Advertisement

Lentiviral Vectors

  • Nils LoewenEmail author
  • Eric M. PoeschlaEmail author
Chapter
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 99)

Abstract

We review the use of lentiviral vectors in current human gene therapy applications that involve genetic modification of nondividing tissues with integrated transgenes. Safety issues, including insertional mutagenesis and replication-competent retroviruses, are discussed. Innate cellular defenses against retroviruses and their implications for human gene therapy with different lentiviral vectors are also addressed.

Keywords

Equine Infectious Anemia Virus Metachromatic Leukodystrophy Nondividing Cell Caprine Arthritis Encephalitis Virus Murine Leukemia Virus Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank Yasuhiro Ikeda for critically reviewing the manuscript. We apologize to those authors whose works were not cited in this selective review of more recent developments due to space limitations.

References

  1. 1.
    Groth AC, Olivares EC, Thyagarajan B, Calos MP (2000) A phage integrase directs efficient site-specific integration in human cells. P Natl Acad Sci USA 97(11):5995–6000 CrossRefGoogle Scholar
  2. 2.
    Ortiz-Urda S, Thyagarajan B, Keene DR, Lin Q, Fang M, Calos MP, Khavari PA (2002) Stable nonviral genetic correction of inherited human skin disease. Nat Med 8(10):1166–1170 CrossRefGoogle Scholar
  3. 3.
    Miller DG, Adam MA, Miller AD (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10(8):4239–4242 Google Scholar
  4. 4.
    Lewis PF, Emerman M (1994) Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 68(1):510–516 Google Scholar
  5. 5.
    Fouchier RA, Malim MH (1999) Nuclear import of human immunodeficiency virus type-1 preintegration complexes. Adv Virus Res 52:275–299 Google Scholar
  6. 6.
    Naldini L, Bloemer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(5259):263–267 Google Scholar
  7. 7.
    Poeschla E, Wong-Staal F, Looney D (1998) Efficient transduction of nondividing cells by feline immunodeficiency virus lentiviral vectors. Nat Med 4(3):354–357 CrossRefGoogle Scholar
  8. 8.
    Mitrophanous K, Yoon S, Rohll J, Patil D, Wilkes F, Kim V, Kingsman S, Kingsman A, Mazarakis N (1999) Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther 6(11):1808–1818 Google Scholar
  9. 9.
    Cherry SR, Biniszkiewicz D, van Parijs L, Baltimore D, Jaenisch R (2000) Retroviral expression in embryonic stem cells and hematopoietic stem cells. Mol Cell Biol 20(20):7419–7426 CrossRefGoogle Scholar
  10. 10.
    Rivella S, Callegari JA, May C, Tan CW, Sadelain M (2000) The cHS4 insulator increases the probability of retroviral expression at random chromosomal integration sites. J Virol 74(10):4679–4687 CrossRefGoogle Scholar
  11. 11.
    Yannaki E, Tubb J, Aker M, Stamatoyannopoulos G, Emery DW (2002) Topological constraints governing the use of the chicken HS4 chromatin insulator in oncoretrovirus vectors. Mol Ther 5(5):589–598 CrossRefGoogle Scholar
  12. 12.
    Emery DW, Yannaki E, Tubb J, Stamatoyannopoulos G (2000) A chromatin insulator protects retrovirus vectors from chromosomal position effects. P Natl Acad Sci USA 97(16):9150–9155 CrossRefGoogle Scholar
  13. 13.
    Hejnar J, Hajkova P, Plachy J, Elleder D, Stepanets V, Svoboda J (2001) CpG island protects Rous sarcoma virus-derived vectors integrated into nonpermissive cells from DNA methylation and transcriptional suppression. P Natl Acad Sci USA 98(2):565–569 CrossRefGoogle Scholar
  14. 14.
    Jakobsson J, Rosenqvist N, Thompson L, Barraud P, Lundberg C (2004) Dynamics of transgene expression in a neural stem cell line transduced with lentiviral vectors incorporating the cHS4 insulator. Exp Cell Res 298(2):611–623 CrossRefGoogle Scholar
  15. 15.
    Robbins PB, Yu XJ, Skelton DM, Pepper KA, Wasserman RM, Zhu L, Kohn DB (1997) Increased probability of expression from modified retroviral vectors in embryonal stem cells and embryonal carcinoma cells. J Virol 71(12):9466–9474 Google Scholar
  16. 16.
    Prasad Alur RK, Foley B, Parente MK, Tobin DK, Heuer GG, Avadhani AN, Pongubala J, Wolfe JH (2002) Modification of multiple transcriptional regulatory elements in a Moloney murine leukemia virus gene transfer vector circumvents silencing in fibroblast grafts and increases levels of expression of the transferred enzyme. Gene Ther 9(17):1146–1154 Google Scholar
  17. 17.
    Haas DL, Lutzko C, Logan AC, Cho GJ, Skelton D, Jin Yu X, Pepper KA, Kohn DB (2003) The Moloney murine leukemia virus repressor binding site represses expression in murine and human hematopoietic stem cells. J Virol 77(17):9439–9450 CrossRefGoogle Scholar
  18. 18.
    Consiglio A, Gritti A, Dolcetta D, Follenzi A, Bordignon C, Gage FH, Vescovi AL, Naldini L (2004) Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors. P Natl Acad Sci USA 101(41):14835–14840 CrossRefGoogle Scholar
  19. 19.
    Pfeifer A, Ikawa M, Dayn Y, Verma IM (2002) Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. P Natl Acad Sci USA 99(4):2140–2145 CrossRefGoogle Scholar
  20. 20.
    Gropp M, Itsykson P, Singer O, Ben-Hur T, Reinhartz E, Galun E, Reubinoff BE (2003) Stable genetic modification of human embryonic stem cells by lentiviral vectors. Mol Ther 7(2):281–287 CrossRefGoogle Scholar
  21. 21.
    Malim MH, Hauber J, Le SY, Maizel JV, Cullen BR (1989) The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338(6212):254–257 CrossRefGoogle Scholar
  22. 22.
    Puthenveetil G, Scholes J, Carbonell D, Xia P, Qureshi N, Zeng L, Li S, Yu Y, Hiti AL, Yee JK, Malik P (2004) Successful correction of the human beta-thalassemia major phenotype using a lentiviral vector. Blood 104(12):3445–3453 CrossRefGoogle Scholar
  23. 23.
    May C, Rivella S, Callegari J, Heller G, Gaensler KM, Luzzatto L, Sadelain M (2000) Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature 406(6791):82–86 Google Scholar
  24. 24.
    Parolin C, Sodroski J (1995) A defective HIV-1 vector for gene transfer to human lymphocytes. J Mol Med 73(6):279–288 CrossRefGoogle Scholar
  25. 25.
    Poznansky M, Lever A, Bergeron L, Haseltine W, Sodroski J (1991) Gene transfer into human lymphocytes by a defective human immunodeficiency virus type 1 vector. J Virol 65(1):532–536 Google Scholar
  26. 26.
    Johnston JC, Gasmi M, Lim LE, Elder JH, Yee JK, Jolly DJ, Campbell KP, Davidson BL, Sauter SL (1999) Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors. J Virol 73(6):4991–5000 Google Scholar
  27. 27.
    Curran MA, Kaiser SM, Achacoso PL, Nolan GP (2000) Efficient transduction of nondividing cells by optimized feline immunodeficiency virus vectors. Mol Ther 1(1):31–38 CrossRefGoogle Scholar
  28. 28.
    Olsen JC (1998) Gene transfer vectors derived from equine infectious anemia virus. Gene Ther 5(11):1481–1487 Google Scholar
  29. 29.
    Mselli-Lakhal L, Favier C, Da Silva Teixeira MF, Chettab K, Legras C, Ronfort C, Verdier G, Mornex JF, Chebloune Y (1998) Defective RNA packaging is responsible for low transduction efficiency of CAEV-based vectors. Arch Virol 143(4):681–695 CrossRefGoogle Scholar
  30. 30.
    Berkowitz R, Ilves H, Lin WY, Eckert K, Coward A, Tamaki S, Veres G, Plavec I (2001) Construction and molecular analysis of gene transfer systems derived from bovine immunodeficiency virus. J Virol 75(7):3371–3382 CrossRefGoogle Scholar
  31. 31.
    Metharom P, Takyar S, Xia HH, Ellem KA, Macmillan J, Shepherd RW, Wilcox GE, Wei MQ (2000) Novel bovine lentiviral vectors based on Jembrana disease virus. J Gene Med 2(3):176–185 CrossRefGoogle Scholar
  32. 32.
    Berkowitz RD, Ilves H, Plavec I, Veres G (2001) Gene transfer systems derived from Visna virus: analysis of virus production and infectivity. Virology 279(1):116–129 CrossRefGoogle Scholar
  33. 33.
    Poeschla EM (2003) Nonprimate lentiviral vectors. Curr Opin Mol Ther 5(5):529–540 Google Scholar
  34. 34.
    Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427(6977):848–853 CrossRefGoogle Scholar
  35. 35.
    Edelstein M (2004) Journal of Gene Medicine website on gene therapy trials worldwide. Wiley, Chichester (see http://www.wiley.com/legacy/wileychi/genmed/clinical/, last accessed 21st September 2005) Google Scholar
  36. 36.
    MacGregor RR (2001) Clinical protocol A phase 1 open-label clinical trial of the safety and tolerability of single escalating doses of autologous CD4 T cells transduced with VRX496 in HIV-positive subjects. Hum Gene Ther 12(16):2028–2029 Google Scholar
  37. 37.
    Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288(5466):669–672 CrossRefGoogle Scholar
  38. 38.
    Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E, Radford I, Villeval JL, Fraser CC, Cavazzana-Calvo M, Fischer A (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348(3):255–256 CrossRefGoogle Scholar
  39. 39.
    Humeau LM, Binder GK, Lu X, Slepushkin V, Merling R, Echeagaray P, Pereira M, Slepushkina T, Barnett S, Dropulic LK, Carroll R, Levine BL, June CH, Dropulic B (2004) Efficient lentiviral vector-mediated control of HIV-1 replication in CD4 lymphocytes from diverse HIV+ infected patients grouped according to CD4 count and viral load. Mol Ther 9(6):902–913 CrossRefGoogle Scholar
  40. 40.
    Manilla P, Rebello T, Afable C, Lu X, Slepushkin V, Humeau LM, Schonely K, Ni Y, Binder GK, Levine BL, MacGregor RR, June CH, Dropulic B (2005) Regulatory considerations for novel gene therapy products: a review of the process leading to the first clinical lentiviral vector. Hum Gene Ther 16(1):17–25 CrossRefGoogle Scholar
  41. 41.
    Moreau-Gaudry F, Xia P, Jiang G, Perelman NP, Bauer G, Ellis J, Surinya KH, Mavilio F, Shen CK, Malik P (2001) High-level erythroid-specific gene expression in primary human and murine hematopoietic cells with self-inactivating lentiviral vectors. Blood 98(9):2664–2672 CrossRefGoogle Scholar
  42. 42.
    Pawliuk R, Westerman KA, Fabry ME, Payen E, Tighe R, Bouhassira EE, Acharya SA, Ellis J, London IM, Eaves CJ, Humphries RK, Beuzard Y, Nagel RL, Leboulch P (2001) Correction of sickle cell disease in transgenic mouse models by gene therapy. Science 294(5550):2368–2371 CrossRefGoogle Scholar
  43. 43.
    Galimi F, Noll M, Kanazawa Y, Lax T, Chen C, Grompe M, Verma IM (2002) Gene therapy of Fanconi anemia: preclinical efficacy using lentiviral vectors. Blood 100(8):2732–2736 CrossRefGoogle Scholar
  44. 44.
    Kordower JH et al. (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science 290(5492):767–773 CrossRefGoogle Scholar
  45. 45.
    Georgievska B, Kirik D, Rosenblad C, Lundberg C, Bjorklund A (2002) Neuroprotection in the rat Parkinson model by intrastriatal GDNF gene transfer using a lentiviral vector. Neuroreport 13(1):75–82 Google Scholar
  46. 46.
    Consiglio A, Quattrini A, Martino S, Bensadoun JC, Dolcetta D, Trojani A, Benaglia G, Marchesini S, Cestari V, Oliverio A, Bordignon C, Naldini L (2001) In vivo gene therapy of metachromatic leukodystrophy by lentiviral vectors: correction of neuropathology and protection against learning impairments in affected mice. Nat Med 7(3):310–316 CrossRefGoogle Scholar
  47. 47.
    Biffi A, De Palma M, Quattrini A, Del Carro U, Amadio S, Visigalli I, Sessa M, Fasano S, Brambilla R, Marchesini S, Bordignon C, Naldini L (2004) Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J Clin Invest 113(8):1118–1129 CrossRefGoogle Scholar
  48. 48.
    Mazarakis ND, Azzouz M, Rohll JB, Ellard FM, Wilkes FJ, Olsen AL, Carter EE, Barber RD, Baban DF, Kingsman SM, Kingsman AJ, O'Malley K, Mitrophanous KA (2001) Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet 10(19):2109–2121 CrossRefGoogle Scholar
  49. 49.
    Azzouz M, Ralph GS, Storkebaum E, Walmsley LE, Mitrophanous KA, Kingsman SM, Carmeliet P, Mazarakis ND (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429(6990):413–417 CrossRefGoogle Scholar
  50. 50.
    Stein CS, Kang Y, Sauter SL, Townsend K, Staber P, Derksen TA, Martins I, Qian J, Davidson BL, McCray PB Jr (2001) In vivo treatment of hemophilia A and mucopolysaccharidosis type VII using nonprimate lentiviral vectors. Mol Ther 3(6):850–856 CrossRefGoogle Scholar
  51. 51.
    Brooks AI, Stein CS, Hughes SM, Heth J, McCray PM, Sauter SL Jr, Johnston JC, Cory-Slechta DA, Federoff HJ, Davidson BL (2002) Functional correction of established central nervous system deficits in an animal model of lysosomal storage disease with feline immunodeficiency virus-based vectors. P Natl Acad Sci USA 99(9):6216–6221 CrossRefGoogle Scholar
  52. 52.
    Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D'Antona G, Pellegrino MA, Barresi R, Bresolin N, De Angelis MG, Campbell KP, Bottinelli R, Cossu G (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301(5632):487–492 CrossRefGoogle Scholar
  53. 53.
    Kobinger GP, Louboutin JP, Barton ER, Sweeney HL, Wilson JM (2003) Correction of the dystrophic phenotype by in vivo targeting of muscle progenitor cells. Hum Gene Ther 14(15):1441–1449 CrossRefGoogle Scholar
  54. 54.
    Takahashi M, Miyoshi H, Verma IM, Gage FH (1999) Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer. J Virol 73(9):7812–7816 Google Scholar
  55. 55.
    Loewen N, Fautsch MP, Teo WL, Bahler CK, Johnson DH, Poeschla EM (2004) Long-term, targeted genetic modification of the aqueous humor outflow tract coupled with noninvasive imaging of gene expression in vivo. Invest Ophthalmol Vis Sci 45(9):3091–3098 CrossRefGoogle Scholar
  56. 56.
    Ikawa M, Tergaonkar V, Ogura A, Ogonuki N, Inoue K, Verma IM (2002) Restoration of spermatogenesis by lentiviral gene transfer: offspring from infertile mice. P Natl Acad Sci USA 99(11):7524–7529 CrossRefGoogle Scholar
  57. 57.
    Pan D, Gunther R, Duan W, Wendell S, Kaemmerer W, Kafri T, Verma IM, Whitley CB (2002) Biodistribution and toxicity studies of VSVG-pseudotyped lentiviral vector after intravenous administration in mice with the observation of in vivo transduction of bone marrow. Mol Ther 6(1):19–29 CrossRefGoogle Scholar
  58. 58.
    Peng KW, Pham L, Ye H, Zufferey R, Trono D, Cosset FL, Russell SJ (2001) Organ distribution of gene expression after intravenous infusion of targeted and untargeted lentiviral vectors. Gene Ther 8(19):1456–1463 Google Scholar
  59. 59.
    Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J, Chen C, Li J, Xiao X (2005) Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 23(3):321–328 CrossRefGoogle Scholar
  60. 60.
    Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110(4):521–529 CrossRefGoogle Scholar
  61. 61.
    Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749–1751 Google Scholar
  62. 62.
    Han Y, Lassen K, Monie D, Sedaghat AR, Shimoji S, Liu X, Pierson TC, Margolick JB, Siliciano RF, Siliciano JD (2004) Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J Virol 78(12):6122–6133 CrossRefGoogle Scholar
  63. 63.
    Trono D (2003) Virology: Picking the right spot. Science 300(5626):1670–1671 Google Scholar
  64. 64.
    Hacein-Bey-Abina S et al. (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346(16):1185–1193 CrossRefGoogle Scholar
  65. 65.
    Hacein-Bey-Abina S et al. (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302(5644):415–419 CrossRefGoogle Scholar
  66. 66.
    Stocking C, Bergholz U, Friel J, Klingler K, Wagener T, Starke C, Kitamura T, Miyajima A, Ostertag W (1993) Distinct classes of factor-independent mutants can be isolated after retroviral mutagenesis of a human myeloid stem cell line. Growth Factors 8(3):197–209 Google Scholar
  67. 67.
    Dave UP, Jenkins NA, Copeland NG (2004) Gene therapy insertional mutagenesis insights. Science 303(5656):333 CrossRefGoogle Scholar
  68. 68.
    Yu SF, von Ruden T, Kantoff PW, Garber C, Seiberg M, Ruther U, Anderson WF, Wagner EF, Gilboa E (1986) Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. P Natl Acad Sci USA 83(10):3194–3198 Google Scholar
  69. 69.
    Olson P, Nelson S, Dornburg R (1994) Improved self-inactivating retroviral vectors derived from spleen necrosis virus. J Virol 68(11):7060–7066 Google Scholar
  70. 70.
    Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM (1998) Development of a self-inactivating lentivirus vector. J Virol 72(10):8150–8157 Google Scholar
  71. 71.
    Iwakuma T, Cui Y, Chang LJ (1999) Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology 261(1):120–132 CrossRefGoogle Scholar
  72. 72.
    Moolten FL (1986) Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res 46(10):5276–5281 Google Scholar
  73. 73.
    Obaru K, Fujii S, Matsushita S, Shimada T, Takatsuki K (1996) Gene therapy for adult T cell leukemia using human immunodeficiency virus vector carrying the thymidine kinase gene of herpes simplex virus type 1. Hum Gene Ther 7(18):2203–2208 Google Scholar
  74. 74.
    Kafri T, van Praag H, Gage FH, Verma IM (2000) Lentiviral vectors: regulated gene expression. Mol Ther 1(6):516–521 CrossRefGoogle Scholar
  75. 75.
    Vigna E, Cavalieri S, Ailles L, Geuna M, Loew R, Bujard H, Naldini L (2002) Robust and efficient regulation of transgene expression in vivo by improved tetracycline-dependent lentiviral vectors. Mol Ther 5(3):252–261 CrossRefGoogle Scholar
  76. 76.
    Sirin O, Park F (2003) Regulating gene expression using self-inactivating lentiviral vectors containing the mifepristone-inducible system. Gene 323:67–77 CrossRefGoogle Scholar
  77. 77.
    Pollock R, Issner R, Zoller K, Natesan S, Rivera VM, Clackson T (2000) Delivery of a stringent dimerizer-regulated gene expression system in a single retroviral vector. P Natl Acad Sci USA 97(24):13221–13226 CrossRefGoogle Scholar
  78. 78.
    Silver DP, Livingston DM (2001) Self-excising retroviral vectors encoding the Cre recombinase overcome Cre-mediated cellular toxicity. Mol Cell 8(1):233–243 CrossRefGoogle Scholar
  79. 79.
    Chang LJ, Zaiss AK (2003) Self-inactivating lentiviral vectors and a sensitive Cre-loxP reporter system. Methods Mol Med 76:367–382 Google Scholar
  80. 80.
    Ahmed BY, Chakravarthy S, Eggers R, Hermens WT, Zhang JY, Niclou SP, Levelt C, Sablitzky F, Anderson PN, Lieberman AR, Verhaagen J (2004) Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors. BMC Neurosci 5:4 CrossRefGoogle Scholar
  81. 81.
    Pfeifer A, Brandon EP, Kootstra N, Gage FH, Verma IM (2001) Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo. P Natl Acad Sci USA 98(20):11450–11455 CrossRefGoogle Scholar
  82. 82.
    Vargas J Jr, Gusella GL, Najfeld V, Klotman ME, Cara A (2004) Novel integrase-defective lentiviral episomal vectors for gene transfer. Hum Gene Ther 15(4):361–372 CrossRefGoogle Scholar
  83. 83.
    Lu R, Nakajima N, Hofmann W, Benkirane M, Jeang KT, Sodroski J, Engelman A (2004) Simian virus 40-based replication of catalytically inactive human immunodeficiency virus type 1 integrase mutants in nonpermissive T cells and monocyte-derived macrophages. J Virol 78(2):658–668 CrossRefGoogle Scholar
  84. 84.
    Saenz D, Loewen N, Peretz M, Whitwam T, Barraza R, Howell K, Holmes JH, Good M, Poeschla EM (2004) Unintegrated lentiviral DNA persistence and accessibility to expression in nondividing cells: analysis with class I integrase mutants. J Virol 78:2906–2920 CrossRefGoogle Scholar
  85. 85.
    Pages JC, Bru T (2004) Toolbox for retrovectorologists. J Gene Med6(Suppl 1):S67–S82 Google Scholar
  86. 86.
    Donahue RE, Kessler SW, Bodine D, McDonagh K, Dunbar C, Goodman S, Agricola B, Byrne E, Raffeld M, Moen R et al. (1992) Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J Exp Med 176(4):1125–1135 CrossRefGoogle Scholar
  87. 87.
    Purcell DF, Broscius CM, Vanin EF, Buckler CE, Nienhuis AW, Martin MA (1996) An array of murine leukemia virus-related elements is transmitted and expressed in a primate recipient of retroviral gene transfer. J Virol 70(2):887–897 Google Scholar
  88. 88.
    Vanin EF, Kaloss M, Broscius C, Nienhuis AW (1994) Characterization of replication-competent retroviruses from nonhuman primates with virus-induced T-celllymphomas and observations regarding the mechanism of oncogenesis. J Virol 68(7):4241–4250 Google Scholar
  89. 89.
    Guidance for Industry, U.S. Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research (CBER) (2001) Supplemental guidance on testing for replication-competent retrovirus in retroviral vector-based gene therapy products and during follow-up of patients in clinical trials using retroviral vectors. Hum Gene Ther 12(3):315–320 Google Scholar
  90. 90.
    Haapala DK, Robey WG, Oroszlan SD, Tsai WP (1985) Isolation from cats of an endogenous type C virus with a novel envelope glycoprotein. J Virol 53(3):827–833 Google Scholar
  91. 91.
    Danos O, Mulligan RC (1988) Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. P Natl Acad Sci USA 85(17):6460–6464 Google Scholar
  92. 92.
    Printz M, Reynolds J, Mento SJ, Jolly D, Kowal K, Sajjadi N (1995) Recombinant retroviral vector interferes with the detection of amphotropic replication competent retrovirus in standard culture assays. Gene Ther 2(2):143–150 Google Scholar
  93. 93.
    Forestell SP, Dando JS, Bohnlein E, Rigg RJ (1996) Improved detection of replication-competent retrovirus. J Virol Methods 60(2):171–178 CrossRefGoogle Scholar
  94. 94.
    Reeves L, Duffy L, Koop S, Fyffe J, Cornetta K (2002) Detection of ecotropic replication-competent retroviruses: comparison of s(+)=l(–) and marker rescue assays. Hum Gene Ther 13(14):1783–1790 CrossRefGoogle Scholar
  95. 95.
    Escarpe P, Zayek N, Chin P, Borellini F, Zufferey R, Veres G, Kiermer V (2003) Development of a sensitive assay for detection of replication-competent recombinant lentivirus in large-scale HIV-based vector preparations. Mol Ther 8(2):332–341 Google Scholar
  96. 96.
    Sastry L, Xu Y, Johnson T, Desai K, Rissing D, Marsh J, Cornetta K (2003) Certification assays for HIV-1-based vectors: frequent passage of gag sequences without evidence of replication-competent viruses. Mol Ther 8(5):830–839 CrossRefGoogle Scholar
  97. 97.
    Wu X, Wakefield JK, Liu H, Xiao H, Kralovics R, Prchal JT, Kappes JC (2000) Development of a novel trans-lentiviral vector that affords predictable safety. Mol Ther 2(1):47–55 Google Scholar
  98. 98.
    Kotsopoulou E, Kim VN, Kingsman AJ, Kingsman SM, Mitrophanous KA (2000) A Rev-independent human immunodeficiency virus type 1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag-pol gene. J Virol 74(10):4839–4852 CrossRefGoogle Scholar
  99. 99.
    Wagner R, Graf M, Bieler K, Wolf H, Grunwald T, Foley P, Uberla K (2000) Rev-independent expression of synthetic gag-pol genes of human immunodeficiency virus type 1 and simian immunodeficiency virus: implications for the safety of lentiviral vectors. Hum Gene Ther 11(17):2403–2413 CrossRefGoogle Scholar
  100. 100.
    Hope T (2002) Improving the post-transcriptional aspects of lentiviral vectors. Curr Top Microbiol Immunol 261:179–189 Google Scholar
  101. 101.
    Segall HI, Yoo E, Sutton RE (2003) Characterization and detection of artificial replication-competent lentivirus of altered host range. Mol Ther 8(1):118–129 CrossRefGoogle Scholar
  102. 102.
    Otto E, Jones-Trower A, Vanin EF, Stambaugh K, Mueller SN, Anderson WF, McGarrity GJ (1994) Characterization of a replication-competent retrovirus resulting from recombination of packaging and vector sequences. Hum Gene Ther 5(5):567–575 Google Scholar
  103. 103.
    Garrett E, Miller AR, Goldman JM, Apperley JF, Melo JV (2000) Characterization of recombination events leading to the production of an ecotropic replication-competent retrovirus in a GP+envAM12-derived producer cell line. Virology 266(1):170–179 CrossRefGoogle Scholar
  104. 104.
    Scarpa M, Cournoyer D, Muzny DM, Moore KA, Belmont JW, Caskey CT (1991) Characterization of recombinant helper retroviruses from Moloney-based vectors in ecotropic and amphotropic packaging cell lines. Virology 180(2):849–852 CrossRefGoogle Scholar
  105. 105.
    Chong H, Starkey W, Vile RG (1998) A replication-competent retrovirus arising from a split-function packaging cell line was generated by recombination events between the vector, one of the packaging constructs, and endogenous retroviral sequences. J Virol 72(4):2663–2670 Google Scholar
  106. 106.
    Martinez I, Dornburg R (1996) Partial reconstitution of a replication-competent retrovirus in helper cells with partial overlaps between vector and helper cell genomes. Hum Gene Ther 7(6):705–712 Google Scholar
  107. 107.
    Kemler I, Barraza R, Poeschla EM (2002) Mapping of the encapsidation determinants of feline immunodeficiency virus. J Virol 76(23):11889–11903 CrossRefGoogle Scholar
  108. 108.
    Browning MT, Mustafa F, Schmidt RD, Lew KA, Rizvi TA (2003) Delineation of sequences important for efficient packaging of feline immunodeficiency virus RNA. J Gen Virol 84(Pt 3):621–627 Google Scholar
  109. 109.
    Kemler I, Azmi I, Poeschla EM (2004) The critical role of proximal gag sequences in feline immunodeficiency virus genome encapsidation. Virology 327(1):111–120 CrossRefGoogle Scholar
  110. 110.
    Evans JT, Garcia JV (2000) Lentivirus vector mobilization and spread by human immunodeficiency virus. Hum Gene Ther 11(17):2331–2339 CrossRefGoogle Scholar
  111. 111.
    Sastry L, Xu Y, Cooper R, Pollok K, Cornetta K (2004) Evaluation of plasmid DNA removal from lentiviral vectors by benzonase treatment. Hum Gene Ther 15(2):221–226 CrossRefGoogle Scholar
  112. 112.
    Liu ML, Winther BL, Kay MA (1996) Pseudotransduction of hepatocytes by using concentrated pseudotyped vesicular stomatitis virus G glycoprotein (VSV-G)-Moloney murine leukemia virus-derived retrovirus vectors: comparison of VSV-G and amphotropic vectors for hepatic gene transfer. J Virol 70(4):2497–2502 Google Scholar
  113. 113.
    Gallardo HF, Tan C, Ory D, Sadelain M (1997) Recombinant retroviruses pseudotyped with the vesicular stomatitis virus G glycoprotein mediate both stable gene transfer and pseudotransduction in human peripheral blood lymphocytes. Blood 90(3):952–957 Google Scholar
  114. 114.
    Dai C, McAninch RE, Sutton RE (2004) Identification of synthetic endothelial cell-specific promoters by use of a high-throughput screen. J Virol 78(12):6209–6221 CrossRefGoogle Scholar
  115. 115.
    Lotti F, Menguzzato E, Rossi C, Naldini L, Ailles L, Mavilio F, Ferrari G (2002) Transcriptional targeting of lentiviral vectors by long terminal repeat enhancer replacement. J Virol 76(8):3996–4007 CrossRefGoogle Scholar
  116. 116.
    Jager U, Zhao Y, Porter CD (1999) Endothelial cell-specific transcriptional targeting from a hybrid long terminal repeat retrovirus vector containing human prepro-endothelin-1 promoter sequences. J Virol 73(12):9702–9709 Google Scholar
  117. 117.
    Grande A, Piovani B, Aiuti A, Ottolenghi S, Mavilio F, Ferrari G (1999) Transcriptional targeting of retroviral vectors to the erythroblastic progeny of transduced hematopoietic stem cells. Blood 93(10):3276–3285 Google Scholar
  118. 118.
    Fassati A, Bardoni A, Sironi M, Wells DJ, Bresolin N, Scarlato G, Hatanaka M, Yamaoka S, Dickson G (1998) Insertion of two independent enhancers in the long terminal repeat of a self-inactivating vector results in high-titer retroviral vectors with tissue-specific expression. Hum Gene Ther 9(17):2459–2468 CrossRefGoogle Scholar
  119. 119.
    Vile R, Miller N, Chernajovsky Y, Hart I (1994) A comparison of the properties of different retroviral vectors containing the murine tyrosinase promoter to achieve transcriptionally targeted expression of the HSVtk or IL-2 genes. Gene Ther 1(5):307–316 Google Scholar
  120. 120.
    Arbuthnot P, Bralet MP, Thomassin H, Danan JL, Brechot C, Ferry N (1995) Hepatoma cell-specific expression of a retrovirally transferred gene is achieved by alpha-fetoprotein but not insulinlike growth factor II regulatory sequences. Hepatology 22(6):1788–1796 CrossRefGoogle Scholar
  121. 121.
    Follenzi A, Battaglia M, Lombardo A, Annoni A, Roncarolo MG, Naldini L (2004) Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood 103(10)3700–3709 Google Scholar
  122. 122.
    De Palma M, Venneri MA, Naldini L (2003) In vivo targeting of tumor endothelial cells by systemic delivery of lentiviral vectors. Hum Gene Ther 14(12):1193–1206 Google Scholar
  123. 123.
    Bess JW Jr, Gorelick RJ, Bosche WJ, Henderson LE, Arthur LO (1997) Microvesicles are a source of contaminating cellular proteins found in purified HIV-1 preparations. Virology 230(1):134–144 CrossRefGoogle Scholar
  124. 124.
    Rolls MM, Webster P, Balba NH, Rose JK (1994) Novel infectious particles generated by expression of the vesicular stomatitis virus glycoprotein from a self-replicating RNA. Cell 79(3):497–506 CrossRefGoogle Scholar
  125. 125.
    Baekelandt V, Claeys A, Eggermont K, Lauwers E, De Strooper B, Nuttin B, Debyser Z (2002) Characterization of lentiviral vector-mediated gene transfer in adult mouse brain. Hum Gene Ther 13(7):841–853 CrossRefGoogle Scholar
  126. 126.
    Scherr M, Battmer K, Eder M, Schule S, Hohenberg H, Ganser A, Grez M, Blomer U (2002) Efficient gene transfer into the CNS by lentiviral vectors purified by anion exchange chromatography. Gene Ther 9(24):1708–1714 Google Scholar
  127. 127.
    Yamada K, McCarty DM, Madden VJ, Walsh CE (2003) Lentivirus vector purification using anion exchange HPLC leads to improved gene transfer. Biotechniques 34(5):1074–1078, 1080 Google Scholar
  128. 128.
    Baekelandt V, Eggermont K, Michiels M, Nuttin B, Debyser Z (2003) Optimized lentiviral vector production and purification procedure prevents immune response after transduction of mouse brain. Gene Ther 10(23):1933–1940 Google Scholar
  129. 129.
    Moller-Larsen A, Christensen T (1998) Isolation of a retrovirus from multiple sclerosis patients in self-generated Iodixanol gradients. J Virol Methods 73(2):151–161 Google Scholar
  130. 130.
    Christensen T, Sorensen PD, Hansen HJ, Moller-Larsen A (2003) Antibodies against a human endogenous retrovirus and the preponderance of env splice variants in multiple sclerosis patients. Mult Scler 9(1):6–15 CrossRefGoogle Scholar
  131. 131.
    Fujisawa R, McAtee FJ, Favara C, Hayes SF, Portis JL (2001) N-terminal cleavage fragment of glycosylated Gag is incorporated into murine oncornavirus particles. J Virol 75(22):11239–11243 CrossRefGoogle Scholar
  132. 132.
    Coleman JE, Huentelman MJ, Kasparov S, Metcalfe BL, Paton JF, Katovich MJ, Semple-Rowland SL, Raizada MK (2003) Efficient large-scale production and concentration of HIV-1-based lentiviral vectors for use in vivo. Physiol Genomics 12(3):221–228 Google Scholar
  133. 133.
    Kafri T, van Praag H, Ouyang L, Gage FH, Verma IM (1999) A packaging cell line for lentivirus vectors. J Virol 73(1):576–584 Google Scholar
  134. 134.
    Klages N, Zufferey R, Trono D (2000) A stable system for the high-titer production of multiply attenuated lentiviral vectors. Mol Ther 2(2):170–176 CrossRefGoogle Scholar
  135. 135.
    Farson D, Witt R, McGuinness R, Dull T, Kelly M, Song J, Radeke R, Bukovsky A, Consiglio A, Naldini L (2001) A new-generation stable inducible packaging cell line for lentiviral vectors. Hum Gene Ther 12(8):981–997 CrossRefGoogle Scholar
  136. 136.
    Xu K, Ma H, McCown TJ, Verma IM, Kafri T (2001) Generation of a stable cell line producing high-titer self-inactivating lentiviral vectors. Mol Ther 3(1):97–104 CrossRefGoogle Scholar
  137. 137.
    Page KA, Landau NR, Littman DR (1990) Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J Virol 64(11):5270–5276 Google Scholar
  138. 138.
    Mochizuki H, Schwartz JP, Tanaka K, Brady RO, Reiser J (1998) High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J Virol 72(11):8873–8883 Google Scholar
  139. 139.
    Kobinger GP, Weiner DJ, Yu QC, Wilson JM (2001) Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo. Nat Biotechnol 19(3):225–230 CrossRefGoogle Scholar
  140. 140.
    Landau NR, Page KA, Littman DR (1991) Pseudotyping with human T-cell leukemia virus type I broadens the human immunodeficiency virus host range. J Virol 65(1):162–169 Google Scholar
  141. 141.
    Chan SY, Speck RF, Ma MC, Goldsmith MA (2000) Distinct mechanisms of entry by envelope glycoproteins of Marburg, Ebola (Zaire) viruses. J Virol 65(1):4933–4937 Google Scholar
  142. 142.
    Hanawa H, Kelly PF, Nathwani AC, Persons DA, Vandergriff JA, Hargrove P, Vanin EF, Nienhuis AW (2002) Comparison of various envelope proteins for their ability to pseudotype lentiviral vectors and transduce primitive hematopoietic cells from human blood. Mol Ther 5(3):242–251 CrossRefGoogle Scholar
  143. 143.
    Sandrin V, Boson B, Salmon P, Gay W, Negre D, Le Grand R, Trono D, Cosset FL (2002) Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes, CD34+ cells derived from human and nonhuman primates. Blood 100(3):823–832 CrossRefGoogle Scholar
  144. 144.
    Takeuchi Y, Cosset FL, Lachmann PJ, Okada H, Weiss RA, Collins MK (1994) Type C retrovirus inactivation by human complement is determined by both the viral genome and the producer cell. J Virol 68(12):8001–8007 Google Scholar
  145. 145.
    Kang Y, Stein CS, Heth JA, Sinn PL, Penisten AK, Staber PD, Ratliff KL, Shen H, Barker CK, Martins I, Sharkey CM, Sanders DA, McCray PB Jr, Davidson BL (2002) In vivo gene transfer using a nonprimate lentiviral vector pseudotyped with Ross River Virus glycoproteins. J Virol 76(18):9378–9388 CrossRefGoogle Scholar
  146. 146.
    Kumar M, Bradow BP, Zimmerberg J (2003) Large-scale production of pseudotyped lentiviral vectors using baculovirus GP64. Hum Gene Ther 14(1):67–77 CrossRefGoogle Scholar
  147. 147.
    Schauber CA, Tuerk MJ, Pacheco CD, Escarpe PA, Veres G (2004) Lentiviral vectors pseudotyped with baculovirus gp64 efficiently transduce mouse cells in vivo and show tropism restriction against hematopoietic cell types in vitro. Gene Ther 11(3):266–275 Google Scholar
  148. 148.
    Ikeda Y, Takeuchi Y, Martin F, Cosset FL, Mitrophanous K, Collins M (2003) Continuous high-titer HIV-1 vector production. Nat Biotechnol 21(5):569–572 Google Scholar
  149. 149.
    Keckesova Z, Ylinen LM, Towers GJ (2004) The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities. P Natl Acad Sci USA 101(29):10780–10785 CrossRefGoogle Scholar
  150. 150.
    Hatziioannou T, Cowan S, Von Schwedler UK, Sundquist WI, Bieniasz PD (2004) Species-specific tropism determinants in the human immunodeficiency virus type 1 capsid. J Virol 78(11):6005–6012 CrossRefGoogle Scholar
  151. 151.
    Hatziioannou T, Cowan S, Goff SP, Bieniasz PD, Towers GJ (2003) Restriction of multiple divergent retroviruses by Lv1 and Ref1. EMBO J 22(3):385–394 CrossRefGoogle Scholar
  152. 152.
    Cowan S, Hatziioannou T, Cunningham T, Muesing MA, Gottlinger HG, Bieniasz PD (2002) Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. P Natl Acad Sci USA 99(18):11914–11919 CrossRefGoogle Scholar
  153. 153.
    Towers G, Bock M, Martin S, Takeuchi Y, Stoye JP, Danos O (2000) A conserved mechanism of retrovirus restriction in mammals. P Natl Acad Sci USA 97(22):12295–12299 CrossRefGoogle Scholar
  154. 154.
    Aagaard L, Mikkelsen JG, Warming S, Duch M, Pedersen FS (2002) Fv1-like restriction of N-tropic replication-competent murine leukaemia viruses in mCAT-1-expressing human cells. J Gen Virol 83(Pt 2):439–442 Google Scholar
  155. 155.
    Kozak CA, Chakraborti A (1996) Single amino acid changes in the murine leukemia virus capsid protein gene define the target of Fv1 resistance. Virology 225(2):300–305 CrossRefGoogle Scholar
  156. 156.
    Benit L, De Parseval N, Casella JF, Callebaut I, Cordonnier A, Heidmann T (1997) Cloning of a new murine endogenous retrovirus, MuERV-L, with strong similarity to the human HERV-L element and with a gag coding sequence closely related to the Fv1 restriction gene. J Virol 71(7):5652–5657 Google Scholar
  157. 157.
    Best S, Le Tissier P, Towers G, Stoye JP (1996) Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382(6594):826–829 CrossRefGoogle Scholar
  158. 158.
    Bock M, Bishop KN, Towers G, Stoye JP (2000) Use of a transient assay for studying the genetic determinants of Fv1 restriction. J Virol 74(16):7422–7430 CrossRefGoogle Scholar
  159. 159.
    Besnier C, Ylinen L, Strange B, Lister A, Takeuchi Y, Goff SP, Towers GJ (2003) Characterization of murine leukemia virus restriction in mammals. J Virol 77(24):13403–13406 CrossRefGoogle Scholar
  160. 160.
    Hughes JF, Coffin JM (2001) Evidence for genomic rearrangements mediated by human endogenous retroviruses during primate evolution. Nat Genet 29(4):487–489 Google Scholar
  161. 161.
    Lander ES et al. (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921 CrossRefGoogle Scholar
  162. 162.
    Venter JC et al. (2001) The sequence of the human genome. Science 291(5507):1304–1351 CrossRefGoogle Scholar
  163. 163.
    Li WH, Gu Z, Wang H, Nekrutenko A (2001) Evolutionary analyses of the human genome. Nature 409(6822):847–849 CrossRefGoogle Scholar
  164. 164.
    Lee K, KewalRamani VN (2004) In defense of the cell: TRIM5alpha interception of mammalian retroviruses. P Natl Acad Sci USA 101(29):10496–10497 Google Scholar
  165. 165.
    Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19(2):187–191 CrossRefGoogle Scholar
  166. 166.
    Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393(6683):386–389 Google Scholar
  167. 167.
    Sen GC (2001) Viruses and interferons. Annu Rev Microbiol 55:255–281 CrossRefGoogle Scholar
  168. 168.
    Keckesova Z, Ylinen LM, Towers GJ (2004) The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities. P Natl Acad Sci USA 101(29):10780–10785 CrossRefGoogle Scholar
  169. 169.
    Hatziioannou T, Perez-Caballero D, Yang A, Cowan S, Bieniasz PD (2004) Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5alpha. P Natl Acad Sci USA 101(29):10774–10779 CrossRefGoogle Scholar
  170. 170.
    Perron MJ, Stremlau M, Song B, Ulm W, Mulligan RC, Sodroski J (2004) TRIM5alpha mediates the postentry block to N-tropic murine leukemia viruses in human cells. P Natl Acad Sci USA 101(32):11827–11832 CrossRefGoogle Scholar
  171. 171.
    Yap MW, Nisole S, Lynch C, Stoye JP (2004) Trim5alpha protein restricts both HIV-1 and murine leukemia virus. P Natl Acad Sci USA 101(29):10786–10791 CrossRefGoogle Scholar
  172. 172.
    Towers GJ, Hatziioannou T, Cowan S, Goff SP, Luban J, Bieniasz PD (2003) Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nat Med 9(9):1138–1143 CrossRefGoogle Scholar
  173. 173.
    Hofmann W, Schubert D, LaBonte J, Munson L, Gibson S, Scammell J, Ferrigno P, Sodroski J (1999) Species-specific, postentry barriers to primate immunodeficiency virus infection. J Virol 73(12):10020–10028 Google Scholar
  174. 174.
    Dorfman T, Gottlinger HG (1996) The human immunodeficiency virus type 1 capsid p2 domain confers sensitivity to the cyclophilin-binding drug SDZ NIM 811. J Virol 70(9):5751–5757 Google Scholar
  175. 175.
    Owens CM, Yang PC, Gottlinger H, Sodroski J (2003) Human and simian immunodeficiency virus capsid proteins are major viral determinants of early, postentry replication blocks in simian cells. J Virol 77(1):726–731 CrossRefGoogle Scholar
  176. 176.
    Bieniasz PD (2004) Intrinsic immunity: a front-line defense against viral attack. Nat Immunol 5(11):1109–1115 CrossRefGoogle Scholar
  177. 177.
    Sheehy AM, Gaddis NC, Choi JD, Malim MH (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418(6898):646–650 CrossRefGoogle Scholar
  178. 178.
    Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D (2003) Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424(6944):99–103 CrossRefGoogle Scholar
  179. 179.
    Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L (2003) The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424(6944):94–98 CrossRefGoogle Scholar
  180. 180.
    Loewen N, Fautsch M, Peretz M, Bahler C, Cameron JD, Johnson DH, Poeschla EM (2001) Genetic modification of human trabecular meshwork with lentiviral vectors. Hum Gene Ther 12:2109–2119 CrossRefGoogle Scholar
  181. 181.
    Saenz D, Teo I, Olsen JC, Poeschla E (2005) Restriction of Feline Immunodeficiency Virus by Ref1, LV1 and Primate TRIM5a Proteins. J Virol (in press) Google Scholar
  182. 182.
    Wang G, Slepushkin V, Zabner J, Keshavjee S, Johnston JC, Sauter SL, Jolly DJ, Dubensky TW Jr, Davidson BL, McCray PB Jr (1999) Feline immunodeficiency virus vectors persistently transduce nondividing airway epithelia and correct the cystic fibrosis defect [see comments]. J Clin Invest 104(11):R55–R62 Google Scholar
  183. 183.
    Yap MW, Nisole S, Stoye JP (2005) A single amino acid change in the SPRY domain of human Trim5-alpha leads to HIV-1 restriction. Curr Biol 15(1):73–78 CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Molecular Medicine ProgramMayo Clinic College of MedicineRochesterUSA

Personalised recommendations