Skip to main content

Biopolymer-Based Biomaterials as Scaffolds for Tissue Engineering

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 102))

Abstract

Biopolymers as biomaterials and matrices in tissue engineering offer important options in control of structure, morphology and chemistry as reasonable substitutes or mimics of extracellular matrix systems. These features also provide for control of material functions such as mechanical properties in gel, fiber and porous scaffold formats. The inherent biodegradability of biopolymers is important to help regulate the rate and extent of cell and tissue remodeling in vitro or in vivo. The ability to genetically redesign these polymer systems to bioengineer appropriate features to regulate cell responses and interactions is another important feature that offers both fundamental insight into chemistry–structure–function relationships as well as direct utility as biomaterials. Biopolymer matrices for biomaterials and tissue engineering can directly influence the functional attributes of tissues formed on these materials and suggest they will continue play an increasingly important role in the field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920

    CAS  Google Scholar 

  2. Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and implantation. The Lancet 354:(Suppl)32–34

    Google Scholar 

  3. Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24(12):2077–2082

    CAS  Google Scholar 

  4. Kim BS, Mooney DJ (1998) Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol 16:224–230

    CAS  Google Scholar 

  5. Boontheekul T, Mooney DJ (2003) Protein-based signaling systems in tissue engineering. Curr Opin Biotechnol 14:559–565

    CAS  Google Scholar 

  6. Angelova N, Hunkeler D (1999) Rationalizing the design of polymeric biomaterials. Trends Biotechnol 17:409–4521

    CAS  Google Scholar 

  7. Mauck RL, Nicoll SB, Seyhan SL, Ateshian GA, Hung CT (2003) Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng 9(4):597–611

    CAS  Google Scholar 

  8. Mauck RL, Soltz MA, Wang CC, Wong DD, Chao PH, Valhmu WB, Hung CT, Ateshian GA (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng 122(3):252–260

    CAS  Google Scholar 

  9. Gomes ME, Ribeiro AS, Malayfaya PB, Reis RL, Cunha AM (2001) A new approach based on injection molding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical, and degradation behaviour. Biomaterials 22(9):883–889

    CAS  Google Scholar 

  10. Tate MC, Shear DA, Hoffman SW, Stein DG, LaPlaca MC (2001) Biocompatibility of methylcellulose-based constructs designed for intracerebral gelation following experimental traumatic brain injury. Biomaterials 22(10):1113–1123

    CAS  Google Scholar 

  11. Ehrenfreund-Kleinman T, Domb AJ, Golenser J (2003) Polysaccharide scaffolds prepared by crosslinking of polysaccharides with chitosan or proteins for cell growth. J Bioact Compat Polym 18(5):323–338

    CAS  Google Scholar 

  12. Matsuda T, Magoshi T (2002) Preparation of vinylated polysaccharides and photofabrication of tubular scaffolds as potential use in tissue engineering. Biomacromolecules 3(5):942–950

    CAS  Google Scholar 

  13. Pieper JS, Hafmans T, van Wachem PB, van Luyn MJ, Brouwer LA, Veerkamp JH, van Kuppevelt TH (2002) Loading of collagen-heparan sulfate matrices with bFGF promotes angiogenesis and tissue generation in rats. J Biomed Mater Res 62(2):185–194

    CAS  Google Scholar 

  14. Pieper JS, van Wachem PB, van Luyn MJA, Brouwer LA, Hafmans T, Veerkamp JH, van Kuppevelt TH (2000) Attachment of glycosaminoglycans to collagenous matrices modulates the tissue response in rats. Biomaterials 21(16):1689–1699

    CAS  Google Scholar 

  15. Pieper JS, Hafmans T, Veerkamp JH, van Kuppevelt TH (2000) Development of tailor-made collagen-glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects. Biomaterials 21(6):581–593

    CAS  Google Scholar 

  16. Passaretti D, Silverman RP, Huang W, Kirchoff CH, Ashiku S, Randolph MA (2001) Cultured chondrocytes produce injectable tissue-engineered cartilage in hydrogel polymer. Tissue Eng 7(6):805–815

    CAS  Google Scholar 

  17. Ye Q, Zund G, Benedikt P, Jockenhoevel S, Hoerstup SP, Sakyama S, Hubbell JA, Turina M (2000) Fibrin gel as a three-dimensional matrix in cardiovascular tissue engineering. Eur J Cardiothor Surg 17(5):587–591

    CAS  Google Scholar 

  18. Underwood S, Afoke A, Brown RA, MacLeod AJ, Shamlou PA, Dunnill P (2001) Wet extrusion of fibronectin–fibrinogen cables for application in tissue engineering. Biotechnol Bioeng 73(4):295–305

    CAS  Google Scholar 

  19. Novikov LN, Novikova LN, Mosahebi A, Wiberg M, Terenghi G, Kellerth JO (2002) A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury. Biomaterials 23(16):3369–3376

    CAS  Google Scholar 

  20. Sodian R, Sperling JS, Martin DP, Egozy A, Stock U, Mayer JE, Vacanti JP (2000) Fabrication of a trileaflet heart valve scaffold from a polyhydroxyalkanoate biopolyester for use in tissue engineering. Tissue Eng 6(2):183–188

    CAS  Google Scholar 

  21. Stock UA, Sakamoto T, Hatsuoka S, Martin DP, Nagashima M, Moran AM, Moses MA, Khalil PN, Schoen FJ, Vacanti JP, Mayer JR (2000) Patch augmentation of the pulmonary artery with bioabsorbable polymers and autologous cell seeding. J Thorac Cardiovasc Surg 120(6):1158–1167

    CAS  Google Scholar 

  22. Stock UA, Nagashima M, Khalil PN, Nollert GD, Herden T, Sperling JS, Moran A, Lien J, Martin DP, Schoen FJ, Vacanti JP, Mayer JE (2000) Tissue engineered valve conduits in pulmonary circulation. J Thorac Cardiovasc Surg 119(4Pt1):732–740

    CAS  Google Scholar 

  23. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351

    CAS  Google Scholar 

  24. Grassl ED, Oegema TR, Tranquillo RT (2002) Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent. J Biomed Mater Res 60(4):607–612

    CAS  Google Scholar 

  25. Meinhart J, Fussenegger M, Hobling W (1999) Stabilization of fibrin-chondrocyte constructs for cartilage reconstruction. Ann Plas Surg 42(6)

    Google Scholar 

  26. Madison LL, Huisman GW (1999) Metabolic engineering of Poly(3-hydroxyalkanoates): From DNA to Plastic. Microbiol Molec Biol Rev 63(1):21–53

    CAS  Google Scholar 

  27. Martin DP, Williams SF (2003) Medical applications of poly-4-hydroxybutyrate: a strong flexible absorbable biomaterial. Biochem Eng J 16:97–105

    CAS  Google Scholar 

  28. Williams SF, Martin DP, Horowitz DM, Peoples OP (1999) PHA Applications: addressing the price performance issue I. Tissue Engineering. Int J Biol Macromol 25:111–121

    CAS  Google Scholar 

  29. Smidsrod O, Skjak-Braek G (1990) Alginate as an immobilization matrix for cells. Trends Biotechnol 8:71–78

    CAS  Google Scholar 

  30. Suh JKF, Matthew HWT (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering. Biomaterials 21:2589–2598

    CAS  Google Scholar 

  31. Campoccia D, Doherty P, Radice M, Brun P, Abatangelo G, Williams DF (1998) Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19:2101–2127

    CAS  Google Scholar 

  32. Laurent TC, Fraser JR (1994) Hyaluronan. FASEB J 6(7):2397–2404

    Google Scholar 

  33. Gamini A, Paoletti S, Toffanin R, Micali F, Michielin L, Bevilacqua C (2002) Structural investigations of cross-linked hyaluronan. Biomaterials 23:1161–1167

    CAS  Google Scholar 

  34. Bulpitt P, Aeschlimann D (1999) New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J Biomed Mater Res 47(2):152–169

    CAS  Google Scholar 

  35. Prestwich GD, Marecak DM, Marecek JF, Vercruysse KP, Ziebell MR (1998) Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. J Control Release 53(1–3):93–103

    CAS  Google Scholar 

  36. Baier Leach J, Bivens KA, Patrick CW, Schmidt CE (2003) Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol Bioeng 82(5):578–589

    Google Scholar 

  37. Bella J, Eaton M, Brodsky B, Berman HM (1994) Crystal and molecular structure of a collagen-like peptide at 1.9A resolution. Science 266:75

    CAS  Google Scholar 

  38. Van der Rest WJ, Dublet B, Champliaud M (1990) Fibril-associated collagens. Biomaterials 11:28

    Google Scholar 

  39. Pins GD, Christiansen DL, Patel R, Silver FH (1997) Self-assembly of collagen fibers: influence of fibrillar arrangement and decorin on mechanical properties. Biophys J 73:2164–2172

    CAS  Google Scholar 

  40. Lee J, Macosko CW, Urry DW (2001) Elastomeric polypentapeptides cross-linked into matrices and fibers. Biomacromolecules 2:170–179

    CAS  Google Scholar 

  41. Vollrath F (1999) Biology of spider silk. Int J Biol Macromol 24:81–88

    CAS  Google Scholar 

  42. Hinman MB, Jones JA, Lewis RV (2000) Synthetic spider silk: a modular fiber. Trends Biotechnol 18:374–379

    CAS  Google Scholar 

  43. Tatham AS, Shewry PR (2000) Elastomeric proteins: biological roles, structures, and mechanisms. Trends Biochem Sci 25:567–571

    CAS  Google Scholar 

  44. Van Beek JD, Beaulieu L, Schafer H, Demura M, Asakura T, Meier BH (2000) Solid-state NMR determination of the secondary structure of Samia cynthia ricini silk. Nature 405(6790):1077–1079

    Google Scholar 

  45. Simmons AH, Michal CA, Jelinski LW (1996) Molecular orientation and two-component nature of crystalline fraction of spider dragline silk. Science 271(5245):84–87

    CAS  Google Scholar 

  46. Hayashi CY, Lewis RV (2000) Molecular architecture and evolution of a modular spider silk protein gene. Science 287:1477–1479

    CAS  Google Scholar 

  47. Zhou CZ, Confalonieri F, Medina N, Zivanovic Y, Esnault C, Yang T, Jacquet M, Janin J, Duguet M, Perasso R, Li ZG (2000) Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res 28:2413–2419

    CAS  Google Scholar 

  48. Jin HJ, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 410:541–548

    Google Scholar 

  49. Urry DW (1988) Entropic elastic processes in protein mechanisms. I. Elastic structure due to an inverse temperature transition and elasticity due to internal chain dynamics. J Protein Chem 7:1–34

    CAS  Google Scholar 

  50. Urry DW (1984) Protein elasticity based on coformation of sequential polypeptides – the biological elastic fiber. J Protein Chem 3:403–436

    CAS  Google Scholar 

  51. Tamburro AM, Guantieri V, Pandolfo L, Scopa A (1990) Synthetic fragments and analogues of elastin. II. Conformational studies. Biopolymers 29:855–870

    CAS  Google Scholar 

  52. Megret C, Lamure A, Pieraggi MT, Lacabanne C, Guantieri V, Tamburro AM (1993) Solid-state studies on synthetic fragments and analogues of elastin. Int J Biol Macromol 15:305–312

    CAS  Google Scholar 

  53. Debelle L, Tamburro AM (1999) Elastin: molecular description and function. Int J Biochem Cell Biol 31:261–272

    CAS  Google Scholar 

  54. Chilkoti A, Dreher MR, Meyer DR (2002) Design of thermally responsive, recombinant polypeptide carriers for targeted drug delivery. Adv Drug Deliv Rev 54:1093–1111

    CAS  Google Scholar 

  55. Wright ER, Conticello VP (2002) Self-assembly of block copolymers derived from elastin-mimetic polypeptide sequences. Adv Drug Deliv Rev 54:1057–1073

    CAS  Google Scholar 

  56. Yamaguchi I, Itoh S, Suzuki M, Sakane M, Osaka A, Tanaka J (2003) The chitosan prepared from crab tendon I: the characterization and mechanical properties. Biomaterials 24:2031–2036

    CAS  Google Scholar 

  57. Betre H, Setton LA, Meyer DE, Chilkoti A (2002) Characterization of a genetically engineered elastin-like polypeptide for cartilagenous tissue repair. Biomacromolecules 3:910–916

    CAS  Google Scholar 

  58. Miao M, Bellingham CM, Stahl RJ, Sitarz EF, Lane CJ, Keeley FW (2003) Sequence and structure determinants for the self-aggregation of recombinant polypeptides modeled after human elastin. J Biol Chem 278(49):48553–48562

    CAS  Google Scholar 

  59. Urry DW (1995) Elastic biomolecular machines. Sci Am 1:64–69

    Google Scholar 

  60. Bellingham CM, Lillie MA, Gosline JM, Wright GM, Starcher BC, Bailey AJ, Woodhouse KA, Keeley FW (2003) Recombinant human elastin polypeptides self-assemble into biomaterials with elastin-like properties. Biopolymers 70(4):445–455

    CAS  Google Scholar 

  61. Yang S, Leong K-F, Du Z, Chua C-K (2001) The design of scaffolds for use in tissue engineering. Tissue Eng 7(6):679–689

    CAS  Google Scholar 

  62. Lee KY, Rowley JA, Eiselt P, Moy EM, Bouhadir KH, Mooney DJ (2000) Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules 33:4291–4294

    CAS  Google Scholar 

  63. LeRoux MA, Guilak F, Setton L (1999) Compressive and shear properties of alginate gel: Effects of sodium ions and alginate concentration. J Biomedial Mater Res 47:46–53

    CAS  Google Scholar 

  64. Eiselt P, Yeh J, Latvala RK, Shea LD, Mooney DJ (2000) Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials 21:1921–1927

    CAS  Google Scholar 

  65. Shapiro L, Cohen S (1997) Novel alginate sponges for cell culture and transplantation. Biomaterials 18(8):583–590

    CAS  Google Scholar 

  66. Klock G, Pfeffermann A, Ryser C, Grohn P, Kuttler B, Hahn H-J, Zimmermann U (1997) Biocompatibility of mannuronic acid-rich alginate. Biomaterials 18:707–713

    CAS  Google Scholar 

  67. Zmora S, Glicklis R, Cohen S (2002) Tailoring the pore architecture in 3-D alginate scaffolds by controlling the freezing regime during fabrication. Biomaterials 23:4087–4094

    CAS  Google Scholar 

  68. Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate, and mechanical properties. Biomaterials 22:511–521

    CAS  Google Scholar 

  69. Hirano S, Midorikawa T (1998) Novel method for the preparation of N-acylchitosan fiber and N-acylchitosan-cellulose fiber. Biomaterials 19:293–297

    CAS  Google Scholar 

  70. Madihally SV, Matthew HW (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20(12):1133–1142

    CAS  Google Scholar 

  71. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349

    CAS  Google Scholar 

  72. Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21:2155–2161

    CAS  Google Scholar 

  73. Joshi HN, Topp EM (1992) Hydration in hyaluronic acid and its esters using differential scanning calorimetry. Int J Pharmaceut 80:213–225

    CAS  Google Scholar 

  74. Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238

    CAS  Google Scholar 

  75. Sachlos E, Reis N, Ainsley C, Derby B, Czernuszka JT (2003) Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials 24:1487–1497

    CAS  Google Scholar 

  76. Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, Kaplan DL (2002) Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23:4131–4141

    CAS  Google Scholar 

  77. Lazaris A, Arcidiacono S, Huang Y, Zhou J-F, Duguay F, Chretien N, Welsh EA, Soares JW, Karatzas CN (2002) Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295:472–476

    CAS  Google Scholar 

  78. Winkler S, Wilson D, Kaplan DL (2000) Controlling beta-sheet assembly in genetically engineering silk by enzymatic phosphorylation/dephosphorylation. Biochemistry 39(41):12739–12746

    CAS  Google Scholar 

  79. Winkler S, Szela S, Avtges P, Valluzi R, Kirschner DA, Kaplan D (1999) Designing recombinant spider silk proteins to control assembly. Int J Biol Macromol 24:265–270

    CAS  Google Scholar 

  80. Seidel A, Liivak O, Calve S, Adaska J, Ji G, Yang Z, Grubb D, Zax DB, Jelinski LW (2000) Regenerated spider silk: processing, properties, and structure. Macromolecules 33:775–780

    CAS  Google Scholar 

  81. Jin HJ, Fridrikh SV, Rutledge GC, Kaplan DL (2002) Electrospinning Bombyx mori silk with poly(ethylene)oxide. Biomacromolecules 3(6):1233–1239

    CAS  Google Scholar 

  82. Sofia S, McCarthy MB, Gronowicz G, Kaplan DL (2001) Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 54:139–148

    CAS  Google Scholar 

  83. Chen J, Altman GH, Karageorgiou V, Horan R, Collette A, Vollach V, Colabro T, Kaplan DL (2003) Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res 67A(2):559–570

    Google Scholar 

  84. Vyavahare N, Ogle M, Schoen FJ, Levy RJ (1999) Elastin calcification and its prevention with aluminum chloride pretreatment. Am J Pathol 155:973–982

    CAS  Google Scholar 

  85. Daamen WF, Hafmans T, Veerkamp JH, van Kuppevelt TH (2001) Comparison of five procedures for the purification of insoluble elastin. Biomaterials 22:1997–2005

    CAS  Google Scholar 

  86. Meyer DE, Chilkoti A (2002) Genetically encoded synthesis of protein-based polymers with precisely defined molcular weight and sequence by recursive directional ligation: examples from the elastin-like polypeptide system. Biomacromolecules 3(2):357–367

    CAS  Google Scholar 

  87. Trabbic-Carlson K, Setton LA, Chilkoti A (2003) Swelling and mechanical behaviours of chemically cross-linked hydrogels of elastin-like polypeptides. Biomacromolecules 4(3):572–580

    CAS  Google Scholar 

  88. Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221:1–22

    CAS  Google Scholar 

  89. Kohle P, Kannan RM (2003) Improvement in ductility of chitosan through blending and copolymerization with PEG: FTIR investigation of molecular interactions. Biomacromolecules 4:173–180

    Google Scholar 

  90. Milella E, Brescia E, Massaro C, Ramires PA, Miglietta MR, Fiori V, Aversa P (2002) Physico-chemical properties and degradability of non-woven hyaluronan benzylic esters as tissue engineering scaffolds. Biomaterials 23:1053–1063

    CAS  Google Scholar 

  91. Gentleman E, Lay AN, Dickerson DA, Naumann EA, Livesay GA, Dee KC (2003) Mechanical characterization of collagen fibers and scaffold for tissue engineering. Biomaterials 24(21):3805–3813

    CAS  Google Scholar 

  92. Perez-Rigueiro J, Viney C, Llorca J, Elices M (2000) Mechanical properties of single-brin silkworm silk. J Appl Polym Sci 75:1270–1277

    CAS  Google Scholar 

  93. Cunniff J, Fossey S, Song J, Auerbach M, Kaplan DL, Eby R, Adams W, Vezzie D (1994) Mechanical and thermal properties of Nephila clavipes dragline silk. Polym Adv Technol 5:401–410

    CAS  Google Scholar 

  94. Lee KY, Bouhadir KH, Mooney DJ (2002) Evaluation of chain stiffness of partially oxidized polyguluronate. Biomacromolecules 3(6):1129–1134

    CAS  Google Scholar 

  95. Kim BS, Mooney DJ (2000) Scaffolds for engineering smooth muscle under cyclic mechanical strain conditions. J Biomech Eng 122(3):210–215

    CAS  Google Scholar 

  96. Urry DW (1999) Elastic molecular machines in metabolism and soft-tissue restoration. Trends Biotechnol 17:249–257

    CAS  Google Scholar 

  97. Elbjeirami WM, Yonter EO, Starcher BC, West JL (2003) Enhancing mechanical properties of tissue-engineered constructs via lysyl oxidase crosslinking activity. J Biomed Mater Res 66A(3):513–521

    Google Scholar 

  98. Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17(17):1647–1657

    CAS  Google Scholar 

  99. Tomihata K, Ikada Y (1997) In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18:567–575

    CAS  Google Scholar 

  100. Avitabile T, Marano F, Castiglione F, Bucolo C, Cro M, Ambrosio L, Ferranto C, Reibaldi A (2001) Biocompatibility and biodegradation of intravitreal hyaluronan implant in rabbits. Biomaterials 22(3):195–200

    CAS  Google Scholar 

  101. Zhong SP, Compoccia D, Doherty PJ, Williams RL, Benedetti L, Williams DG (1994) Biodegradation of hyaluronic acid derivatives by hyaluronidase. Biomaterials 15(5):359–365

    CAS  Google Scholar 

  102. Benedetti L, Cortivo R, Berti T, Pea F, Mazzo M, Moras M, Abatangelo G (1993) Biocompatibility and biodegradation of different hyaluronan derivates (HYAFF) implanted in rats. Biomaterials 14(15):1135–1139

    Google Scholar 

  103. Campoccia D, Hunt JA, Doherty PJ, Zhong SP, O'Regan M, Benedetti L, Williams DF (1996) Quantitative assessment of the tissue response to films of hyaluronan esters. Biomaterials 17(10):963–975

    CAS  Google Scholar 

  104. Mi F-L, Wu Y-B, Shyu S-S, Schoung J-Y, Huang Y-B, Tsai Y-H, Hao J-Y (2001) Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery. J Biomed Mater Res 59:438–449

    Google Scholar 

  105. Van Wachem PB, Zeeman R, Dijkstra PJ, Feijen J, Hendriks M, Cahalan PT, van Luyn MJA (1999) Characterization and biocompatibility of epoxy-crosslinked dermal sheep collagens. J Biomed Mater Res 47(2):270–277

    Google Scholar 

  106. Greenwald D, Shumway S, Albear P, Gottlieb L (1994) Mechanical comparison of 10 suture materials before and after in vivo incubation. J Surg Res 56:372–377

    CAS  Google Scholar 

  107. Urry DW, Pattanaik A, Xu J, Woods TC, McPherson DT, Parker TM (1998) Elastic protein based polymers in soft tissue augmentation and generation. J Biomater Sci Polym Ed 9(10):1015–1048

    CAS  Google Scholar 

  108. Bouhadir KH, Lee KY, Alsberg E, Damm KL, Anderson KW, Mooney DJ (2001) Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol Prog 17:945–950

    CAS  Google Scholar 

  109. Alsberg E, Kong HJ, Hirano Y, Smith MK, Albeiruti A, Mooney DJ (2003) Regulating bone formation via controlled scaffold degradation. J Dental Res 82(11):903–908

    CAS  Google Scholar 

  110. Harriger MD, Supp AP, Warden GD, Boyce ST (1997) Glutaraldehyde crosslinking of collagen substrates inhibits degradation in skin substitutes grafted to athymic mice. J Biomed Mater Res 35(2):137–145

    CAS  Google Scholar 

  111. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmon D, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416

    CAS  Google Scholar 

  112. Vyavahare N, Jones PF, Tallapragada S, Levy RJ (2000) Inhibition of matrix metalloprotease activity attenuates tenascin-C production and calcification of implanted purified elastin in rats. Am J Pathol 157(3):885–893

    CAS  Google Scholar 

  113. VandeVord PJ, Matthew HWT, De Silva SP, Mayton L, Wu B, Wooley PH (2001) Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res 59:585–590

    Google Scholar 

  114. Setzen G, Williams EF (1997) Tissue response to suture materials implanted subcutaneously in a rabbit model. Plast Reconstruct Surg 100:1788–1795

    CAS  Google Scholar 

  115. Dahlke H, Dociu N, Thurau K (1980) Thrombogenicity of different suture materials as revealed by scanning electron microscopy. J Biomed Mater Res 14:251–268

    CAS  Google Scholar 

  116. Lee KY, Ha WS, Park WH (1995) Blood compatibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials 16:1211–1216

    CAS  Google Scholar 

  117. Muzzarelli R, Badassarre V, Conti F, Ferrara P, Biagini G, Gazzanelli G, Vasi V (1988) Biological activity of chitosan: ultrastructural study. Biomaterials 9:247–252

    CAS  Google Scholar 

  118. Otterlei M, Ostgaard K, Skjaek-Braek G, Smidsrod O, Soon-Shiong P, Espevik T (1991) Induction of cytokine production from human monocytes stimulated with alginate. J Immunother 10:286–291

    CAS  Google Scholar 

  119. Becker TA, Kipke DR, Brandon T (2001) Calcium alginate gel: a biocompatible and mechanically stable polymer for endovascular implantation. J Biomed Mater Res 54(1):76–86

    CAS  Google Scholar 

  120. Klock G, Frank H, Houben R (1994) Production of purified alginates suitable for use in immunoisolated transplantation. Appl Microbiol Biotechnol 40:638–643

    CAS  Google Scholar 

  121. Campoccia D, Hunt JA, Doherty PJ, Zhong SP, Callegaro L, Benedetti L, Williams DF (1993) Human neutrophil chemokinesis and polarization induced by hyaluronic acid derivatives. Biomaterials 14(15):1135–1139

    CAS  Google Scholar 

  122. Peluso G, Petillo O, Ranieri M, Santin M, Ambrosio L, Calabro D, Avallone B, Balsamo G (1994) Chitosan-mediated stimulation of macrophage function. Biomaterials 15(15):1215–1220

    CAS  Google Scholar 

  123. Usami Y, Okamoto Y, Takayama T, Shigemasa Y, Minami S (1998) Chitin and Chitosan stimulate canine polymorphonuclear cells to release leukotriene B4 and prostaglandin E2. J Biomed Mater Res 42:517–522

    CAS  Google Scholar 

  124. Lee KY, Alsberg E, Mooney DJ (2001) Degradable and injectable poly(aldehyde guluronate) hydrogels for bone tissue engineering. J Biomedial Mater Res 56:228–233

    CAS  Google Scholar 

  125. Trasciatti S et al. (1998) In vitro effects of different formulations of bovine collagen on cultured human skin. Biomaterials 19(10):897–903

    CAS  Google Scholar 

  126. Uchio YU, Ochi M, Matsusaki M, Kurioka H, Katsube K (2000) Human chondrocyte differentiation and matrix synthesis cultured in Atellocollagen gel. J Biomed Mater Res 50(2):138–143

    CAS  Google Scholar 

  127. Koob TJ, Willis TA, Hernandez DJ (2001) Biocompatibility of NDGA-polymerized collagen fibers. I. Evaluation of cytotoxicity with tendon fibroblasts in vitro. J Biomed Mater Res 56(1):31–39

    CAS  Google Scholar 

  128. Chevallay B, Abdul-Malak N, Herbage D (2000) Mouse fibroblasts in long-term culture within collagen three-dimensional scaffolds: Influence of cross-linking with diphenylphosphorylazide on matrix reorganization, growth, and biosynthetic and proteolytic activities. J Biomed Mater Res 49:448–459

    CAS  Google Scholar 

  129. Olde Damink LLH, Dijkstra PJ, Van Luyn MJA (1996) Cross-linking of dermal sheep collagen using a water soluble carbodiimide. Biomaterials 17:765–773

    CAS  Google Scholar 

  130. Van Luyn MJA, Van Wachem PB, Dijkstra PJ, Olde Damink L, Feijen J (1995) Calcification of subcutaneously implanted collagens in relation to cytotoxicity, cellular interactions, and crosslinking. J Mater Sci Mater Med 6:288–296

    Google Scholar 

  131. Van Luyn MJA, Van Wachem PB, Olde Damink L (1992) Relations between in vitro cytotoxicity and crosslinked dermal sheep collagen. J Biomed Mater Res 26:1091–1110

    Google Scholar 

  132. Gough JE, Scotchford CA, Downes S (2002) Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis. J Biomed Mater Res 61(1):121–130

    CAS  Google Scholar 

  133. Van Wachem PB, van Luyn MJA, Olde Damink LHH, Dijkstra PJ, Feijen J (1994) Biocompatibility and tissue regenerating capacity of crosslinked dermal sheep collagen. J Biomed Mater Res 28:353–363

    Google Scholar 

  134. Postlethwait RW (1970) Long-term comparative study of non-absorbable sutures. Ann Surg 171:892–898

    CAS  Google Scholar 

  135. Wen CM, Ye ST, Zhou LX, Yu Y (1990) Silk-induced asthma in children: a report of 64 cases. Ann Allerg 65:375–378

    CAS  Google Scholar 

  136. Zaoming W, Codina R, Fernandez-Caldas E, Lockey RF (1996) Partial characterization of the silk allergens in mulberry silk extract. J Inv Allerg Clin Immunol 6:237–241

    CAS  Google Scholar 

  137. Lee KY, Kong SJ, Park WH, Ha WS, Kwon IC (1998) Effect of surface properties on the antithrombogenicity of silk fibroin/S-carboxymethyl kerateine blend films. J Biomater Sci Polym Ed 9:905–914

    CAS  Google Scholar 

  138. Santin M, Motta A, Freddi G, Cannas M (1999) In vitro evaluation of the inflammatory poptential of the silk fibroin. J Biomed Mater Res 46:382–389

    CAS  Google Scholar 

  139. Panilaitis B, Altman GH, Chen J, Jin HJ, Karageorgiou V, Kaplan DL (2003) Macrophage responses to silk. Biomaterials 24(18):3079–3085

    CAS  Google Scholar 

  140. Nicol AJ, Gowda DC, Urry DW (1992) Cell adhesion and growth on synthetic elastomeric matrices containing Arg - Gly - Asp - Ser-3. J Biomed Mater Res 26:393–413

    CAS  Google Scholar 

  141. Zielinski BA, Aebischer P (1994) Chitosan as a matrix for mammalian cell encapsulation. Biomaterials 15(13):1049–1056

    CAS  Google Scholar 

  142. Lahiji A, Sohrabi A, Hungerford DS, Frondoza CG (2000) Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res 51:586–595

    CAS  Google Scholar 

  143. Lu JX, Prudhommeaux F, Meunier A, Sedel L, Guillemin G (1999) Effects of chitosan on rat knee cartilages. Biomaterials 20(20):1937–1944

    CAS  Google Scholar 

  144. Chang CNC, Rowley JA, Tobias G, Genes NG, Roy AK, Mooney DJ, Vacanti CA, Bonassar LJ (2001) Injection molding of chondrocyte/alginate constructs in the shape of facial implants. J Biomed Mater Res 55:503–511

    CAS  Google Scholar 

  145. Glicklis R, Shapiro L, Agbaria R, Merchuk JC, Cohen S (2000) Hepatocyte behaviour within three-dimensional porous alginate scaffolds. Biotechnol Bioeng 67(3):345–353

    Google Scholar 

  146. Dar A, Shachar M, Leor J, Cohen S (2002) Cardiac tissue engineering: optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol Bioeng 80(3):305–312

    CAS  Google Scholar 

  147. Chang SC, Tobias G, Roy AK, Vacanti CA, Bonassar LJ (2003) Tissue engineering of autologous cartilage for craniofacial reconstruction by injection molding. Plast Reconstruct Surg 112(3):793–799

    Google Scholar 

  148. Shu XZ, Ghosh K, Liu Y, Palumbo FS, Luo Y, Clark RA, Prestwich GD (2004) Attachment and spreading of fibroblasts on an RGD peptide-modified injectable hyaluronan hydrogel. J Biomed Mater Res 68A(2):365–375

    Google Scholar 

  149. Grigolo B, Roseti L, Fiorini M, Fini M, Giavaresi G, Aldini NN, Giardino R, Facchini A (2001) Transplantation of chondrocytes seeded on hyaluronan derivative (Hyaff ®-11) into cartilage defects in rabbits. Biomaterials 22:2417–2424

    CAS  Google Scholar 

  150. Suzuki Y, Tanihara M, Suzuki K, Saitou A, Sufan W, Nishimura Y (2000) Alginate hydrogel linked with synthetic oligopeptide derived from BMP-2 allows ectopic osteoinduction in vivo. J Biomed Mater Res 50:405–409

    CAS  Google Scholar 

  151. Lisignoli G, Fini M, Giavaresi G, Aldini NN, Toneguzzi S, Facchini A (2002) Osteogenesis of large segmental radius defects enhanced by basic fibroblast growth factor activated bone marrow stromal cells grown on non-woven hyaluronic acid-based polymer scaffold. Biomaterials 23:1043–1051

    CAS  Google Scholar 

  152. Rocha LB, Goissis G, Rossi MA (2002) Biocompatibility of anionic collagen matrix as scaffold for bone healing. Biomaterials 23:449–456

    CAS  Google Scholar 

  153. Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL (2002) Cell differentiation by mechanical stress. FASEB J 16(2):270–272

    CAS  Google Scholar 

  154. Altman GH, Horan RL, Martin I, Farhadi J, Stark PRH, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL (2002) Cell differentiation by mechanical stress. FASEB J 16:270–272

    CAS  Google Scholar 

  155. Girotto D, Urbani, Brun P, Renier D, Barbucci R, Abatangelo G (2003) Tissue-specific gene expression in chondrocytes grown on three-dimensional hyaluronic acid scaffolds. Biomaterials 24:3265–3275

    CAS  Google Scholar 

  156. Saldanha V, Grande DA (2000) Extracellular matrix protein gene expression of bovine chondrocytes cultured on resorbable scaffolds. Biomaterials 21(23):2427–2431

    CAS  Google Scholar 

  157. Schuman L, Buma P, Verseleyen D, deMan B, van der Kraan PM, van den Berg WB, Hommoinga GN (1995) Chondrocyte behaviour within different types of collagen gels in vitro. Biomaterials 16:809–814

    CAS  Google Scholar 

  158. Nehrer S, Breinan HA, Ramappa A, Shortkroff S, Young G, Minas T, Sledge CB, Yannas IV, Spector M (1997) Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J Biomed Mater Res 38(2):95–104

    CAS  Google Scholar 

  159. Nehrer S, Breinan HA, Ramappa R, Hsu H-P, Minas T, Shortkroff S, Sledge CB, Yannas IV, Spector M (1998) Chondrocyte-seeded collagen matrices impanted in a chondral defect in a canine model. Biomaterials 19(24):2313–2328

    CAS  Google Scholar 

  160. Huynh T, Abraham G, Murray J, Brockbank K, Hagen P-O, Sullivan S (1999) Remodeling of an acellular collagen graft into a physiologically responsive neovessel. Nat Biotechnol 17:1083–1086

    CAS  Google Scholar 

  161. Nehrer S, Breinan HA, Ramappa A, Young G, Shortkroff S, Louie L, Sledge CB, Yannas IV, Spector M (1997) Matrix collagen type and pore size influence on the behaviour of seeded canine chondrocytes. Biomaterials 18(11):769–776

    CAS  Google Scholar 

  162. Lee CR, Grodzinsky AJ, Spector M (2003) Biosynthetic response of passaged chondrocytes in a type II collagen scaffold to mechanical compression. J Biomed Mater Res 64A:560–569

    Google Scholar 

  163. Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL (2002) Cell differentiation by mechanical stress. FASEB J 16(2):270–272

    CAS  Google Scholar 

  164. Radice M, Brun P, Cortivo R, Scapinelli R, Battaliard C, Abatangelo G (2000) Hyaluronan-based biopolymers as delivery vehicles for bone marrow-derived mesenchymal progenitors. J Biomed Mater Res 50(2):101–109

    CAS  Google Scholar 

  165. Alsberg E, Anderson KW, Albeiruti A, Fransceschi RT, Mooney DJ (2001) Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res 60:2025–2029

    Google Scholar 

  166. Rowley JA, Mooney DJ (2002) Alginate type and RGD density control myoblast phenotype. J Biomed Mater Res 60(2):217–223

    CAS  Google Scholar 

  167. Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53

    CAS  Google Scholar 

  168. Kale S, Biermann S, Edwards C, Tarnowski C, Morris M, Long MW (2000) Three-dimensional cellular development is essential for ex vivo formation of human bone. Nat Biotechnol 18(9):954–958

    CAS  Google Scholar 

  169. Cochran DL, Jones AA, Lilly LC, Fiorellini JP, Howell H (2000) Evaluation of recombinant human bone morphogenetic protein-2 in oral applications including the use of endosseous implants: 3 year results of a pilot study in humans. J Periodontol 71(8):1241–1257

    CAS  Google Scholar 

  170. Dvir-Ginsberg M, Gamlieli-Bonshtein I, Agbaria R, Cohen S (2003) Liver tissue engineering within alginate scaffolds: effects of cell-seeding density on hepatocyte viability, morphology, and function. Tissue Eng 9(4):757–766

    Google Scholar 

  171. Marler JJ, Guha A, Rowley J, Koka R, Mooney D, Upton J, Vacanti JP (2000) Soft-tissue augmentation with injectable alginate and syngeneic fibroblasts. Plast Reconstruct Surg 105(6):2049–2058

    CAS  Google Scholar 

  172. Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S (2003) Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res 65A:489–497

    Google Scholar 

  173. Urry DW, Pattanaik A (1997) Elastic protein based materials in tissue reconstruction. Ann NY Acad Sci 831:32–46

    CAS  Google Scholar 

  174. Alsberg E, Anderson KW, Albeiruti A, Rowley JA, Mooney DJ (2002) Engineering growing tissues. Proc Natl Acad Sci 99(19):12025–12030

    CAS  Google Scholar 

  175. Wong Po Foo C, Kaplan DL (2002) Genetic engineering of fibrous proteins: spider dragline silk and collagen. Adv Drug Deliv Rev 54:1131–1143

    CAS  Google Scholar 

  176. Toman PD, Chisholm G, McMullin H, Gieren LM, Olsen DR, Kovach RJ, Leigh SD, Fong BE, Chang R, Daniels GA, Berg RA, Hitzemann RA (2000) Production of recombinant human type I procollagen trimers using a four-gene expression system in the yeast Saccharomyces cerevisiae. J Biol Chem 275:23303–23309

    CAS  Google Scholar 

  177. O'Brien JP, Fahnestock SR, Termonia Y, Gardner KH (1998) Nylons from nature: Synthetic analogs to spider silk. Adv Mater 10(15):85-95

    Google Scholar 

  178. Fahnestock SR, Bedzyk LA (1997) Production of synthetic spider dragline silk protein in Pichia pastoris. Appl Microbiol Biotechnol 47(1):33–39

    CAS  Google Scholar 

  179. Zhou Y, Wu S, Conticello VP (2001) Genetically directed synthesis and spectroscopic analysis of a protein polymer derived from a flagelliform silk sequence. Biomacromolecules 2:111–115

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kaplan .

Editor information

Kyongbum Lee David Kaplan

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Velema, J., Kaplan, D. (2006). Biopolymer-Based Biomaterials as Scaffolds for Tissue Engineering. In: Lee, K., Kaplan, D. (eds) Tissue Engineering I. Advances in Biochemical Engineering/Biotechnology, vol 102. Springer, Berlin, Heidelberg . https://doi.org/10.1007/10_013

Download citation

Publish with us

Policies and ethics