Artificial Neural Networks for Reducing the Dimensionality of Gene Expression Data

Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 176)


The use of gene chips and microarrays for measuring gene expression is becoming widespread and is producing enormous amounts of data. With increasing numbers of datasets becoming available, the need grows for well-defined, robust and interpretable methods to mine and extract knowledge from these datasets. There is currently a lot of uncertainty as to which computational and statistical methods to adopt, mainly because of the new challenges with regard to high dimensionality that gene expression data presents to the data mining community. There is a tendency for increasingly complex methods for dimensionality reduction to be proposed that are difficult to interpret. Results produced by these methods are also difficult to reproduce by other researchers. We evaluate the application of single layer, feedforward backpropagation artificial neural networks for reducing the dimensionality of both discrete and continuous gene expression data. Such networks also allow for the extraction of classification rules from the reduced data set. We demonstrate how ‘supergenes’ can be extracted from combined gene expression datasets using our method.


Chronic Lymphocytic Leukaemia Gene Expression Data Output Node Gene Reduction Gene Chip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Authors and Affiliations

  1. 1.Bioinformatics Laboratory, School of Engineering, Computer Science and Mathematics, University of Exeter, Exeter EX4 4QFUnited Kingdom

Personalised recommendations