Skip to main content

Lentiviral Vectors

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 99))

Abstract

We review the use of lentiviral vectors in current human gene therapy applications that involve genetic modification of nondividing tissues with integrated transgenes. Safety issues, including insertional mutagenesis and replication-competent retroviruses, are discussed. Innate cellular defenses against retroviruses and their implications for human gene therapy with different lentiviral vectors are also addressed.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Groth AC, Olivares EC, Thyagarajan B, Calos MP (2000) A phage integrase directs efficient site-specific integration in human cells. P Natl Acad Sci USA 97(11):5995–6000

    Article  CAS  Google Scholar 

  2. Ortiz-Urda S, Thyagarajan B, Keene DR, Lin Q, Fang M, Calos MP, Khavari PA (2002) Stable nonviral genetic correction of inherited human skin disease. Nat Med 8(10):1166–1170

    Article  CAS  Google Scholar 

  3. Miller DG, Adam MA, Miller AD (1990) Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol 10(8):4239–4242

    CAS  Google Scholar 

  4. Lewis PF, Emerman M (1994) Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 68(1):510–516

    CAS  Google Scholar 

  5. Fouchier RA, Malim MH (1999) Nuclear import of human immunodeficiency virus type-1 preintegration complexes. Adv Virus Res 52:275–299

    CAS  Google Scholar 

  6. Naldini L, Bloemer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(5259):263–267

    CAS  Google Scholar 

  7. Poeschla E, Wong-Staal F, Looney D (1998) Efficient transduction of nondividing cells by feline immunodeficiency virus lentiviral vectors. Nat Med 4(3):354–357

    Article  CAS  Google Scholar 

  8. Mitrophanous K, Yoon S, Rohll J, Patil D, Wilkes F, Kim V, Kingsman S, Kingsman A, Mazarakis N (1999) Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther 6(11):1808–1818

    CAS  Google Scholar 

  9. Cherry SR, Biniszkiewicz D, van Parijs L, Baltimore D, Jaenisch R (2000) Retroviral expression in embryonic stem cells and hematopoietic stem cells. Mol Cell Biol 20(20):7419–7426

    Article  CAS  Google Scholar 

  10. Rivella S, Callegari JA, May C, Tan CW, Sadelain M (2000) The cHS4 insulator increases the probability of retroviral expression at random chromosomal integration sites. J Virol 74(10):4679–4687

    Article  CAS  Google Scholar 

  11. Yannaki E, Tubb J, Aker M, Stamatoyannopoulos G, Emery DW (2002) Topological constraints governing the use of the chicken HS4 chromatin insulator in oncoretrovirus vectors. Mol Ther 5(5):589–598

    Article  CAS  Google Scholar 

  12. Emery DW, Yannaki E, Tubb J, Stamatoyannopoulos G (2000) A chromatin insulator protects retrovirus vectors from chromosomal position effects. P Natl Acad Sci USA 97(16):9150–9155

    Article  CAS  Google Scholar 

  13. Hejnar J, Hajkova P, Plachy J, Elleder D, Stepanets V, Svoboda J (2001) CpG island protects Rous sarcoma virus-derived vectors integrated into nonpermissive cells from DNA methylation and transcriptional suppression. P Natl Acad Sci USA 98(2):565–569

    Article  CAS  Google Scholar 

  14. Jakobsson J, Rosenqvist N, Thompson L, Barraud P, Lundberg C (2004) Dynamics of transgene expression in a neural stem cell line transduced with lentiviral vectors incorporating the cHS4 insulator. Exp Cell Res 298(2):611–623

    Article  CAS  Google Scholar 

  15. Robbins PB, Yu XJ, Skelton DM, Pepper KA, Wasserman RM, Zhu L, Kohn DB (1997) Increased probability of expression from modified retroviral vectors in embryonal stem cells and embryonal carcinoma cells. J Virol 71(12):9466–9474

    CAS  Google Scholar 

  16. Prasad Alur RK, Foley B, Parente MK, Tobin DK, Heuer GG, Avadhani AN, Pongubala J, Wolfe JH (2002) Modification of multiple transcriptional regulatory elements in a Moloney murine leukemia virus gene transfer vector circumvents silencing in fibroblast grafts and increases levels of expression of the transferred enzyme. Gene Ther 9(17):1146–1154

    CAS  Google Scholar 

  17. Haas DL, Lutzko C, Logan AC, Cho GJ, Skelton D, Jin Yu X, Pepper KA, Kohn DB (2003) The Moloney murine leukemia virus repressor binding site represses expression in murine and human hematopoietic stem cells. J Virol 77(17):9439–9450

    Article  CAS  Google Scholar 

  18. Consiglio A, Gritti A, Dolcetta D, Follenzi A, Bordignon C, Gage FH, Vescovi AL, Naldini L (2004) Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors. P Natl Acad Sci USA 101(41):14835–14840

    Article  CAS  Google Scholar 

  19. Pfeifer A, Ikawa M, Dayn Y, Verma IM (2002) Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. P Natl Acad Sci USA 99(4):2140–2145

    Article  CAS  Google Scholar 

  20. Gropp M, Itsykson P, Singer O, Ben-Hur T, Reinhartz E, Galun E, Reubinoff BE (2003) Stable genetic modification of human embryonic stem cells by lentiviral vectors. Mol Ther 7(2):281–287

    Article  CAS  Google Scholar 

  21. Malim MH, Hauber J, Le SY, Maizel JV, Cullen BR (1989) The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338(6212):254–257

    Article  CAS  Google Scholar 

  22. Puthenveetil G, Scholes J, Carbonell D, Xia P, Qureshi N, Zeng L, Li S, Yu Y, Hiti AL, Yee JK, Malik P (2004) Successful correction of the human beta-thalassemia major phenotype using a lentiviral vector. Blood 104(12):3445–3453

    Article  CAS  Google Scholar 

  23. May C, Rivella S, Callegari J, Heller G, Gaensler KM, Luzzatto L, Sadelain M (2000) Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature 406(6791):82–86

    CAS  Google Scholar 

  24. Parolin C, Sodroski J (1995) A defective HIV-1 vector for gene transfer to human lymphocytes. J Mol Med 73(6):279–288

    Article  CAS  Google Scholar 

  25. Poznansky M, Lever A, Bergeron L, Haseltine W, Sodroski J (1991) Gene transfer into human lymphocytes by a defective human immunodeficiency virus type 1 vector. J Virol 65(1):532–536

    CAS  Google Scholar 

  26. Johnston JC, Gasmi M, Lim LE, Elder JH, Yee JK, Jolly DJ, Campbell KP, Davidson BL, Sauter SL (1999) Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors. J Virol 73(6):4991–5000

    CAS  Google Scholar 

  27. Curran MA, Kaiser SM, Achacoso PL, Nolan GP (2000) Efficient transduction of nondividing cells by optimized feline immunodeficiency virus vectors. Mol Ther 1(1):31–38

    Article  CAS  Google Scholar 

  28. Olsen JC (1998) Gene transfer vectors derived from equine infectious anemia virus. Gene Ther 5(11):1481–1487

    CAS  Google Scholar 

  29. Mselli-Lakhal L, Favier C, Da Silva Teixeira MF, Chettab K, Legras C, Ronfort C, Verdier G, Mornex JF, Chebloune Y (1998) Defective RNA packaging is responsible for low transduction efficiency of CAEV-based vectors. Arch Virol 143(4):681–695

    Article  CAS  Google Scholar 

  30. Berkowitz R, Ilves H, Lin WY, Eckert K, Coward A, Tamaki S, Veres G, Plavec I (2001) Construction and molecular analysis of gene transfer systems derived from bovine immunodeficiency virus. J Virol 75(7):3371–3382

    Article  CAS  Google Scholar 

  31. Metharom P, Takyar S, Xia HH, Ellem KA, Macmillan J, Shepherd RW, Wilcox GE, Wei MQ (2000) Novel bovine lentiviral vectors based on Jembrana disease virus. J Gene Med 2(3):176–185

    Article  CAS  Google Scholar 

  32. Berkowitz RD, Ilves H, Plavec I, Veres G (2001) Gene transfer systems derived from Visna virus: analysis of virus production and infectivity. Virology 279(1):116–129

    Article  CAS  Google Scholar 

  33. Poeschla EM (2003) Nonprimate lentiviral vectors. Curr Opin Mol Ther 5(5):529–540

    CAS  Google Scholar 

  34. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 427(6977):848–853

    Article  CAS  Google Scholar 

  35. Edelstein M (2004) Journal of Gene Medicine website on gene therapy trials worldwide. Wiley, Chichester (see http://www.wiley.com/legacy/wileychi/genmed/clinical/, last accessed 21st September 2005)

    Google Scholar 

  36. MacGregor RR (2001) Clinical protocol A phase 1 open-label clinical trial of the safety and tolerability of single escalating doses of autologous CD4 T cells transduced with VRX496 in HIV-positive subjects. Hum Gene Ther 12(16):2028–2029

    CAS  Google Scholar 

  37. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288(5466):669–672

    Article  CAS  Google Scholar 

  38. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E, Radford I, Villeval JL, Fraser CC, Cavazzana-Calvo M, Fischer A (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348(3):255–256

    Article  Google Scholar 

  39. Humeau LM, Binder GK, Lu X, Slepushkin V, Merling R, Echeagaray P, Pereira M, Slepushkina T, Barnett S, Dropulic LK, Carroll R, Levine BL, June CH, Dropulic B (2004) Efficient lentiviral vector-mediated control of HIV-1 replication in CD4 lymphocytes from diverse HIV+ infected patients grouped according to CD4 count and viral load. Mol Ther 9(6):902–913

    Article  CAS  Google Scholar 

  40. Manilla P, Rebello T, Afable C, Lu X, Slepushkin V, Humeau LM, Schonely K, Ni Y, Binder GK, Levine BL, MacGregor RR, June CH, Dropulic B (2005) Regulatory considerations for novel gene therapy products: a review of the process leading to the first clinical lentiviral vector. Hum Gene Ther 16(1):17–25

    Article  CAS  Google Scholar 

  41. Moreau-Gaudry F, Xia P, Jiang G, Perelman NP, Bauer G, Ellis J, Surinya KH, Mavilio F, Shen CK, Malik P (2001) High-level erythroid-specific gene expression in primary human and murine hematopoietic cells with self-inactivating lentiviral vectors. Blood 98(9):2664–2672

    Article  CAS  Google Scholar 

  42. Pawliuk R, Westerman KA, Fabry ME, Payen E, Tighe R, Bouhassira EE, Acharya SA, Ellis J, London IM, Eaves CJ, Humphries RK, Beuzard Y, Nagel RL, Leboulch P (2001) Correction of sickle cell disease in transgenic mouse models by gene therapy. Science 294(5550):2368–2371

    Article  CAS  Google Scholar 

  43. Galimi F, Noll M, Kanazawa Y, Lax T, Chen C, Grompe M, Verma IM (2002) Gene therapy of Fanconi anemia: preclinical efficacy using lentiviral vectors. Blood 100(8):2732–2736

    Article  CAS  Google Scholar 

  44. Kordower JH et al. (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science 290(5492):767–773

    Article  CAS  Google Scholar 

  45. Georgievska B, Kirik D, Rosenblad C, Lundberg C, Bjorklund A (2002) Neuroprotection in the rat Parkinson model by intrastriatal GDNF gene transfer using a lentiviral vector. Neuroreport 13(1):75–82

    CAS  Google Scholar 

  46. Consiglio A, Quattrini A, Martino S, Bensadoun JC, Dolcetta D, Trojani A, Benaglia G, Marchesini S, Cestari V, Oliverio A, Bordignon C, Naldini L (2001) In vivo gene therapy of metachromatic leukodystrophy by lentiviral vectors: correction of neuropathology and protection against learning impairments in affected mice. Nat Med 7(3):310–316

    Article  CAS  Google Scholar 

  47. Biffi A, De Palma M, Quattrini A, Del Carro U, Amadio S, Visigalli I, Sessa M, Fasano S, Brambilla R, Marchesini S, Bordignon C, Naldini L (2004) Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J Clin Invest 113(8):1118–1129

    Article  CAS  Google Scholar 

  48. Mazarakis ND, Azzouz M, Rohll JB, Ellard FM, Wilkes FJ, Olsen AL, Carter EE, Barber RD, Baban DF, Kingsman SM, Kingsman AJ, O'Malley K, Mitrophanous KA (2001) Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet 10(19):2109–2121

    Article  CAS  Google Scholar 

  49. Azzouz M, Ralph GS, Storkebaum E, Walmsley LE, Mitrophanous KA, Kingsman SM, Carmeliet P, Mazarakis ND (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429(6990):413–417

    Article  CAS  Google Scholar 

  50. Stein CS, Kang Y, Sauter SL, Townsend K, Staber P, Derksen TA, Martins I, Qian J, Davidson BL, McCray PB Jr (2001) In vivo treatment of hemophilia A and mucopolysaccharidosis type VII using nonprimate lentiviral vectors. Mol Ther 3(6):850–856

    Article  CAS  Google Scholar 

  51. Brooks AI, Stein CS, Hughes SM, Heth J, McCray PM, Sauter SL Jr, Johnston JC, Cory-Slechta DA, Federoff HJ, Davidson BL (2002) Functional correction of established central nervous system deficits in an animal model of lysosomal storage disease with feline immunodeficiency virus-based vectors. P Natl Acad Sci USA 99(9):6216–6221

    Article  CAS  Google Scholar 

  52. Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D'Antona G, Pellegrino MA, Barresi R, Bresolin N, De Angelis MG, Campbell KP, Bottinelli R, Cossu G (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301(5632):487–492

    Article  CAS  Google Scholar 

  53. Kobinger GP, Louboutin JP, Barton ER, Sweeney HL, Wilson JM (2003) Correction of the dystrophic phenotype by in vivo targeting of muscle progenitor cells. Hum Gene Ther 14(15):1441–1449

    Article  CAS  Google Scholar 

  54. Takahashi M, Miyoshi H, Verma IM, Gage FH (1999) Rescue from photoreceptor degeneration in the rd mouse by human immunodeficiency virus vector-mediated gene transfer. J Virol 73(9):7812–7816

    CAS  Google Scholar 

  55. Loewen N, Fautsch MP, Teo WL, Bahler CK, Johnson DH, Poeschla EM (2004) Long-term, targeted genetic modification of the aqueous humor outflow tract coupled with noninvasive imaging of gene expression in vivo. Invest Ophthalmol Vis Sci 45(9):3091–3098

    Article  Google Scholar 

  56. Ikawa M, Tergaonkar V, Ogura A, Ogonuki N, Inoue K, Verma IM (2002) Restoration of spermatogenesis by lentiviral gene transfer: offspring from infertile mice. P Natl Acad Sci USA 99(11):7524–7529

    Article  CAS  Google Scholar 

  57. Pan D, Gunther R, Duan W, Wendell S, Kaemmerer W, Kafri T, Verma IM, Whitley CB (2002) Biodistribution and toxicity studies of VSVG-pseudotyped lentiviral vector after intravenous administration in mice with the observation of in vivo transduction of bone marrow. Mol Ther 6(1):19–29

    Article  CAS  Google Scholar 

  58. Peng KW, Pham L, Ye H, Zufferey R, Trono D, Cosset FL, Russell SJ (2001) Organ distribution of gene expression after intravenous infusion of targeted and untargeted lentiviral vectors. Gene Ther 8(19):1456–1463

    CAS  Google Scholar 

  59. Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J, Chen C, Li J, Xiao X (2005) Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 23(3):321–328

    Article  CAS  Google Scholar 

  60. Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110(4):521–529

    Article  CAS  Google Scholar 

  61. Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749–1751

    CAS  Google Scholar 

  62. Han Y, Lassen K, Monie D, Sedaghat AR, Shimoji S, Liu X, Pierson TC, Margolick JB, Siliciano RF, Siliciano JD (2004) Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J Virol 78(12):6122–6133

    Article  CAS  Google Scholar 

  63. Trono D (2003) Virology: Picking the right spot. Science 300(5626):1670–1671

    CAS  Google Scholar 

  64. Hacein-Bey-Abina S et al. (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346(16):1185–1193

    Article  CAS  Google Scholar 

  65. Hacein-Bey-Abina S et al. (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302(5644):415–419

    Article  CAS  Google Scholar 

  66. Stocking C, Bergholz U, Friel J, Klingler K, Wagener T, Starke C, Kitamura T, Miyajima A, Ostertag W (1993) Distinct classes of factor-independent mutants can be isolated after retroviral mutagenesis of a human myeloid stem cell line. Growth Factors 8(3):197–209

    CAS  Google Scholar 

  67. Dave UP, Jenkins NA, Copeland NG (2004) Gene therapy insertional mutagenesis insights. Science 303(5656):333

    Article  Google Scholar 

  68. Yu SF, von Ruden T, Kantoff PW, Garber C, Seiberg M, Ruther U, Anderson WF, Wagner EF, Gilboa E (1986) Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. P Natl Acad Sci USA 83(10):3194–3198

    CAS  Google Scholar 

  69. Olson P, Nelson S, Dornburg R (1994) Improved self-inactivating retroviral vectors derived from spleen necrosis virus. J Virol 68(11):7060–7066

    CAS  Google Scholar 

  70. Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM (1998) Development of a self-inactivating lentivirus vector. J Virol 72(10):8150–8157

    CAS  Google Scholar 

  71. Iwakuma T, Cui Y, Chang LJ (1999) Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology 261(1):120–132

    Article  CAS  Google Scholar 

  72. Moolten FL (1986) Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res 46(10):5276–5281

    CAS  Google Scholar 

  73. Obaru K, Fujii S, Matsushita S, Shimada T, Takatsuki K (1996) Gene therapy for adult T cell leukemia using human immunodeficiency virus vector carrying the thymidine kinase gene of herpes simplex virus type 1. Hum Gene Ther 7(18):2203–2208

    CAS  Google Scholar 

  74. Kafri T, van Praag H, Gage FH, Verma IM (2000) Lentiviral vectors: regulated gene expression. Mol Ther 1(6):516–521

    Article  CAS  Google Scholar 

  75. Vigna E, Cavalieri S, Ailles L, Geuna M, Loew R, Bujard H, Naldini L (2002) Robust and efficient regulation of transgene expression in vivo by improved tetracycline-dependent lentiviral vectors. Mol Ther 5(3):252–261

    Article  CAS  Google Scholar 

  76. Sirin O, Park F (2003) Regulating gene expression using self-inactivating lentiviral vectors containing the mifepristone-inducible system. Gene 323:67–77

    Article  CAS  Google Scholar 

  77. Pollock R, Issner R, Zoller K, Natesan S, Rivera VM, Clackson T (2000) Delivery of a stringent dimerizer-regulated gene expression system in a single retroviral vector. P Natl Acad Sci USA 97(24):13221–13226

    Article  CAS  Google Scholar 

  78. Silver DP, Livingston DM (2001) Self-excising retroviral vectors encoding the Cre recombinase overcome Cre-mediated cellular toxicity. Mol Cell 8(1):233–243

    Article  CAS  Google Scholar 

  79. Chang LJ, Zaiss AK (2003) Self-inactivating lentiviral vectors and a sensitive Cre-loxP reporter system. Methods Mol Med 76:367–382

    CAS  Google Scholar 

  80. Ahmed BY, Chakravarthy S, Eggers R, Hermens WT, Zhang JY, Niclou SP, Levelt C, Sablitzky F, Anderson PN, Lieberman AR, Verhaagen J (2004) Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors. BMC Neurosci 5:4

    Article  Google Scholar 

  81. Pfeifer A, Brandon EP, Kootstra N, Gage FH, Verma IM (2001) Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo. P Natl Acad Sci USA 98(20):11450–11455

    Article  CAS  Google Scholar 

  82. Vargas J Jr, Gusella GL, Najfeld V, Klotman ME, Cara A (2004) Novel integrase-defective lentiviral episomal vectors for gene transfer. Hum Gene Ther 15(4):361–372

    Article  CAS  Google Scholar 

  83. Lu R, Nakajima N, Hofmann W, Benkirane M, Jeang KT, Sodroski J, Engelman A (2004) Simian virus 40-based replication of catalytically inactive human immunodeficiency virus type 1 integrase mutants in nonpermissive T cells and monocyte-derived macrophages. J Virol 78(2):658–668

    Article  CAS  Google Scholar 

  84. Saenz D, Loewen N, Peretz M, Whitwam T, Barraza R, Howell K, Holmes JH, Good M, Poeschla EM (2004) Unintegrated lentiviral DNA persistence and accessibility to expression in nondividing cells: analysis with class I integrase mutants. J Virol 78:2906–2920

    Article  CAS  Google Scholar 

  85. Pages JC, Bru T (2004) Toolbox for retrovectorologists. J Gene Med6(Suppl 1):S67–S82

    Google Scholar 

  86. Donahue RE, Kessler SW, Bodine D, McDonagh K, Dunbar C, Goodman S, Agricola B, Byrne E, Raffeld M, Moen R et al. (1992) Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J Exp Med 176(4):1125–1135

    Article  CAS  Google Scholar 

  87. Purcell DF, Broscius CM, Vanin EF, Buckler CE, Nienhuis AW, Martin MA (1996) An array of murine leukemia virus-related elements is transmitted and expressed in a primate recipient of retroviral gene transfer. J Virol 70(2):887–897

    CAS  Google Scholar 

  88. Vanin EF, Kaloss M, Broscius C, Nienhuis AW (1994) Characterization of replication-competent retroviruses from nonhuman primates with virus-induced T-celllymphomas and observations regarding the mechanism of oncogenesis. J Virol 68(7):4241–4250

    CAS  Google Scholar 

  89. Guidance for Industry, U.S. Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research (CBER) (2001) Supplemental guidance on testing for replication-competent retrovirus in retroviral vector-based gene therapy products and during follow-up of patients in clinical trials using retroviral vectors. Hum Gene Ther 12(3):315–320

    Google Scholar 

  90. Haapala DK, Robey WG, Oroszlan SD, Tsai WP (1985) Isolation from cats of an endogenous type C virus with a novel envelope glycoprotein. J Virol 53(3):827–833

    CAS  Google Scholar 

  91. Danos O, Mulligan RC (1988) Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. P Natl Acad Sci USA 85(17):6460–6464

    CAS  Google Scholar 

  92. Printz M, Reynolds J, Mento SJ, Jolly D, Kowal K, Sajjadi N (1995) Recombinant retroviral vector interferes with the detection of amphotropic replication competent retrovirus in standard culture assays. Gene Ther 2(2):143–150

    CAS  Google Scholar 

  93. Forestell SP, Dando JS, Bohnlein E, Rigg RJ (1996) Improved detection of replication-competent retrovirus. J Virol Methods 60(2):171–178

    Article  CAS  Google Scholar 

  94. Reeves L, Duffy L, Koop S, Fyffe J, Cornetta K (2002) Detection of ecotropic replication-competent retroviruses: comparison of s(+)=l(–) and marker rescue assays. Hum Gene Ther 13(14):1783–1790

    Article  CAS  Google Scholar 

  95. Escarpe P, Zayek N, Chin P, Borellini F, Zufferey R, Veres G, Kiermer V (2003) Development of a sensitive assay for detection of replication-competent recombinant lentivirus in large-scale HIV-based vector preparations. Mol Ther 8(2):332–341

    CAS  Google Scholar 

  96. Sastry L, Xu Y, Johnson T, Desai K, Rissing D, Marsh J, Cornetta K (2003) Certification assays for HIV-1-based vectors: frequent passage of gag sequences without evidence of replication-competent viruses. Mol Ther 8(5):830–839

    Article  CAS  Google Scholar 

  97. Wu X, Wakefield JK, Liu H, Xiao H, Kralovics R, Prchal JT, Kappes JC (2000) Development of a novel trans-lentiviral vector that affords predictable safety. Mol Ther 2(1):47–55

    CAS  Google Scholar 

  98. Kotsopoulou E, Kim VN, Kingsman AJ, Kingsman SM, Mitrophanous KA (2000) A Rev-independent human immunodeficiency virus type 1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag-pol gene. J Virol 74(10):4839–4852

    Article  CAS  Google Scholar 

  99. Wagner R, Graf M, Bieler K, Wolf H, Grunwald T, Foley P, Uberla K (2000) Rev-independent expression of synthetic gag-pol genes of human immunodeficiency virus type 1 and simian immunodeficiency virus: implications for the safety of lentiviral vectors. Hum Gene Ther 11(17):2403–2413

    Article  CAS  Google Scholar 

  100. Hope T (2002) Improving the post-transcriptional aspects of lentiviral vectors. Curr Top Microbiol Immunol 261:179–189

    CAS  Google Scholar 

  101. Segall HI, Yoo E, Sutton RE (2003) Characterization and detection of artificial replication-competent lentivirus of altered host range. Mol Ther 8(1):118–129

    Article  CAS  Google Scholar 

  102. Otto E, Jones-Trower A, Vanin EF, Stambaugh K, Mueller SN, Anderson WF, McGarrity GJ (1994) Characterization of a replication-competent retrovirus resulting from recombination of packaging and vector sequences. Hum Gene Ther 5(5):567–575

    CAS  Google Scholar 

  103. Garrett E, Miller AR, Goldman JM, Apperley JF, Melo JV (2000) Characterization of recombination events leading to the production of an ecotropic replication-competent retrovirus in a GP+envAM12-derived producer cell line. Virology 266(1):170–179

    Article  CAS  Google Scholar 

  104. Scarpa M, Cournoyer D, Muzny DM, Moore KA, Belmont JW, Caskey CT (1991) Characterization of recombinant helper retroviruses from Moloney-based vectors in ecotropic and amphotropic packaging cell lines. Virology 180(2):849–852

    Article  CAS  Google Scholar 

  105. Chong H, Starkey W, Vile RG (1998) A replication-competent retrovirus arising from a split-function packaging cell line was generated by recombination events between the vector, one of the packaging constructs, and endogenous retroviral sequences. J Virol 72(4):2663–2670

    CAS  Google Scholar 

  106. Martinez I, Dornburg R (1996) Partial reconstitution of a replication-competent retrovirus in helper cells with partial overlaps between vector and helper cell genomes. Hum Gene Ther 7(6):705–712

    CAS  Google Scholar 

  107. Kemler I, Barraza R, Poeschla EM (2002) Mapping of the encapsidation determinants of feline immunodeficiency virus. J Virol 76(23):11889–11903

    Article  CAS  Google Scholar 

  108. Browning MT, Mustafa F, Schmidt RD, Lew KA, Rizvi TA (2003) Delineation of sequences important for efficient packaging of feline immunodeficiency virus RNA. J Gen Virol 84(Pt 3):621–627

    Google Scholar 

  109. Kemler I, Azmi I, Poeschla EM (2004) The critical role of proximal gag sequences in feline immunodeficiency virus genome encapsidation. Virology 327(1):111–120

    Article  CAS  Google Scholar 

  110. Evans JT, Garcia JV (2000) Lentivirus vector mobilization and spread by human immunodeficiency virus. Hum Gene Ther 11(17):2331–2339

    Article  CAS  Google Scholar 

  111. Sastry L, Xu Y, Cooper R, Pollok K, Cornetta K (2004) Evaluation of plasmid DNA removal from lentiviral vectors by benzonase treatment. Hum Gene Ther 15(2):221–226

    Article  CAS  Google Scholar 

  112. Liu ML, Winther BL, Kay MA (1996) Pseudotransduction of hepatocytes by using concentrated pseudotyped vesicular stomatitis virus G glycoprotein (VSV-G)-Moloney murine leukemia virus-derived retrovirus vectors: comparison of VSV-G and amphotropic vectors for hepatic gene transfer. J Virol 70(4):2497–2502

    CAS  Google Scholar 

  113. Gallardo HF, Tan C, Ory D, Sadelain M (1997) Recombinant retroviruses pseudotyped with the vesicular stomatitis virus G glycoprotein mediate both stable gene transfer and pseudotransduction in human peripheral blood lymphocytes. Blood 90(3):952–957

    CAS  Google Scholar 

  114. Dai C, McAninch RE, Sutton RE (2004) Identification of synthetic endothelial cell-specific promoters by use of a high-throughput screen. J Virol 78(12):6209–6221

    Article  CAS  Google Scholar 

  115. Lotti F, Menguzzato E, Rossi C, Naldini L, Ailles L, Mavilio F, Ferrari G (2002) Transcriptional targeting of lentiviral vectors by long terminal repeat enhancer replacement. J Virol 76(8):3996–4007

    Article  CAS  Google Scholar 

  116. Jager U, Zhao Y, Porter CD (1999) Endothelial cell-specific transcriptional targeting from a hybrid long terminal repeat retrovirus vector containing human prepro-endothelin-1 promoter sequences. J Virol 73(12):9702–9709

    CAS  Google Scholar 

  117. Grande A, Piovani B, Aiuti A, Ottolenghi S, Mavilio F, Ferrari G (1999) Transcriptional targeting of retroviral vectors to the erythroblastic progeny of transduced hematopoietic stem cells. Blood 93(10):3276–3285

    CAS  Google Scholar 

  118. Fassati A, Bardoni A, Sironi M, Wells DJ, Bresolin N, Scarlato G, Hatanaka M, Yamaoka S, Dickson G (1998) Insertion of two independent enhancers in the long terminal repeat of a self-inactivating vector results in high-titer retroviral vectors with tissue-specific expression. Hum Gene Ther 9(17):2459–2468

    Article  CAS  Google Scholar 

  119. Vile R, Miller N, Chernajovsky Y, Hart I (1994) A comparison of the properties of different retroviral vectors containing the murine tyrosinase promoter to achieve transcriptionally targeted expression of the HSVtk or IL-2 genes. Gene Ther 1(5):307–316

    CAS  Google Scholar 

  120. Arbuthnot P, Bralet MP, Thomassin H, Danan JL, Brechot C, Ferry N (1995) Hepatoma cell-specific expression of a retrovirally transferred gene is achieved by alpha-fetoprotein but not insulinlike growth factor II regulatory sequences. Hepatology 22(6):1788–1796

    Article  CAS  Google Scholar 

  121. Follenzi A, Battaglia M, Lombardo A, Annoni A, Roncarolo MG, Naldini L (2004) Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood 103(10)3700–3709

    Google Scholar 

  122. De Palma M, Venneri MA, Naldini L (2003) In vivo targeting of tumor endothelial cells by systemic delivery of lentiviral vectors. Hum Gene Ther 14(12):1193–1206

    Google Scholar 

  123. Bess JW Jr, Gorelick RJ, Bosche WJ, Henderson LE, Arthur LO (1997) Microvesicles are a source of contaminating cellular proteins found in purified HIV-1 preparations. Virology 230(1):134–144

    Article  CAS  Google Scholar 

  124. Rolls MM, Webster P, Balba NH, Rose JK (1994) Novel infectious particles generated by expression of the vesicular stomatitis virus glycoprotein from a self-replicating RNA. Cell 79(3):497–506

    Article  CAS  Google Scholar 

  125. Baekelandt V, Claeys A, Eggermont K, Lauwers E, De Strooper B, Nuttin B, Debyser Z (2002) Characterization of lentiviral vector-mediated gene transfer in adult mouse brain. Hum Gene Ther 13(7):841–853

    Article  CAS  Google Scholar 

  126. Scherr M, Battmer K, Eder M, Schule S, Hohenberg H, Ganser A, Grez M, Blomer U (2002) Efficient gene transfer into the CNS by lentiviral vectors purified by anion exchange chromatography. Gene Ther 9(24):1708–1714

    CAS  Google Scholar 

  127. Yamada K, McCarty DM, Madden VJ, Walsh CE (2003) Lentivirus vector purification using anion exchange HPLC leads to improved gene transfer. Biotechniques 34(5):1074–1078, 1080

    CAS  Google Scholar 

  128. Baekelandt V, Eggermont K, Michiels M, Nuttin B, Debyser Z (2003) Optimized lentiviral vector production and purification procedure prevents immune response after transduction of mouse brain. Gene Ther 10(23):1933–1940

    CAS  Google Scholar 

  129. Moller-Larsen A, Christensen T (1998) Isolation of a retrovirus from multiple sclerosis patients in self-generated Iodixanol gradients. J Virol Methods 73(2):151–161

    CAS  Google Scholar 

  130. Christensen T, Sorensen PD, Hansen HJ, Moller-Larsen A (2003) Antibodies against a human endogenous retrovirus and the preponderance of env splice variants in multiple sclerosis patients. Mult Scler 9(1):6–15

    Article  CAS  Google Scholar 

  131. Fujisawa R, McAtee FJ, Favara C, Hayes SF, Portis JL (2001) N-terminal cleavage fragment of glycosylated Gag is incorporated into murine oncornavirus particles. J Virol 75(22):11239–11243

    Article  CAS  Google Scholar 

  132. Coleman JE, Huentelman MJ, Kasparov S, Metcalfe BL, Paton JF, Katovich MJ, Semple-Rowland SL, Raizada MK (2003) Efficient large-scale production and concentration of HIV-1-based lentiviral vectors for use in vivo. Physiol Genomics 12(3):221–228

    CAS  Google Scholar 

  133. Kafri T, van Praag H, Ouyang L, Gage FH, Verma IM (1999) A packaging cell line for lentivirus vectors. J Virol 73(1):576–584

    CAS  Google Scholar 

  134. Klages N, Zufferey R, Trono D (2000) A stable system for the high-titer production of multiply attenuated lentiviral vectors. Mol Ther 2(2):170–176

    Article  CAS  Google Scholar 

  135. Farson D, Witt R, McGuinness R, Dull T, Kelly M, Song J, Radeke R, Bukovsky A, Consiglio A, Naldini L (2001) A new-generation stable inducible packaging cell line for lentiviral vectors. Hum Gene Ther 12(8):981–997

    Article  CAS  Google Scholar 

  136. Xu K, Ma H, McCown TJ, Verma IM, Kafri T (2001) Generation of a stable cell line producing high-titer self-inactivating lentiviral vectors. Mol Ther 3(1):97–104

    Article  CAS  Google Scholar 

  137. Page KA, Landau NR, Littman DR (1990) Construction and use of a human immunodeficiency virus vector for analysis of virus infectivity. J Virol 64(11):5270–5276

    CAS  Google Scholar 

  138. Mochizuki H, Schwartz JP, Tanaka K, Brady RO, Reiser J (1998) High-titer human immunodeficiency virus type 1-based vector systems for gene delivery into nondividing cells. J Virol 72(11):8873–8883

    CAS  Google Scholar 

  139. Kobinger GP, Weiner DJ, Yu QC, Wilson JM (2001) Filovirus-pseudotyped lentiviral vector can efficiently and stably transduce airway epithelia in vivo. Nat Biotechnol 19(3):225–230

    Article  CAS  Google Scholar 

  140. Landau NR, Page KA, Littman DR (1991) Pseudotyping with human T-cell leukemia virus type I broadens the human immunodeficiency virus host range. J Virol 65(1):162–169

    CAS  Google Scholar 

  141. Chan SY, Speck RF, Ma MC, Goldsmith MA (2000) Distinct mechanisms of entry by envelope glycoproteins of Marburg, Ebola (Zaire) viruses. J Virol 65(1):4933–4937

    Google Scholar 

  142. Hanawa H, Kelly PF, Nathwani AC, Persons DA, Vandergriff JA, Hargrove P, Vanin EF, Nienhuis AW (2002) Comparison of various envelope proteins for their ability to pseudotype lentiviral vectors and transduce primitive hematopoietic cells from human blood. Mol Ther 5(3):242–251

    Article  CAS  Google Scholar 

  143. Sandrin V, Boson B, Salmon P, Gay W, Negre D, Le Grand R, Trono D, Cosset FL (2002) Lentiviral vectors pseudotyped with a modified RD114 envelope glycoprotein show increased stability in sera and augmented transduction of primary lymphocytes, CD34+ cells derived from human and nonhuman primates. Blood 100(3):823–832

    Article  CAS  Google Scholar 

  144. Takeuchi Y, Cosset FL, Lachmann PJ, Okada H, Weiss RA, Collins MK (1994) Type C retrovirus inactivation by human complement is determined by both the viral genome and the producer cell. J Virol 68(12):8001–8007

    CAS  Google Scholar 

  145. Kang Y, Stein CS, Heth JA, Sinn PL, Penisten AK, Staber PD, Ratliff KL, Shen H, Barker CK, Martins I, Sharkey CM, Sanders DA, McCray PB Jr, Davidson BL (2002) In vivo gene transfer using a nonprimate lentiviral vector pseudotyped with Ross River Virus glycoproteins. J Virol 76(18):9378–9388

    Article  CAS  Google Scholar 

  146. Kumar M, Bradow BP, Zimmerberg J (2003) Large-scale production of pseudotyped lentiviral vectors using baculovirus GP64. Hum Gene Ther 14(1):67–77

    Article  CAS  Google Scholar 

  147. Schauber CA, Tuerk MJ, Pacheco CD, Escarpe PA, Veres G (2004) Lentiviral vectors pseudotyped with baculovirus gp64 efficiently transduce mouse cells in vivo and show tropism restriction against hematopoietic cell types in vitro. Gene Ther 11(3):266–275

    CAS  Google Scholar 

  148. Ikeda Y, Takeuchi Y, Martin F, Cosset FL, Mitrophanous K, Collins M (2003) Continuous high-titer HIV-1 vector production. Nat Biotechnol 21(5):569–572

    CAS  Google Scholar 

  149. Keckesova Z, Ylinen LM, Towers GJ (2004) The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities. P Natl Acad Sci USA 101(29):10780–10785

    Article  CAS  Google Scholar 

  150. Hatziioannou T, Cowan S, Von Schwedler UK, Sundquist WI, Bieniasz PD (2004) Species-specific tropism determinants in the human immunodeficiency virus type 1 capsid. J Virol 78(11):6005–6012

    Article  CAS  Google Scholar 

  151. Hatziioannou T, Cowan S, Goff SP, Bieniasz PD, Towers GJ (2003) Restriction of multiple divergent retroviruses by Lv1 and Ref1. EMBO J 22(3):385–394

    Article  CAS  Google Scholar 

  152. Cowan S, Hatziioannou T, Cunningham T, Muesing MA, Gottlinger HG, Bieniasz PD (2002) Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. P Natl Acad Sci USA 99(18):11914–11919

    Article  CAS  Google Scholar 

  153. Towers G, Bock M, Martin S, Takeuchi Y, Stoye JP, Danos O (2000) A conserved mechanism of retrovirus restriction in mammals. P Natl Acad Sci USA 97(22):12295–12299

    Article  CAS  Google Scholar 

  154. Aagaard L, Mikkelsen JG, Warming S, Duch M, Pedersen FS (2002) Fv1-like restriction of N-tropic replication-competent murine leukaemia viruses in mCAT-1-expressing human cells. J Gen Virol 83(Pt 2):439–442

    Google Scholar 

  155. Kozak CA, Chakraborti A (1996) Single amino acid changes in the murine leukemia virus capsid protein gene define the target of Fv1 resistance. Virology 225(2):300–305

    Article  CAS  Google Scholar 

  156. Benit L, De Parseval N, Casella JF, Callebaut I, Cordonnier A, Heidmann T (1997) Cloning of a new murine endogenous retrovirus, MuERV-L, with strong similarity to the human HERV-L element and with a gag coding sequence closely related to the Fv1 restriction gene. J Virol 71(7):5652–5657

    CAS  Google Scholar 

  157. Best S, Le Tissier P, Towers G, Stoye JP (1996) Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382(6594):826–829

    Article  CAS  Google Scholar 

  158. Bock M, Bishop KN, Towers G, Stoye JP (2000) Use of a transient assay for studying the genetic determinants of Fv1 restriction. J Virol 74(16):7422–7430

    Article  CAS  Google Scholar 

  159. Besnier C, Ylinen L, Strange B, Lister A, Takeuchi Y, Goff SP, Towers GJ (2003) Characterization of murine leukemia virus restriction in mammals. J Virol 77(24):13403–13406

    Article  CAS  Google Scholar 

  160. Hughes JF, Coffin JM (2001) Evidence for genomic rearrangements mediated by human endogenous retroviruses during primate evolution. Nat Genet 29(4):487–489

    CAS  Google Scholar 

  161. Lander ES et al. (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  CAS  Google Scholar 

  162. Venter JC et al. (2001) The sequence of the human genome. Science 291(5507):1304–1351

    Article  CAS  Google Scholar 

  163. Li WH, Gu Z, Wang H, Nekrutenko A (2001) Evolutionary analyses of the human genome. Nature 409(6822):847–849

    Article  CAS  Google Scholar 

  164. Lee K, KewalRamani VN (2004) In defense of the cell: TRIM5alpha interception of mammalian retroviruses. P Natl Acad Sci USA 101(29):10496–10497

    CAS  Google Scholar 

  165. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19(2):187–191

    Article  CAS  Google Scholar 

  166. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393(6683):386–389

    CAS  Google Scholar 

  167. Sen GC (2001) Viruses and interferons. Annu Rev Microbiol 55:255–281

    Article  CAS  Google Scholar 

  168. Keckesova Z, Ylinen LM, Towers GJ (2004) The human and African green monkey TRIM5alpha genes encode Ref1 and Lv1 retroviral restriction factor activities. P Natl Acad Sci USA 101(29):10780–10785

    Article  CAS  Google Scholar 

  169. Hatziioannou T, Perez-Caballero D, Yang A, Cowan S, Bieniasz PD (2004) Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5alpha. P Natl Acad Sci USA 101(29):10774–10779

    Article  CAS  Google Scholar 

  170. Perron MJ, Stremlau M, Song B, Ulm W, Mulligan RC, Sodroski J (2004) TRIM5alpha mediates the postentry block to N-tropic murine leukemia viruses in human cells. P Natl Acad Sci USA 101(32):11827–11832

    Article  CAS  Google Scholar 

  171. Yap MW, Nisole S, Lynch C, Stoye JP (2004) Trim5alpha protein restricts both HIV-1 and murine leukemia virus. P Natl Acad Sci USA 101(29):10786–10791

    Article  CAS  Google Scholar 

  172. Towers GJ, Hatziioannou T, Cowan S, Goff SP, Luban J, Bieniasz PD (2003) Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nat Med 9(9):1138–1143

    Article  CAS  Google Scholar 

  173. Hofmann W, Schubert D, LaBonte J, Munson L, Gibson S, Scammell J, Ferrigno P, Sodroski J (1999) Species-specific, postentry barriers to primate immunodeficiency virus infection. J Virol 73(12):10020–10028

    CAS  Google Scholar 

  174. Dorfman T, Gottlinger HG (1996) The human immunodeficiency virus type 1 capsid p2 domain confers sensitivity to the cyclophilin-binding drug SDZ NIM 811. J Virol 70(9):5751–5757

    CAS  Google Scholar 

  175. Owens CM, Yang PC, Gottlinger H, Sodroski J (2003) Human and simian immunodeficiency virus capsid proteins are major viral determinants of early, postentry replication blocks in simian cells. J Virol 77(1):726–731

    Article  CAS  Google Scholar 

  176. Bieniasz PD (2004) Intrinsic immunity: a front-line defense against viral attack. Nat Immunol 5(11):1109–1115

    Article  CAS  Google Scholar 

  177. Sheehy AM, Gaddis NC, Choi JD, Malim MH (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418(6898):646–650

    Article  CAS  Google Scholar 

  178. Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D (2003) Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424(6944):99–103

    Article  CAS  Google Scholar 

  179. Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L (2003) The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424(6944):94–98

    Article  CAS  Google Scholar 

  180. Loewen N, Fautsch M, Peretz M, Bahler C, Cameron JD, Johnson DH, Poeschla EM (2001) Genetic modification of human trabecular meshwork with lentiviral vectors. Hum Gene Ther 12:2109–2119

    Article  CAS  Google Scholar 

  181. Saenz D, Teo I, Olsen JC, Poeschla E (2005) Restriction of Feline Immunodeficiency Virus by Ref1, LV1 and Primate TRIM5a Proteins. J Virol (in press)

    Google Scholar 

  182. Wang G, Slepushkin V, Zabner J, Keshavjee S, Johnston JC, Sauter SL, Jolly DJ, Dubensky TW Jr, Davidson BL, McCray PB Jr (1999) Feline immunodeficiency virus vectors persistently transduce nondividing airway epithelia and correct the cystic fibrosis defect [see comments]. J Clin Invest 104(11):R55–R62

    CAS  Google Scholar 

  183. Yap MW, Nisole S, Stoye JP (2005) A single amino acid change in the SPRY domain of human Trim5-alpha leads to HIV-1 restriction. Curr Biol 15(1):73–78

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Yasuhiro Ikeda for critically reviewing the manuscript. We apologize to those authors whose works were not cited in this selective review of more recent developments due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nils Loewen or Eric M. Poeschla .

Editor information

David V. Schaffer Weichang Zhou

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Loewen, N., Poeschla, E.M. Lentiviral Vectors. In: Schaffer, D.V., Zhou, W. (eds) Gene Therapy and Gene Delivery Systems. Advances in Biochemical Engineering/Biotechnology, vol 99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_007

Download citation

Publish with us

Policies and ethics