Skip to main content

Spatial Resonator Solitons

  • 466 Accesses

Part of the Lecture Notes in Physics book series (LNP,volume 661)

Abstract

Spatial solitons can exist in various kinds of nonlinear optical resonators with and without amplification. In past years, different types of these localized structures, such as vortices, bright, dark solitons and phase solitons, have been experimentally shown to exist. Many links appear to exist with fields separate from optics, such as fluids, phase transitions or particle physics. These spatial resonator solitons are bistable, and, due to their mobility, suggest systems of information processing not possible with the fixed bistable elements which form the basic ingredients of traditional electronic processing. The recent demonstration of the existence and manipulation of spatial solitons in semiconductor microresonators represents a step in the direction of such optical parallel processing applications. We review pattern formation and solitons in a general context, show some proofof-principle soliton experiments in slow systems, and describe in more detail the experiments on semiconductor resonator solitons which are aimed at applications.

Keywords

  • Bright Spot
  • Dark Soliton
  • Multiple Quantum Well
  • Incident Intensity
  • Bright Soliton

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/10928028_6
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-31528-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. W. J. Firth, A. J. Scroggie, Europhys. Lett. 26, 521 (1994).

    Google Scholar 

  2. U. FrischTurbulence. The Legacy of A. N. Kolmogorov, (Cambridge University Press, 1995).

    Google Scholar 

  3. K. StaliunasInt. Journ. of Bifurcation and Chaos 11, 2845 (2001).

    Google Scholar 

  4. K. StaliunasAnticorrelation and Subdiffusion in Financial Systems; xxx.lanl.gov (cond.mat/0203591), subm. Phys. Rev. E, (2002).

    Google Scholar 

  5. For a review see e.g. P. Dutta, P. M. HornRev. Mod. Phys. 53, 497 (1981).

    Google Scholar 

  6. P. BakPhys. Rev. Lett. 59, 381 (1987).

    Google Scholar 

  7. See as examples: A. JaquesP. Glorieux, Opt. Comm. 40, 455 (1982) and S. Rushin, S. M. Bauer, Appl. Phys. 24, 45 (1981).

    Google Scholar 

  8. V. B. Taranenko, C. O. Weiss, B. SchaepersPhys. Rev. A 65, 013812 (2002).

    Google Scholar 

  9. N. Akhmediev mentioned this likening of dissipative solitons to “animals” and of conservative solitons to “dead” things to my knowledge first.

    Google Scholar 

  10. G. Slekys, K. Staliunas, C. O. WeissOpt. Comm. 149, 113 (1998).

    Google Scholar 

  11. C. O. Weiss, M. Vaupel, K. Staliunas, G. Slekys, V. B. TaranenkoAppl. Phys. B: Lasers Opt. 68, 151 (1999).

    Google Scholar 

  12. See the supplementary electronic material to : http://link.springer.de/ jounals/apb

    Google Scholar 

  13. C. P. Smith, Y. Dihardja, C. O. Weiss, L. A. Lugiato, F. Prati, P. VanottiOpt. Comm. 102, 105 (1999).

    Google Scholar 

  14. G. S. Mc Donald, W. J. Firth, J. Mod. Opt. 37, 613 (1990).

    Google Scholar 

  15. M. Kreuzer, H. Gottschling, T. Tschudi, R. NeubeckerMol. Cryst. Liq. Cryst. 207, 219 (1991).

    Google Scholar 

  16. D. Oesterhelt, W. StoekeniusNature 233, 149 (1971).

    Google Scholar 

  17. V. Yu. Bazhenov, V. B. Taranenko, M. V. VasnetsovProc. SPIE 1840, 183 (1992).

    Google Scholar 

  18. V. B. Taranenko, K. Staliunas, C. O. WeissPhys. Rev. A 56, 1582 (1997).

    Google Scholar 

  19. K. Staliunas, V. B. Taranenko, G. Slekys, R. Viselga, C. O. WeissPhys. Rev. A 57, 359 (1998).

    Google Scholar 

  20. K. Staliunas, V. J. Sanchez-MorcilloOpt. Comm. 139, 306 (1997).

    CrossRef  Google Scholar 

  21. V. B. Taranenko, K. Staliunas, C. O. WeissPhys. Rev. Lett. 81, 2226 (1998).

    Google Scholar 

  22. H. M. Gibbstextit{Optical Bistability – Controlling Light with Light}, (Academic Press, 1985).

    Google Scholar 

  23. L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, L. A. LugiatoPhys. Rev. A 58, 2542 (1998).

    Google Scholar 

  24. D. Michaelis, U. Peschel, F. LedererPhys. Rev. A 56, R3366 (1997).

    Google Scholar 

  25. L. A. Lugiato, R. LefeverPhys. Rev. Lett. 58, 2209 (1987).

    CrossRef  Google Scholar 

  26. N. N. RosanovProg. Opt. 35, 1 (1996).

    Google Scholar 

  27. V. B. Taranenko, I. Ganne, R. Kuszelewicz, C. O. WeissAppl. Phys. B: Lasers Opt. 72, 377 (2001).

    Google Scholar 

  28. V. B. Taranenko, F.-J. Ahlers, K. PierzAppl. Phys. B: Lasers Opt. 75, 75 (2002).

    Google Scholar 

  29. V. B. Taranenko, C. O. Weiss, W. StolzOpt. Lett. 26, 1574 (2001).

    Google Scholar 

  30. V. B. Taranenko, I. Ganne, R. Kuszelewicz, C. O. WeissPhys. Rev. A 61, 063818 (2000).

    Google Scholar 

  31. P. K. Jacobsen, J. V. Moloney, A. C. Newell, R. IndikPhys. Rev. A 45, 8129 (1992).

    Google Scholar 

  32. W. J. Firth, A. J. ScroggieEurophys. Lett. 26, 521 (1994).

    Google Scholar 

  33. G. I. Stegeman, M. SegevScience 286, 1518 (1999).

    Google Scholar 

  34. T. Rossler, R. A. Indik, G. K. Harkness, J. V. Moloney, C. Z. NingPhys. Rev. A 58, 3279 (1998).

    Google Scholar 

  35. V. B. Taranenko, C. O. WeissAppl. Phys. B: Lasers Opt. 72, 893 (2001).

    Google Scholar 

  36. C. O. Weiss, H. R. Telle, K. Staliunas, M. BrambillaPhys. Rev. A 47, R1616 (1993).

    Google Scholar 

  37. V. B. Taranenko, C. O. Weiss, W. StolzJ. Opt. Soc. Am. B 19, 8129 (2002).

    Google Scholar 

  38. S. H. Park, J. F. Morhange, A. D. Jeery, R. A. Morgan, A. Chavez-Pirson, H. M. Gibbs, S. W. Koch, N. Peyghambarian, M. Derstine, A. C. Gossard, J. H. English, W. WeidmannAppl. Phys. Lett. 52, 1201 (1988).

    Google Scholar 

  39. V. B. Taranenko, C. O. WeissSpatial solitons in an optically pumped semiconductor microresonator, xxx.lanl.gov. (nlin.PS/0204048 (2002)).

    Google Scholar 

  40. S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Guidici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knodl. M. Miller, R. JaegerNature 419, 699 (2002).

    CrossRef  Google Scholar 

  41. W. J. Alford, T. D. Raymond, A. A. AllermanJ. Opt. Soc. Am. B 19, 663 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

About this chapter

Cite this chapter

Taranenko, V., Slekys, G., Weiss, C. Spatial Resonator Solitons. In: Akhmediev, N., Ankiewicz, A. (eds) Dissipative Solitons. Lecture Notes in Physics, vol 661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10928028_6

Download citation