Skip to main content

Dissipative Solitons in Semiconductor Optical Amplifiers

Part of the Lecture Notes in Physics book series (LNP,volume 661)

Abstract

We present recent experimental and numerical results for dissipative propagating spatial solitons in periodically-patterned semiconductor optical amplifiers (SOAs). These devices are designed to suppress the destabilization of solitons due to the amplification of noise in the soliton tails in uniformly-pumped SOAs. We briefly describe the fabrication of these devices. The zero-parameter and non-local characteristics of the solitons are studied experimentally and compared with simulations. We have also investigated soliton interactions, accounting for the effects of non-locality and zero-parameter properties.

Keywords

  • Quantum Well
  • Soliton Solution
  • Beam Waist
  • Input Beam
  • Spatial Soliton

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/10928028_3
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-31528-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. S. Trillo and W. Torruellas, Spatial Solitons (Springer, Berlin, 2001).

    Google Scholar 

  2. N. N. Rosanov, Transverse patterns in wide-aperture nonlinear optical systems, in Progress in Optics, XXXV ed. by E. Wolf, (Elsevier Science, NORTH-HOLLAND, 1996).

    Google Scholar 

  3. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman and Hall, London, 1997).

    Google Scholar 

  4. S. Fauve and O. Thual,Phys. Rev. Lett. 64, 282 (1990).

    Google Scholar 

  5. S. Longhi and A. Geraci,Appl. Phys. Lett. 67, 3062 (1995).

    Google Scholar 

  6. S. V. Federov, A. G. Vladimirov, G. V. Khodova and N. N. Rosanov,Phys. Rev. E 61, 5814 (2000).

    Google Scholar 

  7. Z. Bakonyi, D. Michaelis, U. Peschel, G. Onishchukow and F. Lederer,J. Opt. Soc. Am. B 19, 487 (2002).

    Google Scholar 

  8. G. Khitrova, H. M. Gibbs, Y. Kasamura, H. Iwamura, T. Ikegami, and J. E. Sipe,Phys. Rev. Lett. 70, 920 (1993).

    Google Scholar 

  9. C. Kutsche, P. LiKamWa, J. Loehr and R. Kaspi, Electron. Lett. 34, 906 (1998).

    Google Scholar 

  10. E. A. Ultanir, D. Michaelis, F. Lederer and G. I. Stegeman,Opt. Lett. 28, 251 (2003).

    Google Scholar 

  11. G. P. Agrawal, J. Appl. Phys. 56, 3100 (1984).

    Google Scholar 

  12. D. Mehuys, R. J. Lang, M. Mittelstein, J. Salzaman and A. Yariv,IEEE J. Quant. Elect. 23, 1909 (1987).

    Google Scholar 

  13. H. Paxtion, G. C. Dente,J. Appl. Phys. 70, 2921 (1991).

    Google Scholar 

  14. L. Goldberg, M. R. Surette and D. Mehuys Appl Phys. Lett. 62, 2304 (1993).

    Google Scholar 

  15. S. Kristjansson, N. Eriksson, P. Modh and A. Larsson,IEEE J. Quantum Electron. 37, 1441 (2001).

    Google Scholar 

  16. D. J. Bossert, D. Gallant,IEEE Photon. Technol. Lett. 8, 322 (1996).

    Google Scholar 

  17. N. N. Akhmediev, V. V. Afanasjev and J. M. Soto-Crespo Phys. Rev. E 53, 1190 (1996).

    Google Scholar 

  18. E. A. Ultanir, D. Michaelis, C. H. Lange and G. I. Stegeman,Phys. Rev. Lett. 90, 253903 (2003).

    Google Scholar 

  19. G. I. Stegeman and M. Segev,Science 286, 1518 (1999).

    Google Scholar 

  20. A. W. Snyder and D. J. Mitchell,Science 276, 1538 (1997).

    Google Scholar 

  21. C. Conti, M. Peccianti and G. Assanto,Phys. Rev. Lett. 91, 073901 (2003).

    Google Scholar 

  22. IEEE J. Quant. Elect. 39 (2003); Feature issue on spatial solitons (Issue 1).

    Google Scholar 

  23. M. Peccianti, K. A. Brzdakiewicz and G. Assanto,Opt. Lett. 27, 1460 (2002).

    Google Scholar 

  24. B. Luther-Davies and Y. Xiaoping,Opt. Lett. 17, 496 (1992).

    Google Scholar 

  25. T. T. Shi and S. Chi,Opt. Lett. 15, 1123 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

About this chapter

Cite this chapter

Ultanir, E., Stegeman, G., Michaelis, D., Lange, C., Lederer, F. Dissipative Solitons in Semiconductor Optical Amplifiers. In: Akhmediev, N., Ankiewicz, A. (eds) Dissipative Solitons. Lecture Notes in Physics, vol 661. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10928028_3

Download citation