Skip to main content

Soliton Dynamics in Mode-Locked Lasers

Part of the Lecture Notes in Physics book series (LNP,volume 661)

Abstract

Mode-locked lasers generate ultra-short optical pulses, with durations ranging from hundreds of picoseconds (ps) down to a few femtoseconds (fs). The pulse circulating in the cavity of a mode-locked laser can be thought of as a dissipative soliton, where the dissipation is due to the inevitable presence of loss, which must be compensated by gain. In addition to gain and loss, the pulse experiences nonlinearity and dispersion, the key ingredients for any soliton system. These effects occur in physical elements that do not completely fill the cavity, thus there is a similarity to the dispersion management that is used in telecommunications systems.

Keywords

  • Pump Power
  • Polarization State
  • Output Coupler
  • Polarization Mode Dispersion
  • Dissipative Soliton

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/10928028_8
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-31528-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. For a textbook-level discussion of lasers, see for example A. E. Siegman, Lasers (University Science Books, Mill Valley, 1986) or J. T. Verdeyen, Laser Electronics (Prentice-Hall, Englewood Cliffs, 1995).

    Google Scholar 

  2. E. P. Ippen, Appl. Phys. B 58, 159 (1994).

    Google Scholar 

  3. Y. Chen, F. X. Kärtner, U. Morgner, S. H. Cho, H. A. Haus, E. P. Ippen, J. G. FujimotoJ. Opt. Soc. Am. B 16, 1999 (1999).

    Google Scholar 

  4. E. DesurvireErbium-Doped Fiber Amplifiers (John Wiley & Sons, New York, 1994).

    Google Scholar 

  5. B. C. Collings, K. Bergman, S. T. Cundiff, S. Tsuda, J. N. Kutz, J. E. Cunningham, W. Y. Jan, M. Koch, W. H. KnoxIEEE J. Sel. Top. Quantum Electr. 3, 1065 (1997).

    Google Scholar 

  6. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, E. P. IppenAppl. Phys. B 65, 277 (1997).

    Google Scholar 

  7. A. Hasegawa, F. TappertAppl. Phys. Lett. 23, 142 (1973).

    Google Scholar 

  8. I. P. KaminowIEEE J. Quantum Electron. 17, 15 (1981).

    Google Scholar 

  9. L. F. Mollenauer, R. H. Stolen, J. P. GordonPhys. Rev. Lett. 45, 1095 (1980).

    Google Scholar 

  10. H. A. Haus, W. S. WongRev. Mod. Phys. 68, 423 (1996).

    Google Scholar 

  11. C.D. Poole, J. NagelPolarization effects in lightwave systems. In: Optical Fiber Telecommunications IIIA, ed. by I. P. Kaminow, T. L. Koch (Academic, San Dieogo 1997) p. 114.

    Google Scholar 

  12. M. N. Islam, C. D. Poole, J. P. GordonOpt. Lett. 14, 1011 (1989).

    Google Scholar 

  13. C. R. MenyukOpt. Lett. 12, 614 (1987); IEEE J. Quantum Electron. 23, 174 (1987); J. Opt. Soc. Am. B 5, 392 (1988).

    Google Scholar 

  14. D. N. Christodoulides, R. I. JosephOpt. Lett. 13, 53 (1988).

    Google Scholar 

  15. S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, W. H. KnoxPhys. Rev. Lett. 82, 3988 (1999).

    Google Scholar 

  16. M. V. Tratnik, J. E. SipePhys. Rev. A 38, 2011 (1988).

    Google Scholar 

  17. N. Akhmediev, A. Buryak, J. M. Soto-CrespoOpt. Commun. 112, 278 (1994).

    Google Scholar 

  18. N. Akhmediev, J. M. Soto-CrespoPhys. Rev. E 49, 5742 (1994).

    Google Scholar 

  19. N. N. Akhmediev, A. V. Buryak, J. M. Soto-Crespo, D. R. Andersen, J. Opt. Soc. Am. B 12, 434 (1995).

    Google Scholar 

  20. J. M. Soto-Crespo, N. Akhmediev, A. AnkiewiczPhys. Rev. E 51, 3547 (1995).

    Google Scholar 

  21. Y. Chen, J. AtaiJ. Opt. Soc. Am. B 12, 434 (1995).

    Google Scholar 

  22. H. G. WinfulOpt. Lett. 11, 33 (1986).

    Google Scholar 

  23. K. J. Blow, N. J. Doran, D. WoodOpt. Lett. 12, 202 (1987).

    Google Scholar 

  24. Y. Barad, Y. SilberbergPhys. Rev. Lett. 78, 3290 (1997).

    Google Scholar 

  25. S. T. Cundiff, B. C. Collings, W. H. KnoxOptics Express 1, 12 (1997).

    Google Scholar 

  26. N. N. Akhmediev, J. M. Soto-Crespo, S. T. Cundiff, B. C. Collings, W. H. KnoxOpt. Lett. 23, 852 (1998).

    Google Scholar 

  27. B. C. Collings, S. T. Cundiff, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, W. H. Knox,J. Opt . Soc. Am. B 17, 354 (2000).

    Google Scholar 

  28. J. M. Soto-Crespo, N. N. Akhmediev, B. C. Collings, S. T. Cundiff, K. Bergman, W. H. KnoxJ. Opt. Soc. Am. B 17, 366 (2000).

    Google Scholar 

  29. G. P. AgrawalNonlinear Fiber Optics (Academic Press, San Diego 1995).

    Google Scholar 

  30. N. N. Akhmediev and A. AnkiewiczSolitons: Nonlinear pulses and beams, (Chapman & Hall, London 1997).

    Google Scholar 

  31. S.V. ManakovSov. JETP 38, 248 (1974).

    Google Scholar 

  32. J. U. Kang, G. I. Stegeman, J. S. Aitchison, N. AkhmedievPhys. Rev. Lett. 76, 3699 (1996).

    Google Scholar 

  33. S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, N. S. BerganoJ. Lightwave Technol. 10, 28 (1992).

    Google Scholar 

  34. L. F. Mollenauer, K. Smith, J. P. Gordon, C. R. MenyukOpt. Lett. 14, 1219 (1989).

    Google Scholar 

  35. S. M. J. KelleyElectron. Lett. 28, 806 (1992).

    Google Scholar 

  36. J. P. GordonJ. Opt. Soc. Am. B 9, 91, (1992).

    Google Scholar 

  37. H. C. LefevreElectron. Lett. 16, 778 (1980).

    Google Scholar 

  38. S. T. Cundiff, B. C. Collings, K. BergmanCHAOS 10, 613 (2000).

    Google Scholar 

  39. J. M. Soto-Crespo, N. Akhmediev, A. AnkiewiczPhys. Rev. Lett. 85, 2937 (2000).

    Google Scholar 

  40. S. T. Cundiff, J. M. Soto-Crespo N. N. AkhmedievPhys. Rev. Lett. 88, 073903 (2002).

    Google Scholar 

  41. R. Trebino, Frequency-Resolved Optical Gating: the Measurement of Ultrashort Laser Pulses (Kluwer, Boston 2002).

    Google Scholar 

  42. W. H. KnoxOpt. Lett. 17, 514 (1992).

    Google Scholar 

  43. H. G. SchusterDeterministic Chaos, 3rd ed. (VCH, Weinheim 1995).

    Google Scholar 

  44. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. CundiffScience 288, 635 (2000).

    CrossRef  Google Scholar 

  45. A. Apolonski, A. Poppe, G. Tempea, C. Spielmann, T. Udem, R. Holzwarth, T. W. HänschF. Krausz: Phys. Rev. Lett. 85, 740 (2000).

    CrossRef  Google Scholar 

  46. S. T. CundiffJ. Phys. D 35, R43 (2002).

    Google Scholar 

  47. A. Baltuška, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakoviev, A. Scrinzi, T. W. Hänsch, and F. KrauszNature 421, 611 (2003).

    CrossRef  Google Scholar 

  48. S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. HänschPhys. Rev. Lett. 84, 5102 (2000).

    Google Scholar 

  49. S. T. Cundiff, J. YeRev. Mod. Phys. 75, 325 (2003).

    CrossRef  Google Scholar 

  50. S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, D. J. WinelandScience 293, 825 (2001).

    CrossRef  Google Scholar 

  51. J. Ye, L.-S. Ma, J. L. HallPhys. Rev. Lett. 87, 270801 (2001).

    CrossRef  Google Scholar 

  52. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, U. KellerAppl. Phys. B 69, 327 (1999).

    Google Scholar 

  53. L. Xu, C. Spielmann, A. Poppe, T. Brabec, F. Krausz, and T. W. HänschOpt. Lett. 21, 2008 (1996).

    Google Scholar 

  54. A. Poppe, R. Holzwarth, A. Apolonski, G. Tempea, C. Spielmann, T. W. Hänsch, F. KrauszAppl. Phys. B 72, 977. (2001).

    Google Scholar 

  55. H. A. Haus, E. P. IppenOpt. Lett. 26, 1654 (2001).

    Google Scholar 

  56. K. W. Holman, R. J. Jones, A. Marian, S. T. Cundiff, J. YeOpt. Lett. 28, 851 (2003).

    Google Scholar 

  57. P. Goorjian, S.T. CundiffOpt. Lett. 29, 1363 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

About this chapter

Cite this chapter

Cundiff, S. Soliton Dynamics in Mode-Locked Lasers. In: Akhmediev, N., Ankiewicz, A. (eds) Dissipative Solitons. Lecture Notes in Physics, vol 661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10928028_8

Download citation