics III. Simulation of fed-batch reactors. J Biotechnol 10:39

    Article  CAS  Google Scholar 

  4. Zhou WC, Rehm J, Europa AF, Hu WS (1997) Alteration of mammalian cell metabolism by dynamic nutrient feeding. Cytotechnol 24:99

    Article  CAS  Google Scholar 

  5. Bonarius HP, de Gooijer CD, Tramper J, Schmid G (1995) Determination of the respiration quotient in mammalian cell culture in bicarbonate buffered media. Biotechnol Bioeng 45:524

    Article  CAS  Google Scholar 

  6. Nyberg GB, Balcarcel RR, Follstad BD, Stephanopoulos G, Wang DI (1999) Metabolism of peptide amino acids by Chinese hamster ovary cells grown in a complex medium. Biotechnol Bioeng 62:324

    Article  CAS  Google Scholar 

  7. Zupke C, Sinskey AJ, Stephanopoulos G (1995) Intracellular flux analysis applied to the effect of dissolved oxygen on hybridomas. Appl Microbiol Biotechnol 44:27

    Article  CAS  Google Scholar 

  8. Stephanopoulos G, Vallino JJ (1991) Network rigidity and metabolic engineering in metabolite overproduction. Science 252:1675

    Article  CAS  Google Scholar 

  9. Vallino JJ, Stephanopoulos G (1993) Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol Bioeng 41:633

    Article  CAS  Google Scholar 

  10. Varma A, Palsson BO (1994) Metabolic flux balancing: Basic concepts, scientific and practical use. Bio/Technol 12:994

    Article  CAS  Google Scholar 

  11. Wiechert W (2001) 13C Metabolic flux analysis. Metabol Engin 3:195

    Article  CAS  Google Scholar 

  12. Cooney CR, Wang HY, Wang DIC (1977) Computer-aided material balancing for prediction of fermentation parameters. Biotechnol Bioeng 19:55

    Article  CAS  Google Scholar 

  13. Wang HY, Cooney C, Wang DIC (1977) Computer-aided baker's yeast fermentations. Biotechnol Bioeng 19:69

    Article  CAS  Google Scholar 

  14. Wang HY, Cooney C, Wang DIC (1979) Computer control of baker's yeast production. Biotechnol Bioeng 21:975

    Article  CAS  Google Scholar 

  15. Erickson LE (1979) Application of mass-energy balance in on-line data analysis. Biotechnol Bioeng Symp 9:48

    Google Scholar 

  16. Spruytenburg R, Dunn IJ, Bourne JR (1979) Computer control of glucose feed to a continuous culture of Sacchromyces cerevisiae using the respiratory quotient. Biotechnol Bioeng Symp 9:359

    Google Scholar 

  17. Herwig C, Marison I, Stockar U (2001) On-line stoichiometry and identification of metabolic state under dynamic process conditions. Biotechnol Bioeng 75:345

    Article  CAS  Google Scholar 

  18. Konstantinov K (1996) Monitoring and control of the physiological state of cell cultures. Biotechnol Bioeng 52:271

    Article  CAS  Google Scholar 

  19. Stephanopoulos G, Aristodou A, Nielsen J (1998) Metabolic Engineering. Principles and Methodologies. Academic, San Diego

    Google Scholar 

  20. Schügerl K (2001) Progress in monitoring, modeling and control of bioprocesses during the last 20 years. J Biotechnol 85:149

    Article  Google Scholar 

  21. Stärk E, Hitzmann B, Schügerl K, Scheper T, Fuchs C, Köster D, Märkl H (2002) In-situ-fluorescence-probes: a useful tool for non-invasive bioprocess monitoring. Adv Biochem Eng/Biotechnol 74:21

    Article  Google Scholar 

  22. Zupke C, Stephanopoulos G (1995) Intracellular flux analysis in hybridomas using mass balances and in vitro 13C NMR. Biotechnol Bioeng 45:292

    Article  CAS  Google Scholar 

  23. Klamt S, Schuster S, Gilles ED (2002) Calculability analysis in underdetermined metabolic networks illustrated by a model of the central metabolism in purple non-sulfur bacteria. Biotechnol Bioeng 77:734

    Article  CAS  Google Scholar 

  24. Follstad BD, Balcarcel RR, Stephanopoulos G, Wang DI (1999) Metabolic flux analysis of hybridoma continuous culture steady-state multiplicity. Biotechnol Bioeng 63:675

    Article  CAS  Google Scholar 

  25. Europa AF, Gambhir A, Fu PC, Hu WS (2000) Multiple steady states with distinct cellular metabolism in continuous culture of mammalian cells. Biotechnol Bioeng 67:25

    Article  CAS  Google Scholar 

  26. Cruz HJ, Moreira JL, Carrondo MJ (1999) Metabolic shifts by nutrient manipulation in continuous cultures of BHK cells. Biotechnol Bioeng 66:104

    Article  CAS  Google Scholar 

  27. Zielke HR, Zielke CL, Ozand PT (1984) Glutamine: A major energy source for cultured mammalian cells. Federation Proc 43:121

    CAS  Google Scholar 

  28. Zielke HR, Ozand PT, Tildon JT, Sevdalian DA, Cornblath M (1978) Reciprocal regulation of glucose and glutamine utilization by cultured human diploid fibroblasts. J Cell Physiol 95:41

    Article  CAS  Google Scholar 

  29. Zhou WC, Rehm J, Hu WS (1995) High viable cell concentration fed-batch cultures of hybridoma cells through on-line nutrient feeding. Biotechnol Bioeng 46:579

    Article  CAS  Google Scholar 

  30. Hassel T, Gleave S, Butler M (1991) Growth inhibition in animall cell culture: the effect of lactate and ammonia. Appl Biochem Biotechnol 30:29

    Article  Google Scholar 

  31. Ozturk S, Thrift J, Blackie J, Naveh D (1997) Real-time monitoring and control of glucose and lactate concentrations in a mammalian cell perfusion reactor. Biotechnol Bioeng 53:372

    Article  CAS  Google Scholar 

  32. Rhiel M, Cohen MB, Murhammer DW, Arnold MA (2002) Non-destructive near-infrared spectroscopic measurement of multiple analytes in undiluted samples of serum-based cell culture media. Biotechnol Bioeng 77:73

    Article  CAS  Google Scholar 

  33. Rhiel M, Ducommun P, Bolzonella I, Marison I, von Stockar U (2002) Real-time in situ monitoring of freely suspended and immobilized cell cultures based on mid-infrared spectroscopic measurements. Biotechnol Bioeng 77:174

    Article  CAS  Google Scholar 

  34. Bonarius HP, Timmerarends B, de Gooijer CD, Tramper J (1998) Metabolite-balancing techniques vs. 13C tracer experiments to determine metabolic fluxes in hybridoma cells. Biotechnol Bioeng 58:258

    Article  CAS  Google Scholar 

  35. Schmidt K, Marx A, de Graaf AA, Wiechert W, Sahm H, Nielsen J, Villadsen J (1998) 13C tracer experiments and metabolite balancing for metabolic flux analysis: comparing two approaches. Biotechnol Bioeng 58:254

    Article  CAS  Google Scholar 

  36. Bonarius HP, Schmid G, Tramper J (1997) Flux analysis of underdetermined metabolic networks: the quest for the missing constraints. Trends Biotechnol 15:308

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chetan Goudar .

Editor information

Wei-Shou Hu

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goudar, C., Biener, R., Zhang, C., Michaels, J., Piret, J., Konstantinov, K. (2006). Towards Industrial Application of Quasi Real-Time Metabolic Flux Analysis for Mammalian Cell Culture. In: Hu, WS. (eds) Cell Culture Engineering. Advances in Biochemical Engineering/Biotechnology, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_020

Download citation

Publish with us

Policies and ethics