Skip to main content

Solitons in Laser Systems with Saturable Absorption

Part of the Lecture Notes in Physics book series (LNP,volume 661)

Abstract

A review is presented of the main features of localized structures - dissipative solitons - in optical systems with nonlinear amplification and absorption, without driving (holding) radiation, including cases with and without feedback. The focus is on two-dimensional laser solitons. For the case of cylindrically- symmetric intensity distributions, there is a discrete set of such solitons with different values of topological charge and different numbers of oscillations in the radial profiles of their amplitude and phase, within certain intervals of the system parameters. Even these simplest dissipative solitons have certain internal structures that become apparent in the distribution of the radiation energy flows. For weakly-coupled solitons whose tail overlap is only small, the distribution of energy flows in the vicinity of each constituent soliton is topologically similar to the distribution for individual solitons. In addition to weakly-coupled solitons, strongly coupled states exist in parameter domains overlapping with those for symmetric solitons. Symmetric structures are motionless, while asymmetric structures move and rotate. Strongly-coupled soliton states are characterized by asymmetric multi-humped intensity distributions. Rotation occurs even in the absence of radiation wavefront dislocations. We present examples of bifurcations of the phase portrait of energy flows during the transient process of the rotating structure formation, as well as different rotating chains of localized strongly-coupled laser vortices. Under conditions of modulation instability of homogeneous field distributions, new regimes arise, including localized structures with simultaneous rotation and pulsation, and “bio-solitons” with initial growth of structure like a labyrinth, with periodic separation of the fragments; then the fragments repeat the stages of growth and separation of new generations of fragments.

Keywords

  • Modulation Instability
  • Topological Charge
  • Saturable Absorber
  • Poynting Vector
  • Dissipative Soliton

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/10928028_5
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-31528-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. N. K. Efremidis and D. N.Christodoulides, see the chapter in this book.

    Google Scholar 

  2. U. Peschel, D. Michaelis, Z. Bakonyi, G. Onishchukov, and F. Lederer, see the chapter in this book.

    Google Scholar 

  3. M. Faraday, Philos. Trans. R. Soc. London 122 Part II, 299 (1831).

    Google Scholar 

  4. P. Umbanhowar, F. Melo, H.L. Swinney, Nature (London) 382, 793 (1996).

    Google Scholar 

  5. R. J. Scott, Report on waves, in Rep. 14th Meeting of the British Assoc. for the Advancement of Science, London, John Murray (1844).

    Google Scholar 

  6. A. L. Hodgkin, A. F. Huxley, J. Physiol. 116, 449 (1952).

    Google Scholar 

  7. D. Noble: J. Physiol. 162, 317 (1962).

    Google Scholar 

  8. B. S. Kerner, V. V. Osipov, Autosolitons: A New Approach to Problems of Self-Organization and Turbulence (Kluwer, Dordrecht, 1994).

    Google Scholar 

  9. N. N. Rosanov, G. V. Khodova, Opt. Spectrosc. 65, 449 (1988).

    Google Scholar 

  10. N. N. Rosanov, A. V. Fedorov, G. V. Khodova, Phys. Status Solidi B 150, 499 (1988).

    Google Scholar 

  11. N. N. Rosanov, G. V. Khodova, Opt. Spectrosc. 72, 1394 (1992).

    Google Scholar 

  12. A. N. Rakhmanov, Opt. Spectrosc. 74, 701 (1993).

    Google Scholar 

  13. A. N. Rakhmanov, V. I. Shmalhausen, Proc. SPIE 2108, 428 (1993).

    Google Scholar 

  14. B. Schapers, M. Feldmann, T. Ackemann, W. Lange, Phys. Rev. Lett. 85, 748 (2000).

    CrossRef  Google Scholar 

  15. N. N. Rosanov, S. V. Fedorov, Opt. Spectrosc. 72, 1394 (1992).

    Google Scholar 

  16. S. V. Fedorov, G. V. Khodova, N. N. Rosanov, Proc. SPIE 1840, 208 (1992).

    Google Scholar 

  17. V. Yu. Bazhenov, V. B. Taranenko, M. V. Vasnetsov, Proc. SPIE 1840, 183 (1992).

    Google Scholar 

  18. N. N. Rosanov, Spatial Hysteresis and Optical Patterns (Springer, Berlin, 2002).

    Google Scholar 

  19. C. O. Weiss, M. Vaupel, K. Staliunas, G. Slekys, V. B. Taranenko, Appl. Phys. B: Laser Opt. 68, 151 (1999).

    Google Scholar 

  20. C. O. Weiss, G. Slekys, V. B. Taranenko, K. Staliunas, R. Kuszelewicz, Spatial Solitons in Resonators, In: Spatial Solitons. ed. by S. Trillo, W. E. Torruellas (Springer, Berlin, 2001), pp. 393–414.

    Google Scholar 

  21. A. F. Suchkov, Sov. Phys. JETP 22, 1026 (1966).

    Google Scholar 

  22. A. G. Vladimirov, N. N. Rosanov, S. V. Fedorov, G. V. Khodova, Quantum Electron. 27, 949 (1997).

    Google Scholar 

  23. N. Akhmediev and A. Ankiewicz, see the chapter in this book.

    Google Scholar 

  24. N. N. Rosanov, S. V. Fedorov, A. N. Shatsev, JETP, 98, 427 (2004).

    Google Scholar 

  25. S. V. Fedorov, N. N. Rosanov, A. N. Shatsev, N.A. Veretenov, A.G. Vladimirov, IEEE J. Quantum Electron. 39, 197 (2003).

    Google Scholar 

  26. N. N. Rosanov, A. V. Fedorov, S. V. Fedorov, G. V. Khodova, Opt. Spectrosc. 79, 795 (1995).

    Google Scholar 

  27. A. A. Andronov, A. A. Vitt, S. E. Khaikin: Theory of Oscillations (Pergamon, Oxford, 1966).

    Google Scholar 

  28. N. N. Rosanov, S. V. Fedorov, A. N. Shatsev: Opt. Spectrosc. 95, 843 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

About this chapter

Cite this chapter

Rosanov, N. Solitons in Laser Systems with Saturable Absorption. In: Akhmediev, N., Ankiewicz, A. (eds) Dissipative Solitons. Lecture Notes in Physics, vol 661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10928028_5

Download citation